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SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS
AS LIMITS OF PURE JUMP MARKOV PROCESSES

THOMAS G. KURTZ, University of Wisconsin

1. Introduction

In a great variety of fields, e.g., biology, epidemic theory, physics, and chemistry,
ordinary differential equations are used to give continuous deterministic models
for dynamic processes which are actually discrete and random in their develop-
ment. Perhaps the simplest example is the differential equation

d
(1.1) p7 M =M,
used to describe a number of processes including radioactive decay and popu-
lation growth.

Most of these processes may also be described using a Markov chain model.
For example, the usual Markov chain analog for (1.1) would be a branching
process X(t) with

E(X(0) = X(0)".
In this case, it is well known that for a sequence of initial values X,(0) satisfying
1.2 lim 3(—"'%91 = M(0),

we have, for every ¢ >0,

(1.3) lim P{sup X—;@—M(s)’ >e} =0,

n—*o0 s<t
where M(s) is the solution of (1.1) with initial value M(0), that is
M(s) = M(0)e™.

It is the purpose of this paper to extend (1.3) to a large class of differential
equations and approximating pure jump Markov processes.
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50 THOMAS G. KURTZ

2. The limit theorems
Let X,(?) be a sequence of pure jump Markov processes with measurable state
spaces (E,, #,), where E, € %, the Borel sets in R¥, and %, = {E,NB: Be .S’Z‘K}.
Suppose X,(t) has right continuous sample paths. Denote the parameter of
the exponential waiting time distribution for x € E, by 4,(x) and the exit distrib-
ution by p,(x,T), I' €4,, that is

P{X,() el | X(0) = x} = ,(x,T),
where 17 is the first exit time from x, and

A(x) = [E(z?] X,(0) = x)]7*.

We assume that for each I € #,, u,(x,I') and 1,(x) are #,-measurable functions
of x, and A,(x) is bounded on bounded subsets of E,. Define

Fux) = A) L(z—x)u,,(x,dz>.

Note that F,: E, » R.

Proposition (2.1). Suppose

2.2) sup sup 4,(x) f z—x|p,(x,dz) < o
n xekE. E,
and there exists a sequence ¢, > 0 with
lim ¢, =0,
such that
(2.3) lim sup A,(x) f | z—x| p(x,dz) = 0.
n>o xekE. J]z—x|>¢,

Then for every 6 >0

lim sup P{sup | X,(s) — X,(0) — f sF,,(X,,(u))dul > 5| X,0)=x} = 0.
0

n—+o x €k, st

Proof. Without loss of generality, we may assume

(2.4) pox,{z:zy = sup |z, —x;| +x,}) = 1,

where z; denotes the ith component of the vector z, since we can always increase

the dimension of the state space by one and define a new process X ,(t) = (X,,.1(1),

X,(t)) where X,(t) is the original process and X, ,(¢) is determined by (2.4).
Let

t

Y,(1) = [ F(X,())ds + Y,(0).
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Solutions of ordinary differential equations as limits of pure jump Markov processes 51

The pair (X,(t), Y,(t)) is a Markov process with state space E, x R¥.
We now apply the methods discussed in [3] to the sequence of processes

(X0, Y,(1).

Let L, be the Banach space of bounded, measurable functions on E, x R¥,
and let L be the Banach space of bounded, continuous functions on RX that
vanish at infinity. In all cases the norm is the sup norm. We define the semigroup

Tn(t): Ln - Ln
by
T(0f(x,y) = E{f(X, 0, V,(1) | X,0) = x, Y,(0) = y}.

The semigroup of operators on L in which we are interested is just T(¢) = I,
the identity on L. For fe L define P,f(x,y)€ L, by

P.f(x,y) = f(x—p).

In particular, if f is differentiable and has compact support, P,f will be in the
domain of the weak infinitesimal operator 4, of T,(f), as defined in Dynkin [1]
with

2.5) 4,P.f(x,y) = L(f(z—y)—f(x—y)— 2 (2= x)0:f (x — YD A(X)pty(x,dz),
where 0;f denotes the derivative of f with respect to the ith variable. Let
0f = sup sup |0:f(w)|

and
w(e) = sup sup sup Iaif(u +5)— 6if(u)|.
i u Is|<e

We note that
lim w(e) =

&0

Applying the mean value theorem to (2.5), we have

< 20f (%) | 2| mo(x, d2)

lz=x|>en

+ Kw(e,),(x) f |z—x| w(x,dz).
Therefore,
lim sup |4,P,f(x,y)| = 0.

n—+o Xx,y

Theorems (2.1) and (3.5) of [3] imply for every fe L

lim sup Sup IE(x y)(f(Xn(s) ,,(S))) _f(x_y)l = 0.

n—o st x
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It follows immediately that for every ¢ >0

(2.6) lim sup sup P{]X,,(s) — X,(0)— f sF,,(X,,(u))du| > ¢| X,(0) = x} =0.
0

n2ow xeE., sst

Let
F = sup sup |F,(x)]|

and suppose

0 = t0<t1<"'<rk = t
with
n = max (f; — t;—4).
Then
sup | X,(5) — X,(0) - f F(X()du|
s<t 0
t
@ < sup | X000~ X,0) — [ FX,0)dul +
1<igk Jo

S

swp s X=X, () — [ FOG)dul

1Sigk ti-1Ss5t Jtio,

Noting that

sup |Xn(s) - Xn(ti—l)l é \/Kan,l(ti) - Xn,l(ti—l)ls

ti-1SsSh
the second term in (2.7) is bounded by
nF+ sup VK| X0 1(t) = X, 1(ti-) — [ t F, (X, (u)du| + KnF.
It follows from (2.6) that for every ¢ >0
tim sup P sup [ X,0)= X0 = [ R0 0] > 2] X,0) = x| = 0.

and hence

nlir;x sup P{ up | X,(s) — X,(0) — f OSF,,(X,,(u))du |> VKe+(JK+nF|X,(0) =x}
T = 0.
But n and ¢ may be selected so that
JKe+ (VK + OnF<s,

which completes the proof.
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Corollary (2.8) In place of (2.2) and (2.3), suppose there exist I', = E, such
that

(2.9) sup sup A,(x) [ |z — x| p(x,dz) < ©
n xel JE.
and
(2.10) lim sup 4,(x) Iz —x|u,,(x, dz) = 0.
n—-o xel., |z—x|>e.

Let  be the first exit time from I',. Then for every 6 > 0

lim sup P{sup|X,,(s A1) — X,(0) - rm F"(X"(u))dul s | X.0) - x} o
<0

n—+o xeE. st

Proof. Let X,(s) = X,(s A7). Then X (s) is a pure jump Markov process
with waiting time parameter

- {A,,(x) R xel,

A(x) =
0, x¢l,
and exit distribution
t(x,T),  xel,,
peer) = {7
arbitrary, x¢I,.
The sequence X,(s) satisfies (2.2) and (2.3) and the corollary follows.

Theorem (2.11). Suppose there exists E = RX, a function F:E - R* and a
constant M such that

|F(x)—F(.V)|§.M|x—J’|, x:}’EE,
and

(2.12) lim sup |F,(x)—F(x)| = 0.

n—=o xcE,nE

Let X(s,x0) 0 = s = t, xo€E, satisfy

X(O’xO) = Xp,

0
gX(S, xO) = F(X(S, xO)) ’
and suppose there exists # > 0 such that for every n
(2.13) E,N{yeR": inf |y— X(s,x,)| Sn} <E.
s=st
Suppose the sequence satisfies the conditions of Corollary (2.8) forI', = E,NE.
Then lim,, , X,(0) = x, implies for every 6 >0

(2.14) lim P{sup |X,(s) — X(s,%0)| > 8} = 0.

n—> oo st
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Proof. Corollary (2.8) and Condition (2.12) imply for every ¢ >0

n—» o0 s=t

215)  lim P{sup | X5 A7) = X,(0) — f MtF(X,,(u))duI >a} - 0.
JO
1If
sup | X,(s A ) — X,(0) - f " R )du| <
0

s<t
a standard argument implies, for n sufficiently large and ¢ sufficiently small,

sup | X,(s A1) — X(s A 7,%0)|

s<t
(2.16) < (| X,00) — x| + )™
S 0 An.

But if | X,(t At)— X(t A1,X0)| <7, then X,(t A1)el, and ©>1t. There-
fore (2.16) can be written

sup | X,(s) = X(s,%0)| £ 0 An,
s<t
and (2.14) follows from (2.15).

3. Density dependent families

We will now consider a somewhat more intuitive special case of Theorem
(2.11). Denote by Z¥, the set of K-vectors with integer components.

A one parameter family of Markov chains, X,(f), v positive with state spaces
E, c 7%, will be called density dependent if and only if there exist continuous
functions f(x,), xe R¥, 1eZ*, such that the infinitesimal parameters corre-
sponding to X ,(f) are given by

1
duaes = of (k1) 1#0
Define
F(x) = XUIf(x,D).
!

Theorem (3.1). Suppose there exists an open set E = R¥ and a constant M,
such that

3.2 lF(x)—F(y)|<ME|x—y| x,y€E,
(3.3) sup X |1|f(x,D) < o0,

and xeE 1

(3.4) lim sup X |I]f(x,]) = 0.

d—w xek [I|>d
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Then for every trajectory X(s,x,) satisfying
X (0’ X 0) = Xo,

X(s,xo)€E 0<s<t,
and

b9}
25 X(5,%0) = F(X(5,%0)),
lim,, , v~ 1X,(0) = x, implies for every 6 >0,

|
lim P{sup ) %Xv(s) — X(s,%,)

v 00 s<t

>6} = 0.
Proof. In order to apply Theorem (2.11), we define

A7v(s) = lX,,(S),
v
and

E = {lk: keEv}.
v

For v"'keE,, the waiting time parameter and the exit distribution are given by

(k) = o 2ree)
U{t,(l%)ler}f(—il-’k’ l)/).,,(‘% k) '

) - 3 b e

o)

so that (2.12) is trivially satisfied.

Since E is open, for every closed trajectory X(s,x,) contained in E there exists
n > 0 such that (2.13) is satisfied.

With T, = E,NE,

and

=
<
T
S| -
kD
=1
S ——
I

We observe that

l 1
sup sup A,(x) L |z—x|,u,,(x,dz) =sup sup X I——Ivf (;k,l) <o,
xel. JE. /

v v (I/o)ker. 1tV
by (3.3), and with g, = v™*
) l 1
lim  sup p va (—k, l) =0
v+ v-lkel. ljv>e.. v v

by (3.4), and the theorem follows.
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As an example of a density dependent family, let us consider Markov chains
analogous to a deterministic ecological model of Volterra which is discussed
in [2]. This is a model for the development of two species, one of which is a food
source for the other, say a population of rabbits and foxes. Implicit in a determinis-
tic model of this nature is an assumption of an infinite population existing in an
infinite region. The variables (X (), Y(f)) can then be interpreted as the average
population densities of the rabbits and foxes over the infinite region.

The Volterra model assumes that in the absence of foxes the rate of increase
in the population density X(f) would be proportional to X(7), and that the rate
at which foxes kill rabbits is proportional to X(#)¥(#). Applying the same sort
of argument to the fox population leads to the following pair of differential equa-
tions for X(t) and Y(t)

% X(H) = aX(t)— bX()Y (1),
(3.5)
a‘_’;y(;) = eX()Y() - dY(1),

where a, b, ¢ and d are positive.

It is shown in [2] that the trajectories are closed curves.

For the analogous family of Markov chains let V denote the area of the region
in which the populations exist, let X, (¢) be the number of rabbits and Y,(t) the
number of foxes. Therefore (V™ 1X,(f), V™ 'Y,(¢)) would be the average popula-
tion densities. We assume that the probability of a particular rabbit being eaten
by a fox in a short period of time is proportional to the density of the foxes and
that the birthrate of the foxes is dependent upon the ease with which a fox catches
a rabbit which is proportional to the density of the rabbits.

This leads to the following assumptions about the infinitesimal parameters of
the Markov chains.

Let 0 = (1,0)and ¢ = (0, 1), then for k€ {(k,, k,): ky, k, non-negative integers}

Gr.x+o = Ak, birth of a rabbit,

Qex-o = (,ul + b:—/kz) kq, death of a rabbit

Qeri = (;Q + c:—/kl) k,, birth of a fox,

Qrn-¢ = Mok, , death of a fox,

where A, > 1y and 4, < u,. We observe that these parameters correspond to a
density dependent family with
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fx,0 = 2x,
fx,=0) = (g + bx)xy,
fx,9) = (A2 + cxp)x,,
fG, =) = pox,

and
Fi(x) = (44 — p)xy — bxx,

Fy(x) = ex1x; — (4 — A2)x,.

Setting a = 4; — py and d = p, — 4,, we see that (3.5) is the system of dif-
ferential equations that corresponds to the family. The conditions of Theorem
(2.17) are easily verified for any bounded open set. Consequently,

tim (4 X,(0) 3 H40)) = (X(0), ¥O)

V-

implies for every 6 >0

lim P{ sup

V-wo s=<t

_Ill_xy(s)—X(s)i + r lVYV(s)— Y(s) 1>5} —0.

4. Discrete time case

We state the following discrete time analogs of Proposition (2.1) and Theorem

(2.11). The proofs are substantially the same using Theorem (2.13) of [3], in place
of Theorem (2.1).

Proposition (4.1). Let X,(k) be a sequence of discrete time Markov processes,
with measurable state spaces (E,, 4,), E, < #", and one step transition functions
denoted by

1%, T) = P{X,(k+1)eT|X,(k) = x}.
Suppose there exist sequences of positive numbers «, and e,

lim o, = o0 and lim ¢, =0

n— o n— oo
such that
4.2) sup sup oz,,f [z—x|,u,,(x,dx) <
n xeE. E.
and
4.3) lim sup «, f |z—x| n(x,dz) = 0.
: n—o xek, [z—x|>e¢n
Let

R0 =5 [ = d).
E.
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Then for every 6 >0, t >0

k
lim sup P {sup |X,,(k) -X,0 - X s—F,,(X,,(k))I > 6|X,,(0) = x} = 0.
n->o xekE, kZa,t 1=0 n

Corollary (4.4). Suppose there exist I', = E, such that

~

4.5) sup sup «, ' |z—x|u,,(x,dz) < o
n xel, JE,
and
(4.6) lim sup oz,,f Iz—xlun(x,dz) = 0.
n—>w xel, l[z—x|>¢,

Let 7 be the first exit time from I',. Then for every 6 >0, t >0

k—-t—-1
lim sup P{sup | X,(k AT - X,0 — X ai F (X, (D)| > 6| X,(0) = x}

n—»o x ek, k=<ant 1=0
= 0.

Theorem (4.7). Suppose there exists E = R¥, a function F:E— R® and a
constant M such that

|F(x) — F(»)| £ M|x—y|, x,y€E,

and

lim sup |F,,(x) - F(x)[ = 0.

n>w xeE,nE

Let X(s,x,) be as in Theorem (2.11) and suppose the sequence satisfies the

conditions of Corollary (4.4) for I', = E,NE. Then lim,_, X,(0) = x, implies
for every 6 >0, t >0

lim P{sup ]X,,([oc,,s]) — X(s,xo)l >0} = 0.

n—ow s<t
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