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Abstract. Markovian pure jump processes model a wide range of phenomena, including chem-
ical reactions at the molecular level, dynamics of wireless communication networks, and the spread
of epidemic diseases in small populations. There exist algorithms such as Gillespie’s stochastic sim-
ulation algorithm (SSA) and Anderson’s modified next reaction method (MNRM) that simulate a
single path with the exact distribution of the process, but this can be time consuming when many
reactions take place during a short time interval. Gillespie’s approximated tau-leap method, on the
other hand, can be used to reduce computational time, but it may lead to nonphysical values due
to a positive one-step exit probability, and it also introduces a time discretization error. Here, we
present a novel hybrid algorithm for simulating individual paths which adaptively switches between
the SSA and the tau-leap method. The switching strategy is based on a comparison of the expected
interarrival time of the SSA and an adaptive time step derived from a Chernoff-type bound for the
one-step exit probability. Because this bound is nonasymptotic, we do not need to make any distri-
butional approximation for the tau-leap increments. This hybrid method allows us (i) to control the
global exit probability of any simulated path and (ii) to obtain accurate and computable estimates
of the expected value of any smooth observable of the process with minimal computational work.
We present numerical examples that illustrate the performance of the proposed method.

Key words. tau-leap, error estimates, error control, exit probability, weak approximation,
hybrid algorithms
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1. Introduction. In this work, we present a hybrid algorithm to accurately
compute

(1.1) E [g(X(T ))] ,

the expected value of some given smooth function, g : Rd → R, where X is a non-
homogeneous Poisson process taking values in Zd

+, and T is a given final time. Here,
Z+ denotes the set of nonnegative integers, and the ith component, Xi(t), describes,
for example, the number of particles of species i present in a chemical system at time
t. In that type of system, different species undergo reactions at random times by
changing the number of particles of at least one of the species. The probability that
a reaction will happen in a small time interval is modeled by a propensity function
that depends on the current state of the system.

Pathwise realizations of such pure jump processes (see [10]) can be simulated
exactly using the stochastic simulation algorithm (SSA) introduced by Gillespie in
[13]. Independently, an equivalent kinetic Monte Carlo algorithm was developed in
the physics community in the 1960s (see [25] for references).

Although these algorithms generate exact realizations of the Markov process, X ,
they are computationally feasible only for relatively low propensities. For example,
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582 ALVARO MORAES, RAUL TEMPONE, AND PEDRO VILANOVA

in the SSA, at each time step, the process is simulated exactly by sampling the next
reaction to occur and the waiting time for this reaction to happen (see section 1.2).
Then, the total computational work of the SSA roughly becomes proportional to the
expected value of the total propensity integrated over an SSA path (see Remark 3.3).
For that reason, Gillespie proposed in [14] the tau-leap method to approximate the
SSA by evolving the process with fixed time steps, keeping the propensity fixed within
each time step. In fact, the tau-leap method can be seen as a forward Euler method
for a stochastic differential equation driven by Poisson random measures (see [19]).
In the limit, as the time steps go to zero, the tau-leap solution converges to the SSA
solution (see [23]).

A drawback of the tau-leap method is that the simulated process may take neg-
ative values, which is an undesirable consequence of the approximation and is not
a feature of the original process. For this purpose, a Chernoff-type bound for the
time step size is developed here. It controls the probability of taking negative values
by adjusting the time steps. Nevertheless, there are two main scenarios in which we
could obtain extremely small time steps by using the Chernoff bound: either in the
case of very stringent probabilities of taking negative values, or because the current
state of the tau-leap approximate process is relatively close to the boundary. On the
contrary, by using an exact step, the probability of taking negative values is obviously
zero, and, when the process is relatively close to the boundary, the expected time step
size of the exact method is usually larger than that obtained by the Chernoff bound.
Therefore, to avoid extremely small time steps, we propose switching between the
SSA and the Chernoff tau-leap method adaptively, creating a hybrid SSA–Chernoff
tau-leap method. The selection of the simulation method depends on the current
state of the approximate process through the total propensity, which is a measure of
the activity of the system around the current state. Therefore, the hybrid algorithm
reveals the existence of two scales (low/high) of activity that determine whether to
choose an exact or approximate simulation method. Moreover, our hybrid Chernoff
tau-leap method gives accurate estimates of the global error of the approximation and
also its corresponding computational work.

In [6], a hybrid SSA tau-leap algorithm is proposed. In that work, the proposed
switching rule depends on two free parameters, and it is based on the so-called leap
condition, which can be interpreted as a local time discretization error control. While
they are focused on avoiding negative population values, the global error control and
its computational work are not treated. Methods to prevent negative values for the
tau-leap method can roughly be divided into three classes: preleap checks, postleap
checks, and modifications of the Poisson distributed increments. A preleap check
calculates the largest possible time step fulfilling some leap criterion, often based
on controlling the relative change in the propensity function before taking the step
(see [7, 6, 15]). This is primarily aimed at reducing the local time discretization
error, but it also reduces the probability of taking negative values. The approach
presented here includes a preleap check that strictly bounds the exit probability, and
it is better suited for estimating the tails of the Poisson distribution than a standard
Gaussian approximation is. In [3], an alternative postleap check was introduced to
guarantee a nonnegative population in each step. If a step leading to a negative
population has been taken, the postleap procedure retakes a shorter step, conditioned
on already sampled data from the failed step, to avoid sampling bias. However, this
procedure may be expensive since, when computing the new step, binomial-distributed
Poisson bridges need to be simulated. A third way to prevent negative populations is
to replace the Poisson-distributed increments in the tau-leap method with bounded
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HYBRID CHERNOFF TAU-LEAP 583

increments from the binomial or multinomial distributions (see [8, 22, 24]). This
technique introduces another approximation error but also imposes a restriction on the
maximum step size in order to preserve the expected value of the tau-leap increment.

In this work, we derive a novel preleap check that is based on the general Chernoff
bound used in large deviation theory [9]. More specifically, let x̄ be the state of the
approximate process at time t, and let δ ∈ (0, 1) be given. We compute a time
step, τ = τ(δ, x̄), such that the probability that the approximate process reaches a
nonphysical negative value in the interval [t, t+ τ) is less than δ. Also, by bounding
the one-step exit probability by δ, we are able to control the probability that a whole
hybrid path exits the Zd

+ lattice. Simply put, this is a global exit probability.
The global error arising from the hybrid method can be decomposed into three

components: the global exit error, the time discretization error, and the statistical
error. This global error should be less than a prescribed tolerance, TOL, with prob-
ability larger than a certain confidence level. The global exit error is a quantity that
is derived from the global exit probability and therefore can be controlled by δ. The
analysis and control of this component together are among the main contributions
of this work. The discretization error inherent in the tau-leap method is controlled
through a time mesh of size h (see [16]). Finally, the statistical error is controlled by
the number of hybrid paths, M , by making use of the central limit theorem [21]. The
parameters δ, h, and M are functions of TOL since they are obtained by approxi-
mately minimizing the computational work of the hybrid method under the constraint
that the global error must be less than TOL. Here, the computational work is mea-
sured as the amount of time needed for computing an estimate of E [g(X(T ))] within
TOL with a given level of confidence. This is known in the literature as CPU runtime.

The methodology presented here also allows the determination of when an exact
method is preferred over the hybrid method. Similar hybrid methods have been
proposed for the regular tau-leap method (see [6]), but without the rigorous global
error estimation and control that are presented here.

1.1. The pure jump process. To describe the pure jump process, X : [0, T ]×
Ω → Zd

+, occurring in (1.1), we consider a system of d species interacting through
J different reaction channels. For the sake of brevity, we write X(t, ω) ≡ X(t). Let
Xi(t) be the number of particles of species i in the system at time t. We want to
study the evolution of the state vector,

X(t) = (X1(t), . . . , Xd(t)) ∈ Z
d
+,

modeled as a continuous-time, discrete-space Markov chain starting at some state,
X(0) ∈ Zd

+. Each reaction can be described by the vector νj ∈ Zd such that, for a
state vector x ∈ Zd

+, a single firing of reaction j leads to the change

x→ x+ νj .

The probability that reaction j will occur during the small interval (t, t+ dt) is then
assumed to be

(1.2) P
(
reaction j fires during (t, t+ dt)

∣∣ X(t) = x
)
= aj(x)dt+ o (dt) ,

with a given nonnegative polynomial propensity function, aj : Rd → R. We set
aj(x) = 0 for those x such that x+νj /∈ Zd

+.
A process,X , that satisfies the Markov property together with (1.2) is a continuous-

time, discrete-space Markov chain that can be characterized by the nonhomogeneous
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584 ALVARO MORAES, RAUL TEMPONE, AND PEDRO VILANOVA

Poisson process,

(1.3) X(t) = X(0) +

J∑
j=1

νjYj

(∫ t

0

aj(X(s)) ds

)
,

where Yj : R+×Ω → Z+ are independent unit-rate Poisson processes [10]. In this
work, we do not assume that the species can only be transformed into other species
or be consumed like in [16]. In our numerical examples, we allow the set of possible
states of the system to be infinite, but we explicitly avoid cases in which one or more
species grows exponentially fast or blows up in the time interval [0, T ].

Remark 1.1. In chemical kinetics, the above setting can be used to describe well-
stirred systems of chemical species, interacting through different chemical reactions,
characterized by stoichiometric vectors, νj , and polynomial propensities, aj , derived
from the mass-action principle (see [18]). Such systems are assumed to be confined to
a constant volume and to be in thermal, but not necessarily chemical, equilibrium at
some constant temperature. Other popular applications can be found in population
biology, epidemiology, and communication networks (see, e.g., [5, 11]).

Example 1.2 (simple decay model). Consider the reaction X
c−→ ∅, where one

particle is consumed. In this case, the state vector X(t) is in Z+, where X denotes
the number of particles in the system. The vector for this reaction is ν = −1. The
propensity functions in this case could be, for example, a(X) = cX , where c > 0.

The classical approach to chemical kinetics deals with state vectors of nonnegative
real numbers representing the concentration of species at time t, usually measured in
moles per liter. In this setting, the concentrations are assumed to vary continuously
in time, according to the mass action principle, which says that each reaction in the
system affects the rate of change of the species. More precisely, the effect on the
instantaneous rate of change is proportional to the product of the concentrations of
the reacting species. For the simple decay example, we have the reaction rate ODE
(or mean field): ẋ(t) = −cx(t) for t ∈ R+ and x(0) = x0 ∈ R+. In general, let ν
be the stoichiometric matrix with columns νj , and let a(x) be the column vector of
propensities. Then, we have

(1.4)

{
ẋ(t) = νa(x(t)), t ∈ R+,
x(0) = x0 ∈ R+.

1.2. Gillespie’s SSA method. The SSA method simulates exact paths of X
using (1.3). It requires the sampling of two random variables per time step: one to
find the time of the next reaction and another to determine which is the reaction that
is firing at that time.

In [13], Gillespie presented the original SSA or the direct method.
Given a state X(t), the direct method is carried out by drawing two uniform

random numbers, U1, U2 ∼ U(0, 1), which give the time to, and index of, the next
reaction, i.e.,

j = min

{
k ∈ {1, . . . , J} :

k∑
i=1

ai(X(t))

a0(X(t))
>U1

}
, τmin =

1

a0(X(t))
ln

(
1

U2

)
,

where a0(x) :=
∑J

j=1 aj(x). The new state is X(t + τmin) = X(t) + νj , and by
repeating the above procedure until final time T , a complete path of the process, X ,
can be simulated.
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HYBRID CHERNOFF TAU-LEAP 585

The drawback of this algorithm appears clearly as the sum of the intensities of all
reactions, a0(x), becomes large: since all the jump times have to be included in the
time discretization, the corresponding computational work may become unaffordable.
Indeed, we have that the mean value of the jump times on the interval (t, t + τ) is
approximately a0(X(t))τ + o (τ).

1.3. The tau-leap approximation. In the following, we denote by X̄ : [0, T ]×
Ω → Zd the tau-leap approximation of X . To avoid the computational drawback of
the exact methods, i.e., when many reactions occur during a short time interval, the
tau-leap method was proposed in [14]: given a population, X̄(t), and a time step,
τ > 0, the population at time t+ τ is generated by

(1.5) X̄(t+ τ) = X̄(t) +
J∑

j=1

νjYj

(
aj(X̄(t))τ

)
,

where {Yj(λj)}Jj=1 are independent Poisson distributed random variables with pa-
rameter λj , used to model the number of times that the reaction j fires during the
(t, t + τ) interval. This is nothing else than a forward Euler discretization of the
stochastic differential equation of the pure jump process (1.3), realized by the Poisson
random measure with state dependent intensity (see [19]).

In the limit, when τ → 0, the tau-leap method gives the same solution as the exact
methods, using the property that, for a constant propensity, the firing probability in
one reaction channel is independent of the other reaction channels. The total number
of firings in each channel is then a Poisson distributed stochastic variable depending
only on the initial population, X̄(t). The error thus comes from the variation of
a(X(s)) for s ∈ (t, t+ τ).

1.4. Outline of this work. The outline of this work is as follows. In section
2, we derive and give an implementation of the Chernoff-type bound that guarantees
that the one-step exit probability in the tau-leap method is less than a predefined
quantity. We also show that the Gaussian preleap selection step is not accurate
and should not be used as a reliable bound. In section 3, we motivate and give
implementation details of the one-step switching decision rule, which will be the key
ingredient for generating hybrid paths. We show how to choose between the SSA and
the tau-leap method on the basis of the current state of the approximated process.
Next, we show how to generate hybrid paths and obtain an estimate of the path
exit error based on the probability that one hybrid path exits the Zd

+ lattice. This
estimation of the global exit probability depends on the expected number of tau-leap
steps taken by the hybrid algorithm. It is easy to prove that this number is finite.
Hybrid paths can also be used for estimating the expected number of steps that the
SSA needs in order to reach the final time. In section 4, we decompose the total error
into three components, the discretization error, the statistical error, and the global
exit error, which were studied in the previous section. To control these errors, we
give an algorithm capable of estimating the error components. We also compute the
necessary ingredients for obtaining the desired estimate, i.e., a time mesh, a bound for
the one-step exit probability, and the total number of Monte Carlo hybrid paths to be
simulated. These ingredients are computed by optimizing the expected work of the
hybrid method constrained to the error requirements. In section 5, we present some
numerical experiments using well-known examples taken from the literature. Finally,
in section 6, we provide conclusions and suggest directions for future work.
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2. The Chernoff bound: One-step exit probabilities. In this section, we
derive a Chernoff-type bound that helps us guarantee that the one-step exit proba-
bility in the tau-leap method is less than a predefined quantity, δ > 0. This is crucial
to controlling the computational global error, E , which is defined below in section 4.
To motivate the main ideas, the bound is first derived for the single reaction case
and then generalized to several reactions. At the end of this section, we present an
algorithm that efficiently computes the step size.

2.1. The single reaction case. Let Q ≡ Q(λ) be a Poisson random variable
with parameter λ > 0. Given a nonnegative integer, n, consider the following two
upper bounds for P (Q ≥ n): the Klar bound [17] and a Chernoff-type bound [9],
which we derive below. The Klar bound is given by

(2.1) P (Q ≥ n) ≤
(
1− λ

n+ 1

)−1

exp(−λ)λ
n

n!

and is valid for λ < n+ 1, while the Chernoff bound is given by

(2.2) P (Q ≥ n) ≤ exp
(
n(1− log(n/λ)− λ)

)
and is valid for λ < n; otherwise, it is trivial.

In order to prove the Chernoff bound (2.2), we first note that the Markov inequal-
ity gives, for every s > 0,

P (Q ≥ n) = P
(
esQ ≥ esn

) ≤ E
[
esQ

]
esn

,

and thus

P (Q ≥ n) ≤ exp

(
inf
s>0
{−sn+ λ(es − 1)}

)
.

When λ ∈ (0, n), the infimum,

inf
s>0
{−sn+ λ(es − 1)},

is achieved at s∗ = log(n/λ), and its value is n(1 − log(n/λ) − λ). From this simple
calculation, we obtain the Chernoff bound (2.2).

Given a positive integer, n, representing the state of the system at a certain time,
and δ ∈ (0, 1), we would like to obtain the largest value for λ such that P (Q(λ) ≥ n) ≤
δ. From the Chernoff bound, we have

n(1− log(n/λ)− λ) ≤ log(δ)

or, equivalently,

(2.3) log(λ) − λ

n
≤ log(n) +

log(δ)

n
− 1.

If in the Klar bound (2.1) we neglect the factor(
1− λ

n+ 1

)−1

,
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which lies between 1 and n+ 1 when λ ∈ (0, n), then we obtain

exp(λ)
λn

n!
≤ δ.

Taking logarithms on both sides, we arrive exactly at the Chernoff bound (2.3). We
can see in Figure 1 that the Klar bound (2.1) is sharp, except when λ gets close to the
singularity at n+1. The Chernoff bound (2.2) is not as sharp as Klar’s bound but, as
we will see in the next subsection, it has a generalization to the more practical many-
reaction case. We observe that the Gaussian approximation in Figure 1 performs
poorly for small values of λ and is not a bound in general.

4 6 8 10 Λ
10�6

10�5

10�4

0.001

0.01

0.1

1

Klar �1D�

Chernoff � this work�

Poisson � exact �

Gaussian � approximation �

Fig. 1. Let n = 10 and λ ∈ (2, 10). Here, we show the semilogarithmic plot of P (Q(λ) ≥ n),
the Chernoff bound exp ((n(1 − log(n/λ) − λ))), the Klar bound, and the Gaussian approximation.

2.2. The many-reaction case. To the best of our knowledge, there is no sim-
ple expression for the cumulative distribution function of a linear combination of
independent Poisson random variables. For that reason, we propose a Chernoff-type
bound for estimating the maximum size of the tau-leap step when many reactions are
involved.

Consider the following preleap check problem: find the largest possible τ such
that, with high probability, the next step of the tau-leap method will take a value in
the Zd

+ lattice of nonnegative integers, i.e.,

(2.4) P

⎛
⎝X̄(t) +

J∑
j=1

νjYj

(
aj(X̄(t))τ

) ∈ Zd
+

∣∣∣∣∣ X̄(t)

⎞
⎠ ≥ 1− δ

for some small δ > 0. Observe that this value of τ depends on X̄(t).
Condition (2.4) can be achieved by solving d auxiliary problems, one for each

x-coordinate, i = 1, 2, . . . , d. Find the largest possible τi ≥ 0, such that

(2.5) P

⎛
⎝X̄i(t) +

J∑
j=1

νjiYj

(
aj(X̄(t))τi

)
< 0

∣∣∣∣∣ X̄(t)

⎞
⎠ ≤ δi,

where δi = δ/d and νji is the ith coordinate of the jth reaction channel, νj . Inequality
(2.4) is then fulfilled if we let τ := min{τi : i = 1, 2, . . . , d}.

In the following sections, we show how to find the largest time steps, τi.
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2.2.1. Defining the function τi(s). Consider the random variable Qi(t, τi)
representing the opposite of the increment of the process, X̄i(t):

Qi(t, τi) :=

J∑
j=1

(−νji)Yj

(
aj(X̄(t))τi

)
.

Observe that Qi(t, τi) is a linear combination of J independent Poisson random vari-
ables whose intensities are multiples of τi.

For all s > 0, using the Markov inequality, we obtain an upper bound for the
probabilities we want to control:

(2.6)

P
(
Qi(t, τi) > X̄i(t)

∣∣ X̄(t)
)
= P

(
exp (sQi(t, τi)) > exp

(
sX̄i(t)

) ∣∣∣ X̄(t)
)

≤ E [exp (sQi(t, τi))]

exp
(
sX̄i(t)

) .

Observe that the independent Poisson random variables, Yj

(
aj(X̄(t))τi

)
, have moment-

generating functions,

Mj(s) = exp
(
aj(X̄(t))τi(e

s − 1)
)
,

and, therefore,

(2.7)

E [exp (sQi(t, τi))] =

J∏
j=1

Mj(−sνji)

= exp

⎛
⎝τi

J∑
j=1

aj(X̄(t))(e−sνji − 1)

⎞
⎠ .

By combining (2.6) and (2.7), we obtain the Chernoff bound for the multireaction
case, namely,

(2.8) P
(
Qi(t, τi)>X̄i(t)

∣∣X̄(t)
) ≤ inf

s>0
exp

⎛
⎝−sX̄i(t) + τi

J∑
j=1

aj(X̄(t))(e−sνji−1)
⎞
⎠.

To avoid the computational problem of finding exactly the above infimum and to
guarantee that

P
(
Qi(t, τi) > X̄i(t)

∣∣ X̄(t)
) ≤ δi,

we proceed as follows. First, according to (2.5) and (2.8),

−sX̄i(t) + τi

J∑
j=1

aj(X̄(t))(e−sνji − 1) = log(δi).

Using this fact, we can express τi as a function of s:

(2.9) τi(s) =
log(δi) + sX̄i(t)

−a0
(
X̄(t)

)
+

∑J
j=1 aj(X̄(t))e−s νji

,

where

a0(X̄(t)) :=
J∑

j=1

aj(X̄(t)).
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2.2.2. Study of τi(s). In this section, we study how much we can increase τi
while satisfying condition (2.5). Obviously, it is satisfied for τi = 0+. By a continuity
argument, we want to obtain τ∗i defined as the maximum τi such that every point of
the interval [0, τi] satisfies (2.5). Note that τ∗i could be +∞.

We discuss how, depending on certain relations among the pairs {(aj(X̄(t)), νji)}Jj=1,
we can conclude that τ∗i is either a real number or +∞. First, if νji > 0 for all j,
then τ∗i must be +∞, since no reaction is pointing to zero. From now on, we assume
that, given the coordinate i, there is at least one reaction pointing to zero, i.e.,

(2.10) ∃j such that νji < 0.

The denominator of (2.9) is the function

(2.11) Di(s) := −a0
(
X̄(t)

)
+

J∑
j=1

aj(X̄(t))e−s νji ,

which is convex since it is a positive linear combination of the convex functions e−sνji

plus the constant term −a0(X̄(t)). We also notice that Di(0) = 0 and Di(+∞) = +∞
when (2.10) holds.

On the other hand, the numerator of (2.9),

Ri(s) := log(δi) + sX̄i(t),

is a straight line crossing the vertical axis at log(δi) < 0, and we can assume that its
slope, X̄i(t), is positive. Otherwise, the X̄(t) process is at the boundary of Zd

+, and
therefore no reaction is pointing outside the lattice, Zd

+. We therefore set τ∗i = +∞.
Let us define si as the root of the numerator Ri(s), i.e.,

(2.12) si := − log(δi)/X̄i(t).

By direct substitution of (2.12) into (2.11), we obtain

(2.13) Di(si) = −a0(X̄(t)) +

J∑
j=1

aj(X̄(t))δ
νji/X̄i(t)
i

and

(2.14) D′
i(si) = −

J∑
j=1

aj(X̄(t))νjiδ
νji/X̄i(t)
i .

In order to determine whether τ∗i < ∞ or τ∗i = ∞, we have to analyze all possible
cases regarding the pair (Ri(s), Di(s)).

Indeed, note that

D′
i(0) = −

J∑
j=1

aj(X̄(t))νji,

and if D′
i(0) ≥ 0, which could be interpreted as a drift pointing to the boundary, then

Di(s) is monotonically increasing in [0,+∞). This situation is illustrated in Figure 2:
in the left panel, we see the pair (Ri(s), Di(s)); in the right panel, we see the quotient
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Fig. 2. Left: Numerator Ri(s) and denominator Di(s). Right: Quotient τi(s) = Ri(s)/Di(s).
Both plots are for the case D′

i(0) ≥ 0.

τi(s) = Ri(s)/Di(s). The function τi achieves its maximum, τ∗i , at a unique point,
s∗i .

If D′
i(0) < 0, which can be interpreted as a drift pointing to +∞, the value of

τ∗i depends on X̄i(t), i.e., on the size of the slope of Ri(s). Observe that Di(s) is
then negative in an interval (0, di), with Di(di) = 0, and in general there is not a
closed form for di. Also, since Di(s) and Ri(s) may have opposite signs for some
s ≤ max(si, di), this allows for artificially negative values of τi, which should not be
taken into account.

The value of τ∗i is finite or +∞ according to the sign of Di(si). These three
cases are shown in the left panel of Figure 3. When X̄i(t) is large enough, i.e., when
Di(si) < 0, we can see in the right panel of Figure 3 that τi∗ = +∞. This is true
because the limit of τi(s), as s → d+i , is +∞. Therefore, if X̄i(t) is far from the
boundary and the drift is pointing to +∞, we can take τi to be as large as we wish.

0.2 0.4 0.6 0.8
s

� 20

20

40
Numerator R1i

Numerator R2i

Numerator R3i

Denominator

0.2 0.4 0.6 0.8 1.0
s

� 0.5

0.5

1.0

Τ i

Fig. 3. In this case
∑J

j=1 aj(X̄(t))νji > 0. Left: Relative positions of (Ri(s), Di(s)), depending

on the sign of Di(si). Right: τi(s) = Ri(s)/Di(s) in the case Di(si) < 0.

The two other cases are as follows: if Di(si) > 0, then X̄i(t) is, in a certain sense,
close to the boundary, and even if the drift is pointing to +∞, there exists an upper
bound for τi. This is illustrated in the left part of Figure 4, where τ∗i is the maximum
to the right of si. Finally, if Di(si) = 0, then τ∗i can be obtained as the limit of τi(s)
as s→ d+i . By l’Hôpital’s rule, we have that τ∗i = X̄i(t)/D

′
i(si).

We can summarize the previous discussion as follows: If νji ≥ 0 for all j, then
τ∗i = +∞; otherwise, we have the following three cases:

1. Di(si) > 0. In this case, τi(si) = 0 and Di(s) is positive and increasing for
all s ≥ si. Therefore, τi(s) is equal to the ratio of two positive increasing
functions. The numerator, Ri(s), is a linear function, and the denominator,
Di(s), grows exponentially fast. Then, there exist an upper bound, τ∗i , and a
unique number, s∗i , which satisfies τi(s

∗
i ) = τ∗i . We develop an algorithm for
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0.2 0.4 0.6 0.8 1.0
s

0.02

0.04

0.06

0.08

0.10 Τi

0.2 0.4 0.6 0.8 1.0
s

� 0.2

0.2

0.4

0.6

0.8

1.0
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Fig. 4. The other two cases for τi(s) when
∑J

j=1 aj(X̄(t))νji > 0. Left: Di(si) > 0. Right:

Di(si) = 0.

approximating s∗i , using the relation τ ′i(s
∗
i ) = 0.

2. If Di(si) < 0, then τ∗i = +∞.
3. If Di(si) = 0, then τ∗i = X̄i(t)/D

′
i(si).

2.2.3. Approximating s∗i . In this section, we present a simple and fast algo-
rithm for approximating s∗i , which was defined in case 1 above. We proceed in two
steps. In the first step, we find an initial guess, s∗i,0, and in the second step, we improve
this guess and obtain s∗i,1. Therefore, τ

∗
i =τi(s

∗
i ) will be approximated by τi(s

∗
i,1).

From (2.10), the equation τ ′i(s) = 0 is equivalent to

(2.15) −a0(X̄(t))+

J∑
j=1

aj(X̄(t)) exp(−sνji) = (s−si)
J∑

j=1

aj(X̄(t))(−νji) exp(−sνji).

Let us define

ŝ := s− si and bji(X̄(t)) := aj(X̄(t))δ
νji/X̄i(t)
i > 0.

As a consequence,

exp(−sνji) = δ
νji/X̄i(t)
i exp(−ŝνji),

and therefore (2.15) can be written as

(2.16)

J∑
j=1

bji(X̄(t)) exp(−ŝνji) = a0(X̄(t)) + ŝ

J∑
j=1

bji(X̄(t))(−νji) exp(−ŝνji).

Once we introduce the auxiliary functions Ψji,

Ψji(y) := exp(−νjiy)(1 + νjiy),

(2.16) becomes equivalent to finding s∗i such that G(s∗i ) = 0, where

G(y) = −a0(X̄(t)) +

J∑
j=1

bji(X̄(t))Ψji(y).

The left graph in Figure 5 shows the shape of Ψji depending on the sign of νji. We
deduce that G is a decreasing function such that G(0) = D(si) and G(+∞) = −∞.
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Fig. 5. Left: Function Ψ(s) for different values of ν. Right: Function G and its approximating
parabola.

By neglecting the exponential term in Ψji, we can obtain an initial guess for s∗i ,
i.e.,

s∗i,0 =
−a0(X̄(t)) +

∑J
j=1 bji(X̄(t))∑J

j=1 bji(X̄(t))(−νji)
=

Di(si)

D′
i(si)

.

As we observed in case 1, the values for Di(si) and D′
i(si) are positive, and our

initial guess, s∗i,0, is a positive number.
In the right graph in Figure 5, we can see that the parabola obtained as the

second-order approximation of G at s∗i,0 is a good approximation of G close to its
root, s∗i . Therefore, we obtain s∗i,1 as the largest root of the approximating parabola.
By evaluating τi(s

∗
i,1), we obtain a sharp lower bound of sups>0 τi(s).

An expression for s∗i,1 in terms of G and its derivatives up to the second order
evaluated at s∗i,0 is given by

(2.17) s∗i,1 = s∗i,0 +
(
−G′(s∗i,0) +

√
G′(s∗i,0)2 − 2G′′(s∗i,0)G(s∗i,0)

)
/G′′(s∗i,0).

An efficient implementation for computing τi(s
∗
i,1) ≈ τ∗i can be found in Algorithm

1 (see the definition of τ∗i in case 1 at the end of section 2.2.2).

2.3. Computational work of the preleap methods: Chernoff bound ver-
sus Gaussian approximation. In this section, we first summarize an alternative
preleap method, introduced in [16], which uses a Gaussian-type approximation. We
then compare the algorithm that computes the Chernoff step size with the one that
computes the Gaussian-type step size, τgau.

Given δ > 0, we want to find the largest τgau such that

(2.18) P
(
X̄i(t+ τgau) < 0

∣∣∣ X̄(t)
)
≤ δ, i=1, . . . , d.

Using (1.5), we get

P
(
X̄i(t)−Qi(t, τgau) < 0

∣∣ X̄(t)
)
= P

(
Qi(t, τgau) > X̄i(t)

∣∣ X̄(t)
)

= 1− P
(
Qi(t) ≤ X̄i(t)

∣∣ X̄(t)
) ≤ δ ,

where Qi(t, τgau) := −
∑J

j=1 νjiYj(aj(X̄(t))τgau).
Now, we approximate Qi(t, τgau) by

Q̂i(t, τgau) := E [Qi(t, τgau)] +
√
Var [Qi(t, τgau)]N ,
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Algorithm 1. Computes the Chernoff tau-leap step size. Inputs: The current state
of the approximate process, X̄ , the propensity functions evaluated at X̄, (aj(X̄))Jj=1,
and the stoichiometric matrix, νji. Output: τ . Notes: For a fixed coordinate, i, such
that (2.10) is fulfilled (otherwise τi=+∞), this algorithm determines whether or not
τ∗i is finite. When τ∗i is finite, this algorithm computes an approximation for τi(s

∗
i,1)

based on (2.17).

Require: a0 ←
∑J

j=1 aj > 0
1: for i = 1 to d do
2: if ∃j : νji < 0 and X̄i(t) > 0, then
3: x← X̄i(t)

4: bj ← aj δ
νji/x
i

5: b̂←∑J
j=1 bj

6: if b̂− a0 < 0, then
7: τi ← +∞
8: else
9: if b̂− a0 > 0, then

10: s← (a0 − b̂)/
∑J

j=1 bjνji
11: ξj ← bj exp(−sνji)
12: cp ←

∑J
j=1 ξjν

p
ji, p = 0, 1, 2, 3,

13: α← 1
2 (c3s− c2)

14: β ← −c2s
15: γ ← −a0 + c0 + c1s
16: s← s− (β +

√
β2 − 4αγ)/2α

17: τi ← sx/(−a0 +
∑J

j=1 bj exp(−sνji))
18: else
19: τi ← −x/

∑J
j=1 bjνji

20: end if
21: end if
22: else
23: τi ← +∞
24: end if
25: end for
26: return min{τ1, . . . , τd}

where N ∼ N (0, 1) is a standard normal random variable. We get

P
(
Q̂i(t) ≤ X̄i(t)

∣∣ X̄(t)
)
= Φ

⎛
⎝X̄i(t)+

∑J
j=1 νjiaj(X̄(t))τgau√∑J

j=1 ν
2
jiaj(X̄(t))τgau

⎞
⎠ ,

where Φ is the cumulative density function for the standard normal distribution.
Finally, let zδ satisfy Φ(zδ) = 1−δ. Then, the τgau that approximately solves (2.18)
is obtained from

X̄i(t)+

J∑
j=1

νjiaj(X̄(t))τgau = zδ

√√√√ J∑
j=1

ν2jiaj(X̄(t))τgau.

Algorithm 2 efficiently computes the step size, τgau, using the Gaussian approxi-
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mation.

Algorithm 2. Computes the tau-leap step size using a Gaussian approximation.
Inputs: The current state of the approximate process, X̄, the propensity functions
evaluated at X̄ , (aj(X̄))Jj=1, and the stoichiometric matrix, νji. Output: τ . Notes:
For a fixed coordinate, i, this algorithm determines whether or not τ∗i is finite. When
τ∗i is finite, this algorithm computes its value.

Require:
∑J

j=1 aj > 0
1: for i=1 to d do
2: x← X̄i(t)

3: cp ←
∑J

j=1 ajν
p
ji, p = 1, 2,

4: ρ← z2δi
5: α← ρ2c22 − 4ρc1c2x
6: if c2 = 0 or (c1 > 0 and α < 0), then
7: τi ← +∞
8: else
9: if c2 �= 0 and (c1 < 0 or (c1 > 0 and α ≥ 0)), then

10: β ← ρc2 − 2c1x
11: τi ← (β −√α)/2c21
12: else
13: τi ← x2/ρc2
14: end if
15: end if
16: end for
17: return min{τ1, . . . , τd}

To quantify the relative efficiency of Algorithm 1 versus Algorithm 2, we use
the following nominal operation count convention (based on McMahon [20]): add-
mul, subtraction, and division 1 flop; square root 4 flops; and exp function 8 flops.
We do not count the flow control work, and we assume d = 1 because it is easily
extended to d > 1. Moreover, we are not taking into account the memory access
cost, which usually is dominant. The total flop count for Algorithm 1 is 33 + 26J ,
and for Algorithm 2 it is 19 + 2J . The ratio tends to 13 when J → ∞. However,
the actual runtime in the MATLAB implementation is, in all the examples we tested,
more optimistic than that predicted using the flop count. Empirically, we observed
that the dominant computational work of the hybrid algorithm at each step is due to
the simulation of a Poisson random variable (see [1] for details). The additional work
of computing the Chernoff step size is, in fact, almost negligible.

In Figure 6, we show the comparison between the Chernoff bound and the Gauss-
ian approximation for the simple decay model, with initial condition X0 = 100 (see
section 5). The Chernoff bound appears to be conservative, and it holds for any δ,
which is not the case for the Gaussian approximation, whereas their computational
work is of the same order. We can see that in the Gaussian case, the approximation
does not attain the required one-step exit probability, with a confidence level of 95%,
for most δ.

3. The one-step switching rule and hybrid trajectories. In this section, we
first present a one-step switching rule that, given the current state of the approximate
process, X̄(t), adaptively determines whether to use an exact or an approximated
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Fig. 6. The Chernoff bound versus the Gaussian approximation in the simple decay model
example, with initial condition X0=100 (see section 5). Left: The empirical one-step exit probability
bound with asymptotic confidence intervals ( 95%) versus a reference line with a unit slope (solid line)
for the Chernoff tau-leap. Missing confidence intervals mean that the values are zero or negative.
Right: The Gaussian approximation case. We can observe that the Chernoff bound holds for any δ,
with a confidence level of 95%, which is not the case for the Gaussian approximation.

method for the next step. Then, we present an algorithm for simulating a whole
hybrid path. This algorithm consists of a certain number of exact and approximate
steps. Next, we estimate the probability that one hybrid path exits the lattice, Zd

+,
which is an event that depends on the expected number of tau-leap steps, as we will
see. Finally, we show how to estimate, based only on hybrid paths, the expected
number of steps of a pure SSA path.

3.1. The one-step switching rule algorithm. Here, we provide a justification
for the one-step switching rule algorithm, as described in Algorithm 3.

Let x = X̄(t) be the current state of the approximate process, X̄. Therefore, the
expected time step of the SSA is given by 1/a0(x). Let τCh=τCh(x, δ) be the Chernoff
tau-leap step, obtained using Algorithm 1. To move one step forward using the SSA
method, we should compute at least a0(x) and sample two uniform random variables.
On the other hand, to move one step forward using the Chernoff tau-leap method, we
not only have to compute τCh (discussed at the end of section 2), but we also have
to generate J Poisson random variables, where J is the number of reaction channels.
It is critical to observe that the computational work of generating J Poisson random
variables is much larger than the computational work of generating only two uniform
random variables. This computational work could be measured, for example, as the
average execution time for the operations involved in it.

We now describe K1 and K2. In order to avoid the overhead caused by unneces-
sary computations of τCh, we first estimate the computational work of moving forward
from the current time, t, to the next grid point, T0, by using the SSA method. If this
work is less than the work of computing τCh, we take an exact step. This motivates
us to define K1 as the ratio between the work of computing τCh and the work of
computing a0(x) plus sampling two uniform random variables. Otherwise, we com-
pute τCh and decide whether to take an SSA step or a tau-leap one, according to the
comparison between τCh and K2/a0(x). Here K2 = K2(x, δ) is defined as the work
of taking a Chernoff tau-leap step given the current state of the process, divided by
the work of taking an SSA step plus the work of computing τCh. As we mentioned,
associated with each type of step, there is computational work. In the first case, when
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596 ALVARO MORAES, RAUL TEMPONE, AND PEDRO VILANOVA

K1/a0(x) > T0−t, the work is C1 and includes the computation of 1/a0(x) and the
generation of two uniform random variates. In the same way, when K1/a0(x) > T0−t
and K2/a0(x) > τCh, the work is C2 and involves the work contained in C1 and of
computing τCh(x, δ), which is denoted by C3. On the other hand, when a Chernoff
tau-leap step is taken, we have not only the constant work, C3, but also variable work,
which is the work of generating the Poisson random variates. The latter work is a
function of the propensities of all the reaction channels, namely, a(x)τCh(x, δ). We
model the computational work of generating one Poisson random variate according
to [1], and this work is denoted by CP (·). In the Gamma simulation method devel-
oped by Ahrens and Dieter in [1], which is used by MATLAB, the work grows like
b1 + b2 lnλ, where λ > 15 is the rate of the Poisson random variable. For λ ≤ 15, the
growth is linear. In practice, it is possible to estimate b1 and b2 using a Monte Carlo
method with a least squares fit, as shown in Figure 7.

Summarizing, K1 := C3

C1
, and K2(X̄(t), δ) :=

C3+
∑J

j=1 CP (aj(X̄(t))τCh(X̄(t),δ))

C1+C3
.

Observe that K2(x, δ)→ C3+Jb1
C1+C3

=: C̃ > 0 as δ → 0.
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Poisson random variates computational work model
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Fig. 7. Left: The computational work (runtime) model for generating a Poisson random variate
using the Gamma method by Ahrens and Dieter [1]. Right: Linear growth detail for λ ∈ [0, 15].

Here, we estimate the coefficients (offline precomputed, machine-dependent quan-
tities) C1, C2, C3, b1, and b2 by computing average execution times of the correspond-
ing machine code block (in this case MATLAB code).

We now briefly describe Algorithm 3. The first decision is made through the
comparison between the expected SSA step size and the remaining time until the
next grid point, T0. To interpret this rule, we first assume that T0 − t tends to
zero. Then, the selected method tends to be SSA. This decision rule favors SSA over
tau-leap and trivially guarantees the Chernoff bound. In the case of problems where
the SSA method is more convenient, the advantage is obvious: it is not necessary
to superfluously compute the tau-leap step size. On the other hand, this choice has
“reasonable” computational work in terms of choosing SSA over tau-leap, since there
is little time left until T0. Now assume that K1/a0 tends to infinity; that is, a0 tends
to zero. Then, the reasonable choice is SSA, because the Chernoff tau-leap step size
tends to zero in this case. It should be noted that this first decision rule has no extra
computational work, because a0 must be computed anyway. If K1/a0 < T0− t holds,
then the tau-leap size is computed and the second decision is made (line 3). In this
case, first assume that τCh tends to zero. Then, the selected method tends to be SSA,
which is a natural choice. If, on the contrary, τCh tends to infinity, the chosen method
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Algorithm 3. The one-step switching rule. Inputs: The current time, t, the current
state of the approximate process, X̄(t), the propensity functions, (aj(X̄(t)))Jj=1, and

the next grid point, T0. Outputs: Method and τ . Notes: Based on E
[
τSSA(X̄(t))

]
=

1/a0(X̄(t)) and τCh(X̄(t), δ), this algorithm adaptively selects which method to use:
SSA or tau-leap. We denote by τSSA (τCh) the step size when the decision is to use
the SSA (tau-leap) method.

Require: a0 ←
∑J

j=1 aj > 0
1: if K1/a0 < T0 − t, then
2: τCh ← Algorithm 1
3: if τCh < K2(X̄(t), δ)/a0, then
4: return (SSA, τSSA)
5: else
6: return (TL, τCh)
7: end if
8: else
9: return (SSA, τSSA)

10: end if

tends to be the tau-leap, which again is a natural choice. Now, assume that K2/a0
tends to infinity. Then, a reasonable choice is SSA, because the step size is large and
the bound is guaranteed. If K2/a0 tends to zero, the reasonable choice is tau-leap.

A summary of the one-step switching rule decisions is given in Table 1.

Table 1

One-step switching rule summary. Decision 1 is made at line 1 of Algorithm 3, whereas
decision 2 is made at line 3.

�������If

tends to ∞ 0

Decision 1 T0−t go to Decision 2 SSA
K1/a0 SSA TL

Decision 2 τCh TL SSA
K2/a0 SSA TL

Remark 3.1. In Figure 8, we illustrate the result of the one-step switching rule
in the gene transcription and translation model (see section 5). As δ (the parameter
that controls the one-step exit probability) decreases, the SSA region, in the state
space of the problem, increases. We observe that, for δ = 10−2, almost all the state
space is a Chernoff tau-leap region. For smaller δ, we observe that, if the number
of proteins (y-axis) is zero, and the number of mRNAs (x-axis) is large enough, the
states belong to the tau-leap region, because the propensity of the reactions pointing
outside the lattice is weaker than the propensity of the reactions pointing inside the
lattice. When the number of proteins increases, there is a narrow region in which the
propensity of the reactions pointing out dominates, and, consequently, the switching
rule chooses for the SSA method. After that, the Chernoff tau-leap is preferred. The
situation is almost symmetric in the x = y axis.

Remark 3.2. According to Algorithm 3, the selection of the simulation method
depends on the current state, x, of the approximate process, X̄, through the total
propensity, a0(x), which is a measure of the activity of the system around the state, x.
High activity around x leads to the Chernoff tau-leap method. Therefore, Algorithm
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Fig. 8. Regions of the one-step switching rule in the gene transcription and translation model
(see section 5). The blue and red dots show the Chernoff tau-leap and the SSA regions, respectively.
From left to right, δ = 10−2, 10−4, 10−6, respectively.

3 reveals the existence of two scales (low/high) of activity that determine whether to
choose an exact or approximate simulation method. Observe that the scale of activity
depends not only on x but also on the one-step exit probability bound, δ, through
the Chernoff step size, τCh, and the time grid.

3.2. The hybrid algorithm. In this subsection, we present a novel algorithm
that adaptively switches between the approximate (Chernoff tau-leap) and the exact
(SSA) method to generate a whole hybrid path. Algorithm 4 presents this idea.

On the one hand, a path generated by an exact method never exits the lattice, Zd
+,

although the computational work could be unaffordable due to many small interarrival
times typically occurring when the process is “far” from the boundary. On the other
hand, a tau-leap path, which may be cheaper than an exact one, could leave the lattice
at any step. It depends on the size of the next time step and the current state of the
approximate process, X̄(t). This one-step exit probability could be large, especially
when the approximate process is “close” to the boundary. In section 2 we show how to
control this one-step exit probability adaptively, by adjusting the tau-leap step size.
As we previously mentioned, a hybrid path consists of a certain number of exact and
approximate steps. A hybrid path could therefore leave the lattice. In section 3.3 we
show how to estimate and control the probability of this event.

Given a problem, Algorithm 4 returns the last system state, X̄(tK), and its respec-
tive time, tK , such that the process belongs to the lattice. At each time, tk, Algorithm
3 chooses the method to use (exact or approximate) for taking the (k+1)th step and
its size.

3.3. The global exit probability bound. Once we introduce the hybrid ap-
proximate process, X̄, one issue is to estimate the probability that one hybrid path
exits the lattice, Zd

+. Let Ω̄ be the sample space for the set of all hybrid paths gener-
ated by Algorithm 4. The event A = {ω̄ ∈ Ω̄ : tK = T } means that the whole hybrid
path, (X̄(tk, ω̄))

K
k=0, belongs to the lattice, Zd

+. Among these paths, the number of
successful leaps using the tau-leap method is NTL(ω̄) ≡ NTL. Then,

Ω̄ = Ac ∪ A = {ω̄ ∈ Ω̄ : tK < T } ∪ {ω̄ ∈ Ω̄ : tK = T }.
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Algorithm 4. The hybrid tau-leap algorithm. Inputs: The initial state, X(0), the
propensity functions, (aj)

J
j=1, the stoichiometric vectors, ν = (νj)

J
j=1, and the final

time, T . Outputs: A sequence of states, (X̄(tk))
K
k=0 ⊂ Zd

+, such that tK ≤ T . If
tK < T , then the path exited the Zd

+ lattice before the final time T . It also returns
the number of times, NTL, the tau-leap method was successfully applied (i.e., from
X̄(tk) ∈ Zd

+, apply the tau-leap method and obtain X̄(tk+1) ∈ Zd
+), the number of

SSA steps such that K1/a0(X̄(t)) > tk−t is true, NSSA,K1 , and the number of SSA
steps such that K1/a0(X̄(t)) > tk−t is false and K2(X̄(t))/a0(X̄(t)) > τCh is true,
NSSA,K2 (see Algorithm 3). Notes: Given the current state, nextSSA computes the
next state using the SSA method. Here, ti denotes the current time at the ith step.

1: i← 0, ti ← 0, X̄(ti)← X(0), Z̄ ← X(0)
2: while ti < T do
3: T0 ← next grid point greater than ti
4: (m, τ)← Algorithm 3 with (ti, Z̄, (aj(Z̄))Jj=1, T0)
5: if m = SSA, then
6: NSSA ← NSSA + 1
7: if ti+τ < T , then
8: Z̄ ← nextSSA(Z̄)
9: end if

10: ti+1 ← min{T, ti+τ}
11: else
12: τ ← min{τ, T−ti}
13: Z̄ ← Z̄ + P(a(Z̄)τ)ν
14: if Z̄ ∈ Zd

+, then
15: NTL ← NTL + 1
16: ti+1 ← ti + τ
17: else
18: return ((X̄(tk))

i
k=0, NTL, NSSA)

19: end if
20: end if
21: i← i+ 1
22: X̄(ti)← Z̄
23: end while
24: return ((X̄(tk))

i
k=0, NTL, NSSA)

Let tk =
∑

k τk, where each τk is obtained using either SSA or the tau-leap method:

{ω̄ ∈ A} ⇔ {∃k ∈ N : tk = T }

⇔
+∞⋃
n=0

({∃k ∈ N : tk = T } ∩ {NTL = n}) .

Then, we can write

P (A) =

+∞∑
n=0

P ({∃k ∈ N : tk = T,NTL = n})

=

+∞∑
n=0

P
({∃k ∈ N : tk = T

∣∣NTL = n})P (NTL = n) .
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At each step, the probability of exiting the lattice will be less than δ when the step
size is computed using the Chernoff method (Algorithm 1), and it will be equal to
zero if the SSA is adopted. At this stage, it should be pointed out that if we use the
Gaussian approximation (Algorithm 2), it will not be possible to guarantee an upper
bound for the probability of event A. Observe that

P ({∃k ∈ N : tk = T }) = P
(
X̄(t0)∈Zd

+, X̄(t1)∈Zd
+, . . . , X̄(tk)∈Zd

+

)
= P

(
X̄(t1)∈Zd

+

∣∣ X̄(t0)
)
P
(
X̄(t2)∈Zd

+

∣∣ X̄(t1)
)
. . .P

(
X̄(tk)∈Zd

+

∣∣ X̄(tk−1)
)
,

where the notation P
(
Y ∈ Zd

+

∣∣X)
assumes that X ∈ Zd

+. Now, by construction,

P
({∃k ∈ N : tk = T

∣∣NTL = n}) ≥ (1 − δ)n

because

P
(
X̄(tj) ∈ Zd

+

∣∣ X̄(tj−1)
) ≥ 1− δ if we use the Chernoff algorithm

= 1 if we use the SSA.

That is, if the path reached time T , and NTL = n, then the Chernoff algorithm was
successfully applied n times. By definition,

P (A) =

+∞∑
n=0

P
({∃k ∈ N : tk = T

∣∣NTL = n})P (NTL = n) ≥ E
[
(1− δ)NTL

]
.

Moreover, for small values of δ, using a second-order Taylor approximation for the
function (1− δ)NTL and taking expectations, we obtain the following:

E
[
(1− δ)NTL

]
= 1− δE [NTL] +

δ2

2
(E

[
N2

TL

]− E [NTL]) + o(δ2).

Finally, we arrive at the desired path exit probability,

P (Ac) ≤ δE [NTL]− δ2

2
(E

[
N2

TL

]− E [NTL]) + o(δ2).

In practice, we use δE [NTL] as an upper bound of P (Ac) since δ is very small
and Var [NTL] is moderate. In Appendix A, we prove that E [NTL] is bounded for
polynomial propensity functions and tends to zero when δ → 0.

Remark 3.3 (hybrid estimation of E [NSSA∗ ]: The expected number of steps
of a pure SSA path). In the SSA algorithm, the expected time spent in the state
X(s), namely, Δt|X(s), is an exponential random variable with intensity a0(X(s)).
Therefore, the quantity ∫ T

0

a0(X(s))ds =

∫ T

0

1

E [Δt|X(s)]
ds

is an approximation of the number of steps of an exact path, (X(s))0≤s≤T . By

sampling M hybrid paths, we have that the sample mean, A(∫ T

0 a0(X̄(s))ds;M),

defined by A(Y ;M):= 1
M

∑M
i=1 Y (ωi), is an estimator of E [NSSA∗ ].

This allows us, for example, to approximate WorkSSA(TOL), i.e., the computa-
tional work that the SSA method requires to estimate E [g(X(T ))] for a given tolerance
(TOL). This remark is used below in Algorithm 5.
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4. Error decomposition, estimation, and control. In this section, we define
the computational global error, E , and show how it can be naturally decomposed into
three components: the discretization error, EI , and the exit error, EE , both coming
from the tau-leap part of the hybrid method, and the Monte Carlo statistical error,
ES . Next, we show how to model and control the global error, E , giving upper bounds
for each one of the three components. Finally, given a prescribed tolerance, TOL, we
present a procedure for obtaining the parameters needed for estimating E [g(X(T ))]
by sampling hybrid paths. These parameters are the time mesh, (tk)

K
k=0(TOL), the

one-step exit probability bound, δ(TOL), and the number of Monte Carlo samples,
MHyb(TOL).

4.1. Global error decomposition. As we already mentioned, the main goal
of this work is to estimate accurately and efficiently the expected value E [g(X(T ))],
where X : [0, T ]→Zd

+ is a Markov pure jump process and g : Rd→R is a smooth
observable of the process at final time T . We propose the following estimator:

(4.1)
1

M

M∑
m=1

(
g(X̄(T ))1{A}

)
(ω̄m),

where X̄ : [0, T ]→Zd is the hybrid approximate process introduced in section 3.2, and
ω̄ ∈ Ω̄. The set A ⊂ Ω̄ was defined in section 3.3. We recall that 1{A}(ω̄m) = 1 if and

only if the m-hybrid path did not exit Zd
+.

We define the computational global error, E , as

(4.2) E := E [g(X(T ))]− 1

M

M∑
m=1

(
g(X̄(T ))1{A}

)
(ω̄m).

We can split E into three parts:

E [g(X(T ))]− 1

M

M∑
m=1

(
g(X̄(T ))1{A}

)
(ω̄m) = E

[(
g(X(T ))−g(X̄(T ))

)
1{A}

]︸ ︷︷ ︸
=:EI

+ E
[
g(X(T ))1{Ac}

]︸ ︷︷ ︸
=:EE

+
1

M

M∑
m=1

(
E
[
g(X̄(T ))1{A}

]−g(X̄(T ))1{A}
)
(ω̄m)

︸ ︷︷ ︸
=:ES

.

Here, EI and ES are the discretization and Monte Carlo statistical errors, respec-
tively, and they are associated with the hybrid paths, X̄ on A. EE is the global
exit error. We observe that the error term, EE , is defined as the expected value of
g(X(T ))1{Ac}, which is a random variable defined on Ω× Ω̄. More specifically, we set
EE such that

|EE | = min
P∈P
|EE(P )|,

where P is the set of all probability measures on Ω × Ω̄. By choosing P ∈ P as
the product probability measure, we have that g(X(T )) and 1{Ac} are independent
random variables. As a consequence,

|EE| ≤ |E [g(X(T ))] |P (Ac) .
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An approximate upper bound, B, for |E [g(X(T ))] | could be obtained, for instance,
as the 95% quantile of a bootstrap sample for |A(g(X(T )); ·)|. As we showed in
section 3.3, P (Ac) can be approximated by δE [NTL]. Therefore, B δA(NTL; ·) is an
approximated upper bound for |EE |, where A(NTL; ·) is the estimator of E [NTL].

The discretization error, EI = E
[(
g(X(T ))− g(X̄(T ))

)
1{A}

]
, is actually the

weak error associated with the hybrid paths in A. An efficient procedure for accu-
rately estimating this quantity in the context of the tau-leap method is described in
[16]. This procedure computes EI(ω̄) for every simulated hybrid path, (X̄(tk, ω̄))

K
k=0,

as a weighted sum of local errors at the mesh times, (tk)
K
k=0. The sequence of weights,

(ϕk(ω̄))
K
k=1, considered in [16], is defined as the duals motivated by approximate vari-

ations of g(X̄(T )) with respect to the initial data. According to this method, EI is
approximated by A(EI(ω̄); ·). We adapt this method in Algorithm 7 for estimating
the weak error in the hybrid context. A brief description follows. For each hybrid
path, we compute backward the sequence of dual weights:

ϕK = ∇g(X̄K),

ϕk =
(
Id+ τkJ

T
a (X̄k) ν

T
)
ϕk+1, k = K−1,K−2, . . . , 1,

where ∇ is the gradient operator and Ja(X̄k) = [∂iaj(X̄k)]j,i is the Jacobian matrix
of the propensity function, aj , for j = 1, . . . , J and i = 1, . . . , d. Then, we have

EI(ω̄) =
K∑

k=1

⎛
⎝τk

2
ϕk1{TL}(k)

J∑
j=1

νTj Δaj,k

⎞
⎠ (ω̄).

Here, X̄k ≡ X̄(tk), τk = tk+1 − tk, Δaj,k = aj(X̄k+1) − aj(X̄k), 1{TL}(k) = 1 if
and only if, at time tk, the tau-leap method was used and Id is the d × d identity
matrix.

We model the Monte Carlo statistical error, ES , as a Gaussian random variable
that has zero mean and variance Var [g(X(T ))] /M , which could be controlled by
obtaining a rough estimate of Var [g(X(T ))]. The sample variance is denoted as
S2(Y ;M) := A(Y 2;M)−A(Y ;M)2. Therefore, CA

√S2(g(X(T )); ·)/M is used as an
estimation of ES , where CA ≥ 2 is a desired confidence level.

4.2. Error estimation and control. Given a tolerance, TOL, we would like
to have a procedure that determines whether we should use the SSA method or the
hybrid one. This decision should be based on the expected computational work of
both methods, and the procedure should provide, in any case, the necessary elements
for computing the estimator. When the SSA method is chosen, the procedure should
provide the number of simulations, MSSA(TOL). When the hybrid method is chosen,
the procedure should provide not only the number of simulations, MHyb(TOL), but
also the time mesh, (tk)

K
k=0(TOL), and the one-step exit probability bound, δ(TOL).

Let us describe such a decision procedure. The building block of a hybrid path
is Algorithm 3, which adaptively determines whether to use an SSA or a tau-leap
step. According to this algorithm, given the current state of the approximate process,
x, there are two ways of taking an SSA step, depending on the logical conditions
K1/a0(x) > T0−t and K2(x, δ)/a0(x) > τCh. The first way is when K1/a0(x) > T0−t
is true. In this case, we take an SSA step and avoid the computation of τCh(x). The
second is when K1/a0(x) > T0−t is false and K2(x, δ)/a0(x) > τCh is true; but in this
case, we have to compute τCh(x). We consider one particular hybrid path, and we let
NSSA,K1(h, δ) be the number of SSA steps such that K1/a0(x) > T0− t is true. In the

D
ow

nl
oa

de
d 

03
/1

8/
15

 to
 2

22
.2

9.
23

.2
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HYBRID CHERNOFF TAU-LEAP 603

same way, let NSSA,K2(h, δ) be the number of SSA steps such that K1/a0(x) > T0− t
is false and K2(x, δ)/a0(x) > τCh is true. Finally, let NTL(h, δ) be the total number
of tau-leap steps. We define Ψ(h, δ) as the expected work of a hybrid path, i.e.,

Ψ(h, δ) = C1E [NSSA,K1(h, δ)] + C2E [NSSA,K2(h, δ)]

+ C3E [NTL(h, δ)] +

J∑
j=1

E

[∫
[0,T ]

Cp(aj(X̄(s))τCh(X̄(s), δ))1{TL}(X̄(s))ds

]
.

Therefore, the expected computational work of the hybrid method is MΨ(h, δ),
where M is the total number of hybrid paths.

Given TOL > 0, we consider the problem⎧⎨
⎩

minM,h,δ MΨ(h, δ)
s.t.
EI + EE + ES ≤ TOL.

(4.3)

In Algorithm 5, we propose an iterative method for obtaining an approximate
solution to this problem.

A brief description of the ideas involved in this algorithm follows. Consider that
a relative tolerance, TOL > 0, is given. By using Algorithm 6, we simulate a number
of hybrid paths in a coarse mesh of size h0, with sufficiently small δ (say, δ = 10−6),
to obtain accurate estimates of Var

[
g(X̄(T ))

]
and EI . The total runtime of this

procedure is recorded in the variable r.
Now, we estimate Ψ(h0, δ) and, in particular, the error bound, B δA(NTL;Ms),

for the exit error, EE . It is desired that this error be of order O (
TOL2

)
. We thus

divide δ by a factor (e.g., 10) and re-estimate B δA(NTL;Ms) until this condition is
fulfilled. Then, we compute the discretization error, EI , and S2(g(X(T );Ms).

For fixed δ > 0 and ε > 0, let us consider an auxiliary problem:⎧⎨
⎩

minM,h MΨ(h, δ)
s.t.

EI(h, δ) + CA

√S2(g(X(T ));Ms)/M = ε,
(4.4)

where CA ≥ 2.
Instead of solving (4.4), we proceed as follows. First, we fix h = h0 and derive

Maux and ε0 as functions of h0 and δ:

Maux(h0, δ) =

(
∂hΨ(h0, δ)

Ψ(h0, δ)
.
CA

√S2(g(X(T ));Ms)

2∂hEI(h0, δ)

)2

,(4.5)

and ε0(h0, δ) = EI(h0, δ) + CA

√S2(g(X(T )); ·)√
Maux(h0, δ)

.

If ε0 < TOL− TOL2, we take the current values of h0 and δ as solutions of our
optimization problem (4.3). Otherwise, we divide the time mesh by a factor (e.g., 4,
which is near the optimal value of the multilevel tau-leap) and proceed iteratively.
Each time we refine the mesh or δ, we set the budget for the computational work, r0, as
2·r, which is the current total computational work of the calibration algorithm (see the
details in Algorithm 6). In this way, we can guarantee that the current computational
work of the calibration is less than or equal to two times the computational work at
the last refinement.
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Algorithm 5. Calibration and error estimation. Inputs: The initial state, X(0), the
final time, T , the propensity functions, (aj)

J
j=1, the stoichiometric vectors, (νj)

J
j=1,

the smooth observable, g, and TOL > 0. Outputs: (SSA, MSSA) or (Hyb, MHyb,
δ, (tk)

K
k=0). Notes: The values CA and C1 are defined in section 3.1. For the sake of

simplicity, we omit the arguments of the algorithms when there is no risk of confusion.

1: Set initial mesh {tk}Kk=0 (h0 its diameter)
2: δ ← O(TOL3)
3: r0 ←∞
4: (Ψ̂, r,S2(g(X̄(T )); ·),A({g(X̄(T )), NSSA∗ , EI , NTL}; ·))← Algorithm 6
5: MSSA ← C2

AS2(g(X̄(T )); ·)/(TOL−TOL2)2

6: a← −1
7: b← log(Ψ̂)−a log(h0)
8: fin ← false
9: while not fin and Ψ̂ < C1A(NSSA∗ ; ·) do

10: while |A(g(X̄(T )); ·)|δA(NTL; ·) > TOL2 do
11: Refine δ
12: r0 ← 2 r
13: (Ψ̂, r,S2(g(X̄(T )); ·),A({g(X̄(T )), NSSA∗ , EI , NTL}; ·))← Algorithm 6
14: MSSA ← C2

AS2(g(X̄(T )); ·)/(TOL−TOL2)2

15: end while
16: Compute ∂hEI and ∂hΨ̃(h; a, b)
17: Compute Maux(h0; δ) and ε; see (4.5)
18: if ε < TOL−TOL2, then
19: fin ← true
20: Compute MHyb and ε; see (4.6)

21: if MHyb Ψ̂ < MSSA C1A(NSSA∗ ; ·), then
22: return (Hyb, MHyb, δ, {tk}Kk=0)
23: else
24: return (SSA, MSSA)
25: end if
26: else
27: Refine the mesh {tk}Kk=0, and set h0

28: r0 ← 2 r
29: (Ψ̂, r,S2(g(X̄(T )); ·),A({g(X̄(T )), NSSA∗ , EI , NTL}; ·))← Algorithm 6
30: MSSA ← C2

AS2(g(X̄(T )); ·)/(TOL−TOL2)2

31: Update a and b using a linear regression
32: end if
33: end while

Once the previous process is finished, we can take advantage of the slack TOL−
TOL2 − EI(h0, δ) for reducing the value of Maux and obtain

(4.6) MHyb(h0, δ) =

(
CA

√S2(g(X(T ));Ms)

TOL− TOL2 − EI(h0, δ)

)2

.

The estimation of ∂hΨ(h0,δ)
Ψ(h0,δ)

and ∂hEI(h0, δ) in (4.5) deserves some remarks.

First, note that ∂hΨ(h0,δ)
Ψ(h0,δ)

= ∂h log(Ψ(h0, δ)). In a pure tau-leap regime, the

number of steps is approximately inversely proportional to the size of the mesh. We
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Algorithm 6. Auxiliary function for Algorithm 5. Inputs: Same as Algorithm 4,
and constant r0, used to control the total computational work of the algorithm (bud-
get). Outputs: The estimated runtime of the hybrid path, Ψ̂, the total accumulated
runtime, r, an estimate of Var [g(X(T ))], S2(g(X̄(T )); ·), an estimate of E [g(X(T ))],
A(g(X̄(T )); ·), an estimate of E [EI ], A(EI ; ·), and an estimate of the expected number
of steps needed by the SSA and tau-leap methods, A(NSSA∗ ; ·) and A(NTL; ·). Here,
1{TL}(k) = 1 if and only if the decision at time tk was tau-leap. Notes: The values
C1, C2, and C3 are defined in section 3.1. Set appropriate values for M0 and CV0.
For the sake of simplicity, we omit the arguments of the algorithms when there is no
risk of confusion.
1: M ←M0, cv ←∞, r ← 0, Mf ← 0
2: while cv > CV0 and r ≤ r0 do
3: for m← 1 to M do
4: ((X̄(tk))

K
k=0, NTL, NSSA,K1 , NSSA,K2)← Algorithm 4

5: if the path does not exit Zd
+, then

6: Mf ←Mf + 1
7: Compute g(X̄(T ; ω̄m))
8: EI ← Algorithm 7
9: Use Remark 3.3 for estimating NSSA∗(ω̄m)

10: CPoi(ω̄m)←∑J
j=1

∑K
k=0 CP (aj(X̄(tk))(tk+1−tk))1{TL}(k)

11: end if
12: end for
13: Estimate the coefficients of variation cvg and cvEI of the estimators of

Var [g(X(T ))] and E [EI ], respectively.
14: cv ← max{cvg, cvEI}
15: Ψ̂←C1A(NSSA,K1 ;Mf )+C2A(NSSA,K2 ;Mf)+C3A(NTL;Mf)+A(CPoi;Mf )

16: r ← r +Mf Ψ̂
17: M ← 2M
18: end while
19: return (Ψ̂, r,S2(g(X̄(T ));Mf),A({g(X̄(T )), EI , NSSA∗ , NTL};Mf))

Algorithm 7. Computes the discretization error, EI ≡ EI(ω̄m). Inputs: (X̄(tk))
K
k=0.

Here, 1{TL}(k) = 1 if and only if the decision at time tk was tau-leap, and Id is the
d× d identity matrix Output: EI(ω̄m).

1: EI ← 0
2: Compute ϕK ← ∇g(X̄(tK))
3: for k ← K−1 to 1 do
4: Δtk ← tk+1 − tk
5: Compute Ja(X̄(tk)) = [∂iaj(X̄(tk))]j,i
6: ϕk ←

(
Id+Δtk J

T
a (X̄(tk)) ν

T
)
ϕk+1

7: Δak ← a(X̄(tk+1))− a(X̄(tk))
8: EI ← EI + Δtk

2 (Δak 1{TL}(k) νT )ϕk

9: end for
10: return EI

therefore have E [NTL(h)] = O
(
h−1

)
. In a hybrid regime, we model E [Ψ(h, δ)] =

O (ha). Therefore, for large values of h, a plausible model for log(Ψ(h, δ)) is a log(h)+

D
ow

nl
oa

de
d 

03
/1

8/
15

 to
 2

22
.2

9.
23

.2
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

606 ALVARO MORAES, RAUL TEMPONE, AND PEDRO VILANOVA

b. We denote it with Ψ̃(h; a, b). See Algorithm 5 for details. An initial guess for a is
−1.

For the estimation of ∂hEI(h0, δ), we simply take numerical derivatives when
consecutive meshes are available as follows:

∂hEI(hk, δ) ≈ −2/EI(hk−1, δk−1) (EI(hk, δk)− EI(hk−1, δk−1)) .

As an initial value, we can consider EI(h0, δ)/h0.
When h is close to zero, Ψ(h, δ) is the expected work of an exact path, C1E [NSSA∗ ]

(see Remark 3.3). Therefore, if in any iteration Ψ(h, δ) is greater than C1A(NSSA∗ ; ·),
then we decide to use the SSA method.

5. Numerical examples. In this section, we present two examples to illustrate
the performance of our proposed method.

5.1. A simple decay model. The classical radioactive decay model provides a
simple and important example for the application of the hybrid method. This model
has only one species and one reaction,

X
c−→ ∅.

Its stoichiometric matrix, ν ∈ R, and the propensity function, a : Z+ → R, are given
by

ν = −1 and a(X) = cX.

Here, we choose c = 1 and g(x) = x. In this particularly simple example, we have the
exact solution, namely, E [g(X(T ))|X(t) = X0] = X0 exp(−c(T − t)).

In Figure 9, we show the behavior of the time step size of the Chernoff tau-leap
method, τCh, as a function of the one-step exit probability bound, δ. We compare
τCh with the expected value of the SSA step size, τSSA, in a log-log scale, for x0 ∈
{5, 10, 15, 20}. We can see that τCh goes to zero as δ goes to zero. For small values
of δ, we have that τSSA = 1/a0(x0) = 1/x0 is larger than τCh, and, therefore, the
SSA method is chosen by the hybrid algorithm (Algorithm 3). The expected SSA
step size, which is independent of δ, is shown with horizontal dotted lines starting
from the right, until the intersection with the τCh curve. For example, if x0 = 10,
τCh is larger than the expected τSSA whenever δ > 0.0259. These dotted lines show
two regimes: as we mentioned, below the dotted line, we can say that the process is
close to the boundary, but, when τCh is larger than the expected τSSA, we can say
that the process, X , is far from the boundary. In this regime, the Chernoff tau-leap
method will be chosen by the hybrid algorithm.

Summarizing, in Figure 9, we can observe when the SSA method is preferred over
the Chernoff tau-leap, either because we have very stringent probabilities of taking
negative values yielding a small value for δ, or because the current state of the process
(x0) is relatively close to the boundary.

In Figure 10, we show τCh as a function of x0, using a log scale on the x-axis, for
different values of δ. It is interesting to observe that the maximum value of τCh is 1,
even when the final time is T = 2. This is influenced by the propensity function and
the value of c. For smaller values of c, the maximum increases. This figure shows that
when x0 is small, the values of τCh decrease rapidly and become much smaller than
τSSA. As we mentioned, to be close to or far from the boundary is a relative notion,
and it must be seen according to the probability of exiting the lattice. For instance,
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Fig. 9. Chernoff step size, τCh, as a function of δ, for x0 ∈ {5, 10, 15, 20}, compared to
E [τSSA|X0]. For x0 fixed, we can observe two regimes delimited by the dotted lines. Above the
dotted line, the Chernoff tau-leap method is preferred, and below the line, the preferred method is
the SSA.

when x0 = 10, we have that τSSA is approximately equal to τCh for δ = 10−5, which
is greater than the values of δ typically needed to achieve small tolerances. In the
figure, we can see that, when x0 tends to 1 (its minimum value), the expected τSSA

tends to 1, and it is greater than τCh. This shows that, as we are getting closer to the
boundary by decreasing x0, the τCh becomes too small. On the other hand, when x0

increases, the Chernoff tau-leap step size becomes larger, and, therefore, the tau-leap
method is preferred.
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Fig. 10. Chernoff step size, τCh, as a function of x0, for different values of δ. We observe
two regimes: As x0 decreases, the SSA method is preferred; as x0 increases, the Chernoff tau-leap
is preferred.

Consider the initial condition X0 = 100 and final time T = 2. We can observe
that the process starts at a regime where the expected SSA step size is smaller than
the Chernoff tau-leap, but after a certain time, it is the opposite. In Figure 11, we
show 20 SSA paths and 20 hybrid paths.
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Fig. 11. Left: 20 SSA paths for the simple decay model with X0 = 100 and T = 2. Right: 20
hybrid trajectories, with linear interpolation between sample points (time steps). We can observe
that, near the x-axis, the hybrid algorithm takes more SSA steps and fewer tau-leap steps.

Now, we consider the initial condition, X0 = 105, and the final time, T = 0.5.
In this case, the process starts far from the boundary. First, we observe in Figure
12 that the SSA paths are very close to each other; that is, the variance of g(X(T ))
is small. We analyze an ensemble of five independent realizations of the calibration
algorithm (Algorithm 5), using different relative tolerances. In Figure 13, we show, in
the left panel, the total predicted work (runtime) given by the calibration algorithm
for both methods, the hybrid and the SSA, versus the estimated error bound, and
its corresponding confidence intervals at the 95% level. The method chooses for the
hybrid algorithm for the first three tolerances (largest) and the SSA for the two smaller
ones. For the fourth tolerance, the method chooses the hybrid in 80% of the runs and
SSA for the rest (see Table 2). Note that as TOL decreases, the hybrid path converges
to the exact one because δ goes to 0 (see Appendix A). In the right panel, we show,
for different tolerances, the actual work (runtime) of both methods, using a 12 core
Intel GLNXA64 architecture and MATLAB version R2012b. The actual runtimes are
in accordance with our predictions.
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Fig. 12. Left: 20 SSA paths for the simple decay model with X0 = 105 and T = 0.5. Right:
Details.
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Fig. 13. Left: Predicted work (runtime) versus the estimated error bound for X0 = 105 and
T = 0.5. The hybrid method is preferred over the SSA for the first three tolerances (larger ones).
For the last two tolerances, the SSA is preferred. Therefore, in that case, the total predicted runtime
is the same for the hybrid and SSA methods. Right: Predicted and actual work (runtime) versus
the estimated error bound.

Table 2

Details for an ensemble of five independent runs of Algorithm 5 for the simple decay model with
X0 = 105 and T = 0.5. For example, the third row of the table tells us that we should run M = 64
hybrid paths, with a time mesh of size h = 4.9 · 10−4 and a one-step exit probability bound of δ =
4.77·10−10. The work of the hybrid method is, on average, 57% of the work of the SSA (third column

in the second part of the table). Here ŴHyb := MHyb Ψ̂ and ŴSSA := MSSA C1 A(NSSA∗ ; ·). The
fourth row shows, in the second and third columns, that in four runs of Algorithm 5 the SSA method
is chosen, and in one run the hybrid method is chosen. In that case, we should simulate MSSA = 180
SSA paths or M = 260 hybrid paths. Confidence intervals at 95% level are also provided.

TOL Method δ(TOL) h(TOL) M(TOL)
SSA HYB

3.13e-03 0.00 1.00 3.05e-08 2.0e-03 5.0
1.56e-03 0.00 1.00 3.81e-09 9.8e-04 1.6e+01
7.81e-04 0.00 1.00 4.77e-10 4.9e-04 6.4e+01
3.91e-04 0.80 0.20 5.96e-11 2.4e-04 2.6e+02
1.95e-04 1.00 0.00 - - -
9.77e-05 1.00 0.00 - - -

TOL MSSA
ŴHyb

ŴSSA
A(NTL; ·) A(NSSA∗ ; ·)

3.13e-03 3.0 0.20 ±0.03 2.6e+02 3.9e+04
1.56e-03 1.2e+01 0.37 ±0.05 5.1e+02 3.9e+04
7.81e-04 4.6e+01 0.57 ±0.09 1.0e+03 3.9e+04
3.91e-04 1.8e+02 0.97 ±0.05 2.0e+03 3.9e+04
1.95e-04 7.2e+02 1.00 - 3.9e+04
9.77e-05 2.9e+03 1.00 - 3.9e+04

In the simple decay model, where an explicit expression for E [g(X(T ))] is avail-
able, we can accurately compute the ratio between the estimated weak error and EI ,
which we call the efficiency index of the discretization error. We compute this quantity
when the preferred method is the hybrid one. Recall that

EI = E
[(
g(X(T ))− g(X̄(T ))

)
1{A}

]
.

In order to compute that quantity, for each run of the calibration algorithm (Algorithm
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5), we use a large sample in order to control the statistical error. The sample size is
such that the statistical error in the estimation of EI is ten times smaller than the
prescribed tolerance. In Figure 14 we show the efficiency index of the discretization
error, with confidence intervals at 95%. In the same figure we also show TOL versus
the actual computational error. It can be seen that the prescribed tolerance is achieved
with the required confidence of 95%, since CA=1.96.
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Fig. 14. Left: Efficiency index for EI and 95% confidence intervals. Right: TOL versus the
actual computational error. The numbers above the straight line show the percentage of runs that
had errors larger than the required tolerance. We observe that in all cases the computational error
follows the imposed tolerance closely with the expected confidence of 95%.

5.2. Gene transcription and translation [4]. This model has five reactions,

∅ c1−→ R, R
c2−→ R + P,

2P
c3−→ D, R

c4−→ ∅,
P

c5−→ ∅,
described by the stoichiometric matrix and the propensity function

ν =

⎛
⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 −2 1
−1 0 0
0 −1 0

⎞
⎟⎟⎟⎟⎠ and a(X) =

⎛
⎜⎜⎜⎜⎝

c1
c2R

c3P (P−1)
c4R
c5P

⎞
⎟⎟⎟⎟⎠ ,

respectively, where X(t) = (R(t), P (t), D(t)) and c1 = 25, c2 = 103, c3 = 0.001,
c4 = 0.1, and c5 = 1. In the simulations, the initial condition is (0, 0, 0), and the final
time is T = 1. The observable is given by g(X) = X3 = D.

We can see that the abundance of the mRNA species, represented by R, is close
to zero for t ∈ [0, T ]. Therefore, we can interpret that the process is close to the
boundary. However, according to Table 3, the calibration algorithm always chooses
the hybrid method only in the first two tolerances. This happens because small
tolerances induce small one-step exit probabilities, and, as a consequence, the Chernoff
tau-leap steps are smaller than the expected SSA steps. This suggests that the reduced
abundance of one of the species is not enough to ensure that the SSA method should
be used. The tolerance also plays a role in this choice.
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Table 3

Details for an ensemble of five independent runs of Algorithm 5 for the gene transcription and
translation model. Details on how to read the table are provided in Table 2.

TOL Method δ(TOL) h(TOL) M(TOL)
SSA HYB

1.00e-01 0.00 1.00 8.0e-05 ±2e-05 2e-02 ±2e-03 66 ±3
5.00e-02 0.00 1.00 1.0e-05 ±2e-06 7e-03 ±7e-04 230 ±8
2.50e-02 0.40 0.60 1.1e-06 ±5e-07 3e-03 ±7e-04 840 ±70
1.25e-02 0.80 0.20 1.9e-07 2.0e-03 3e+03
6.25e-03 1.00 0.00 - - -
3.13e-03 1.00 0.00 - - -

TOL MSSA
ŴHyb

ŴSSA
A(NTL; ·) A(NSSA∗ ; ·)

1.00e-01 3.5e+01 0.39 ±0.04 7e+01 ±1e+01 1.8e+04
5.00e-02 1.4e+02 0.54 ±0.10 1.4e+02 ±2e+01 1.8e+04
2.50e-02 5.5e+02 0.88 ±0.10 3.2e+02 ±9e+01 1.7e+04
1.25e-02 2.2e+03 0.99 ±0.02 4.9e+02 1.8e+04
6.25e-03 8.8e+03 1.00 - 1.8e+04
3.13e-03 3.5e+04 1.00 - 1.8e+04

In Figure 15, we show an ensemble of five independent realizations of the calibra-
tion algorithm and the comparisons of its corresponding predicted and actual work.
We can appreciate the robustness of the calibration procedure. We can also observe
that the hybrid method converges to the SSA when the tolerance goes to zero.
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Fig. 15. Left: Predicted work (runtime) versus the estimated error bound for the gene tran-
scription and translation model. The hybrid method is preferred over the SSA for the first two
tolerances (larger ones). For the last four tolerances, the SSA is preferred. Therefore, in the latter
case, the total predicted runtime is the same for the hybrid and SSA methods. Right: Predicted and
actual work (runtime) versus the estimated error bound.

In Figure 16 we show the efficiency index of the discretization error, with con-
fidence intervals at 95%. In the same figure we also show TOL versus the actual
computational error. It can be seen that the prescribed tolerance is achieved with the
required confidence of 95%, since CA=1.96.

6. Conclusions. In this work, we addressed the problem of accurately estimat-
ing the expected value of an observable of a Markov pure jump process at a given
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Fig. 16. Left: Efficiency index for EI and 95% confidence intervals. Right: TOL versus the
actual computational error. The numbers above the straight line show the percentage of runs that
had errors larger than the required tolerance. We observe that in all cases the computational error
follows the imposed tolerance closely with the expected confidence of 95%.

final time within a certain prescribed tolerance with high probability. Examples of
settings where such estimation is necessary are message delivery times and connectiv-
ity in wireless communication networks and the number of infected agents in epidemic
modeling of small populations. Although there are methods that simulate paths with
the exact distribution of the process (e.g., Gillespie’s SSA method), the computational
work of generating the number of paths required to control the statistical error in a
Monte Carlo setting turns out to be prohibitive for some real applications. On the
other hand, Gillespie’s approximate tau-leap method could produce, in certain cases,
less expensive paths at the price of additionally introducing a time discretization error
and an exit error.

In this work, we proposed a hybrid algorithm that, at each step, adaptively
chooses to adopt the SSA method when the work of the tau-leap step becomes high.
As a consequence, the expected work of a hybrid path remains bounded by the ex-
pected work of an SSA path and potentially can be much smaller.

The global exit error is related to the fact that, at any time, a tau-leap path can
attain a nonphysical value. Preleap checks are common techniques for dealing with
this problem by controlling the time step size. Here, we presented a novel nonasymp-
totic Chernoff-type hard bound to control large deviations of linear combinations of
independent Poisson random variables. This bound allows us not only to obtain a
preleap check for the tau-leap method, which neither changes the distribution of the
increments nor requires any type of assumption regarding the reactions that can occur,
but also to estimate and control the global exit error. To the best of our knowledge,
there has been no previous attempt in the literature to estimate and control this type
of error at the path level.

Another important contribution of this work is a calibration algorithm that can
determine if it is suitable to use the hybrid algorithm for a given problem and also
that can provide the associated simulation parameters. In the hybrid case, the cali-
bration algorithm provides the one-step exit probability bound, the time mesh, and
the number of hybrid paths that are needed for computing the mentioned expected
value with low computational work.

It is worth mentioning that, by simulating hybrid paths, we obtained accurate
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estimates of the average number of steps required by the SSA method to reach the
final time. This is especially relevant in problems where the process visits regions of
the state space where the total propensity is very high.

The numerical results that we obtain from different models show that the hybrid
method proposed here is suitable for addressing problems in which one or more species
has few individuals while the total propensity is high. In these types of problems (e.g.,
the gene transcription and translation model), the reaction-rate ODEs do not provide
accurate approximation of the average behavior of the process, and the cost of the
exact methods is also high. Moreover, we observed that generating Poisson random
variables makes the computational work of a tau-leap step much higher than the work
of an SSA step. This last argument, together with the advantages already discussed
in terms of the time discretization error and the global exit error, adds more evidence
in favor of avoiding the tau-leap whenever possible.

Our next step is to extend this hybrid algorithm to the multilevel Monte Carlo
setting [12, 2]. We aim to obtain substantial computational work gains with respect
to the traditional exact methods (SSA and modified next reaction method (MNRM))
and the single-level hybrid Chernoff tau-leap and to show that the computational
complexity of this multilevel extension is of order O (

TOL−2
)
.

Appendix A. An upper bound for the expected number of tau-leap
steps of a hybrid trajectory, (E [NTL(h, δ)]). Let E [NTL(h, δ)] be the expected
number of tau-leap steps of a hybrid path with a mesh of size h and a one-step
exit probability bound, δ. Let {Ti} be the sequence of grid points, t the current
time, and X̄(t) the current state of the hybrid process, X̄. Let τCh(X̄(t), δ) be the
Chernoff tau-leap step size computed using Algorithm 1, and, finally, let K1 and
K2 = K2(X̄(t), τCh) be those introduced in section 3.1.

According to Algorithm 3, the logical conditions for choosing a tau-leap step are
given by

K1

a0(X̄(t))
< Ti − t and

K2

a0(X̄(t))
< τCh(X̄(t), δ).

The effective step size in this case is given by min{τCh(X̄(t), δ), Ti − t}. Observe
that { K2

a0(X̄(t))
< τCh(X̄(t), δ)} → ∅ as δ → 0, because K2 → C̃ and τCh → 0 (see

section 3.1). By the definition of NTL, we have that

E [NTL(h, δ)]

= E

⎡
⎢⎢⎣∑

i

∫ Ti

Ti−1

1

{
K1

a0(X̄(t))
< Ti − t,

K2

a0(X̄(t))
< τCh(X̄(t), δ)

}
min{τCh(X̄(t), δ), Ti − t} dt

⎤
⎥⎥⎦

≤ E

⎡
⎢⎢⎣∑

i

∫ Ti

Ti−1

1

{
K1

a0(X̄(t))
< Ti − t,

K2

a0(X̄(t))
< τCh(X̄(t), δ)

}
min

{
K1

a0(X̄(t))
,

K2

a0(X̄(t))

} dt

⎤
⎥⎥⎦

≤ E

⎡
⎢⎢⎣∑

i

∫ Ti

Ti−1

a0(X̄(t))1

{
K2

a0(X̄(t))
<τCh(X̄(t), δ)

}
min{K1,K2} dt

⎤
⎥⎥⎦→ 0 as δ → 0.D
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It is also true that E [NTL] has a polynomial bound since a0 is polynomial and

E

⎡
⎢⎢⎣∑

i

∫ Ti

Ti−1

a0(X̄(t))1

{
K2

a0(X̄(t))
<τCh(X̄(t), δ)

}
min{K1,K2} dt

⎤
⎥⎥⎦ ≤

∫ T

0
E
[
a0(X̄(t))

]
dt

min{K1,K2} .

Finally, for the problems where maxx∈Z
d
+
a0(x) < ∞, we get the rough upper

bound ∫ T

0
E
[
a0(X̄(t))

]
dt

min{K1,K2} ≤ T

min{K1,K2} max
x∈Z

d
+

a0(x).

Observe that Zd
+ can be substituted by Zd

+(x0, T ) ⊂ Zd
+ defined by the subset of states

that can be reached by a path starting from x0 and evolving up to time T . Therefore,
we have an upper bound for E [NTL] that does not depend on δ. When the lattice is
finite as in the exponential decay (Example 1.2), this bound is c T x0/K2.
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