
Incorporating postleap checks in tau-leaping
David F. Andersona�

Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

�Received 6 July 2007; accepted 7 November 2007; published online 5 February 2008�

By explicitly representing the reaction times of discrete chemical systems as the firing times of
independent, unit rate Poisson processes, we develop a new adaptive tau-leaping procedure. The
procedure developed is novel in that accuracy is guaranteed by performing postleap checks. Because
the representation we use separates the randomness of the model from the state of the system, we
are able to perform the postleap checks in such a way that the statistics of the sample paths
generated will not be biased by the rejections of leaps. Further, since any leap condition is ensured
with a probability of one, the simulation method naturally avoids negative population values.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2819665�

I. INTRODUCTION

The procedure developed in this paper is a tau-leaping
method for simulating the evolution of discrete stochastic
chemical systems. The novelty of the procedure is that a
postleap check is performed after each step in order to guar-
antee accuracy. Postleap checks have been avoided in the
past because of the worry that rejecting leaps will bias the
statistics of the sample paths. This problem is bypassed in
our method by storing all the information gained during each
leap for future use. By performing a postleap check to ensure
accuracy, the method developed in this paper naturally
avoids negative population values without the need for any
extra effort in either a programming or numerical sense.

Consider a chemically reacting system consisting of N
�1 chemical species, �X1 , . . . ,XN�, undergoing M �1
chemical reactions, each of which is equipped with a propen-
sity function �or intensity function in the mathematics litera-
ture� ak�X�t��, which is a function of the state of the system
at time t, X�t��Z�0

N . Let �k, �k��Z�0
N be the vectors repre-

senting the number of molecules of each species consumed
and created in the kth reaction, respectively. If Rk�t� is the
number of times that the kth reaction has taken place up to
time t, then the state of the system at time t is given by

X�t� = X�0� + �
k=1

M

Rk�t���k� − �k� .

The fundamental assumption of stochastic chemical ki-
netics states that the probability that reaction k takes place in
the infinitesimal amount of time �t , t+�t� is given by
ak�X�t���t+O��t2�, and that the probability that more than
one reaction takes place is O��t2�.1,2 That is, given X�s� for
s� t, P�Rk�t+�t�−Rk�t�=1�=ak�X�t���t+O��t2�, and
P�Rk�t+�t�−Rk�t��2�= P�Rk�t+�t�−Rk�t��1,Rj�t+�t�
−Rj�t��1�=O��t2�, for j�k. For each k�M, let Yk�·� be an
independent, unit rate Poisson process. Then for any T�0
and small �T�0, P�Yk�T+�T�−Yk�T�=1�=�T+O��T2�,
and P�Yk�T+�T�−Yk�T��2�= P�Yk�T+�T�−Yk�T�

�1,Y j�T+�T�−Y j�T��1�=O��T2�, for j�k. Because the
propensity function of reaction k is ak�X�t��, and hence con-
stant until the next reaction takes place, we see that given
X�s� for s� t,

P�Yk�	
0

t+�t

ak�X�s��ds

− Yk�	

0

t

ak�X�s��ds
 = 1

= ak�X�t���t + O��t2� ,

and the probability of more than one reaction is O��t2�.
Thus, Rk�t� can be written as

Rk�t� = Yk�	
0

t

ak�X�s��ds
 . �1�

The state of the system at time t can, therefore, be repre-
sented as the solution to the following stochastic equation:

X�t� = X�0� + �
k=1

M

Yk�	
0

t

ak�X�s��ds
��k� − �k� . �2�

We note that even though the processes Yk are independent,
the processes Yk��0

t ak�X�s��ds� are dependent because they
depend on X�s�, for s� t.3 Equation �2� is typically called a
random time change representation in the mathematics
literature.4–7

Note that there are M +1 distinct time frames in Eq. �2�.
The first time frame is the actual, or absolute time t. How-
ever, each Poisson process Yk brings its own “internal” time
frame. Equation �1� shows that at absolute time t, the amount
of “internal time” that has passed for the process Yk is
Tk�t�=�0

t ak�X�s��ds. This observation leads us to the follow-
ing definition.

Definition 1.1. For each k�M, Tk�t�=�0
t ak�X�s��ds is the

internal time of the Poisson process Yk at absolute time t.
We note that the values Tk�t� defined above do not actu-

ally have units of time. In fact, they are unitless. However,
they serve the purpose of allowing us to know where we are
on the “time frames” of the Poisson processes Yk at absolute
time t.

a�Electronic mail: anderson@math.wisc.edu. URL: www.math.wisc.edu/
�anderson.

THE JOURNAL OF CHEMICAL PHYSICS 128, 054103 �2008�

0021-9606/2008/128�5�/054103/8/$23.00 © 2008 American Institute of Physics128, 054103-1

Downloaded 25 May 2010 to 72.33.119.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2819665
http://dx.doi.org/10.1063/1.2819665

Remark. It is important to recognize that for any T2

�T1�Tk�t�, the increment Yk�T2�−Yk�T1� is independent of
the state of the system X�t�. This independence follows from
the usual properties of the Poisson process and will eventu-
ally allow us to reject leaps without adding any bias to the
system.

The outline of the paper is as follows. In Sec. II, we will
briefly introduce several exact simulation methods for
chemical systems and a widely used approximate method
known as tau-leaping. While all of the methods presented in
Sec. II are well known, we will consider each through the
perspective of Eqs. �1� and �2�, which we believe lends in-
sight. In Sec. III, we present our new adaptive tau-leaping
procedure that incorporates a postleap check. In Sec. IV, we
compare the efficiency of our new algorithm to the current
adaptive tau-leaping procedures on a model of a decaying
dimer.

II. BACKGROUND

A. Exact simulation methods

In order to generate sample paths for a given system, all
exact simulation methods attempt to answer each of the fol-
lowing two questions at a given moment of time t:

�1a� When does the next reaction take place?
�2a� Which reaction takes place at that future time?
By answering both questions repeatedly, a sample path is

constructed. We see from Eq. �1� that the above questions are
equivalent to:

�1b� What will be the absolute time of the next firing of
the processes Yk��0

t ak�X�s��ds�?
�2b� Which process will fire at that time?
Note that neither the state of the system X�t� nor the

propensity functions ak�X�t�� change between reactions.
Therefore, assuming that no other reaction fires first, the next
firing time of the process Yk��0

t ak�X�s��ds� will be exponen-
tially distributed with parameter ak�X�t��. Of course, the
logic used in the previous sentence is only valid until the
time of the first firing of the various processes, for at that
time the state of the system, and hence the propensity func-
tions, will change. Therefore, we may only conclude that the
next firing time of the processes Yk��0

t ak�X�s��ds� will occur
at the minimum time of the exponentially distributed random
variables, and the reaction that takes place is simply the one
associated with the realized minimum value. Repeated appli-
cation of the above idea is the first reaction method.1 The
next reaction method8 and modified next reaction method4

use the same principles as the first reaction method except
that by efficient use of information, both need to only gen-
erate one exponential random variable per iteration as op-
posed to the M needed in the first reaction method. See Ref.
4 for full details on how the next reaction method and modi-
fied next reaction method achieve this efficiency. The
Gillespie algorithm,1,2 or stochastic simulation algorithm
�SSA�, answers the first question by using the fact that the
minimum of M exponentially distributed random variables
with parameters ak is exponentially distributed with param-
eter �k=1

M ak. To answer the second question, the Gillespie
algorithm uses the fact that the probability that the jth expo-

nential random variable achieves the minimum is aj /�k=1
M ak.

Therefore, for every iteration of the Gillespie algorithm one
random number is needed to find when the next reaction
occurs, and one random number is needed to determine
which reaction occurs at that later time.

We note that the algorithms described above are consid-
ered exact simulation methods because they generate statis-
tically exact sample paths for the system �2�. Typically, one
wishes to use such methods to generate many sample paths
in order to approximate the underlying probability distribu-
tions of the system of interest.9–12 However, there are in-
stances when the exactness of the methods makes them in-
effectual and approximate techniques are needed.

B. An approximate method: Tau-leaping

Because they simulate every reaction that takes place,
statistically exact methods are slow for systems in which
many reactions take place over short amounts of time. As the
algorithms described in this paper are typically used for
Monte Carlo simulations in which thousands, tens of thou-
sands, or even hundreds of thousands of sample paths are
needed to get an accurate picture of the underlying probabil-
ity distributions, it is clear why simulation speed is critical.
Therefore, approximate techniques have been developed that
will generate sample paths significantly faster than the exact
methods and will do so with an acceptable amount of error.
One such method is tau-leaping.13

Consider Eqs. �1� and �2�. We make the observation that
there are two natural places where we can approximate the
system: the Poisson processes Yk and the propensity func-
tions ak. In standard tau-leaping, only the propensity func-
tions are approximated. More specifically, if one assumes
that ak�X�t�� is relatively constant in the time interval �t , t
+�� �this assumption is typically called the leap condition�,
then, conditioned on X�s� for s� t, the number of times the
kth reaction fires in the time interval �t , t+�� can be approxi-
mated by

No. of firings = Rk�t + �� − Rk�t�

= Yk�	
0

t+�

ak�x�s��ds

− Yk�	

0

t

ak�x�s��ds

� Yk�ak�x�t��� + 	

0

t

ak�x�s��ds

− Yk�	

0

t

ak�x�s��ds
 . �3�

Each Yk is a unit rate Poisson process and so, conditioned on
X�s� for s� t,

054103-2 David F. Anderson J. Chem. Phys. 128, 054103 �2008�

Downloaded 25 May 2010 to 72.33.119.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Yk�ak�x�t��� + 	
0

t

ak�x�s��ds
 − Yk�	
0

t

ak�x�s��ds

=
d

Poisson�ak�x�t���� , �4�

where the equality is in distribution. Therefore, we use Pois-
son random variables to approximate how many times each
reaction has fired from time t to t+�, and we update the
system via

x�t + �� = x�t� + �
k=1

M

Nk��k� − �k� , �5�

where Nk is a Poisson random variable with parameter
ak�x�t���. We note that based upon the approximation used in
Eq. �3�, tau-leaping is similar to an Euler method.

The subtlety of tau-leaping is in selecting a � before each
step so that the leap condition holds over the time interval
�t , t+��. A typical way to make this explicit is to search for a
� so that for some small ��0

ak�X�t + ��� − ak�X�t�� � max��ak�X�t��,ck� , �6�

where ck is the rate constant for reaction k, which is the
smallest amount that a propensity function can change. The
question now becomes how to go about selecting the largest
� for which we will be reasonably sure that the condition �6�
will be satisfied.

The tau-leaping method proposed by Cao et al.14

chooses � before each step to be the largest value for which
both the estimated mean and the estimated standard devia-
tion of the random variable on the left side of Eq. �6� satisfies
that condition. It is shown in Ref. 14 that a computationally
efficient way to do this is to compute the 2N quantities

�̂i�X�t�� = �
j=1

M

�� j� − � j�iaj�X�t��, i = 1, . . . ,N ,

	̂i
2�X�t�� = �

j=1

M

�� j� − � j�i
2aj�X�t��, i = 1, . . . ,N ,

and then take � to be the value given by

� = min
i��1,N�

�max��Xi�t�/gi,1�
�̂i�X�t��

,
�max��Xi�t�/gi,1��2

	̂i
2�X�t�� � , �7�

where gi for each species Xi is a simple prescribed function
of Xi�t� whose form is fixed at the beginning of the simula-
tion and is given in Appendix A. In computing � with the
above method, the leap condition that is actually being sat-
isfied is

Xi�t + �� − Xi�t� � max��Xi�t�/gi,1� , �8�

which then approximately satisfies the leap condition �6�.
See Ref. 14 for full details. The tau-leaping algorithm pre-
sented below chooses tau by a preleap computation using Eq.
�7�.

Algorithm 1. �Cao et al.14 preleap computation tau-
leaping�

�1� Initialize. Set the initial number of molecules of each
species x�Z�0

N and set t=0.
�2� Calculate the propensity function ak for each reaction.
�3� Calculate � according to Eq. �7�.
�4� For each k�M, let Nk=Poisson�ak��.
�5� Set x=x+�k=1

M Nk��k�−�k� and t= t+�.
�6� Return to step 2 or quit.

There are two technical features of standard tau-leaping
that remain to be discussed. The first feature is that during
each iteration the algorithm should compute a0=�k=1

M ak and
then do the tau leap only if the � calculated via Eq. �7� is
larger than some small multiple of 1 /a0, but do one or more
time steps with an exact simulation method otherwise.
Switching between tau-leaping and an exact method is rea-
sonable because the benefits of tau-leaping as compared with
exact methods evaporate, and become negative, as �→1 /a0,
which is the expected amount of time until the next reaction.

The second feature is more subtle. For each leap, it is
possible that the leap condition will be violated so badly that
some population values will become negative. In fact, nega-
tive population values have been found to occur in simula-
tions using tau-leaping on systems of interest.15,16 As nega-
tive population values are physically unreasonable, this
constitutes a problem, and a number of solutions have been
proposed. Tian and Burrage16 and Chatterjee and Vlachos17

independently developed a method in which binomial ran-
dom variables, as opposed to Poisson random variables, are
used to perform the leap. Because binomial random variables
have bounded support, the parameters of the binomial ran-
dom variable can be chosen in a way that guarantees no
molecular species will become negative in the course of a
leap. Cao et al.15 then developed a method to handle the
potential of negative population values in which the reac-
tions are partitioned into two sets before the calculation of �:
critical reactions and noncritical reactions. For some prede-
termined integer nc between 2 and 20, the set of critical
reactions is defined to consist of those reactions with a posi-
tive propensity function that is within nc firings of exhausting
one of its reactants. Having split the reactions in such a way
before a leap, the algorithm performs a standard tau leap for
the noncritical reactions concurrent with a standard Gillespie
algorithm step for the critical reactions. It is guaranteed that
among all the critical reactions there will be at most one
firing during the leap, thereby significantly reducing, but not
completely doing away with, the chance of achieving a nega-
tive population value. If a negative population value is still
achieved, the tau is shortened and the leap is repeated. See
Ref. 15 for the full details of this method.

While both the binomial tau-leaping method and the
“critical reaction method” guarantee negative population val-
ues will be avoided, neither addresses the underlying prob-
lem of what is driving population values negative: that the
leap condition is badly violated at times. Instead of handling
this larger problem, both the binomial tau-leaping method
and the partitioning method of Cao et al. only handle it when
species numbers are low �although this is admittedly the
most important time to handle this problem�. Also, the fact
that population values can become negative in the absence of

054103-3 Incorporating postleap checks in tau-leaping J. Chem. Phys. 128, 054103 �2008�

Downloaded 25 May 2010 to 72.33.119.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

specific machinery designed to keep them positive points out
that other such large violations of the leap condition are most
likely occurring elsewhere in the simulation, yet are going
unnoticed.

III. A NEW TAU-LEAPING PROCEDURE

Through a postleap check the procedure developed in
this section will only accept leaps that demonstrably satisfy a
leap condition. A consequence of such enforcement will be
that achieving negative population values will be impossible,
and so the partitioning machinery of Cao et al. will no longer
be necessary. Further, as the method proposed will adap-
tively choose tau based upon the success or failure of the
previous leap, there will be no need to calculate tau before
each leap via Eq. �7�.

A. Conceptual framework

The method proposed in this section relies heavily on the
following two facts: �1� the internal time frames of the Pois-
son processes are distinct from each other and from the ab-
solute time frame and �2� for T2�T1�Tk�t�, the value
Yk�T2�−Yk�T1� is independent from the state of the system
X�t�. Consider Eqs. �1� and �2�. Suppose that at time t we
have knowledge of the state of the system, X�t�, the propen-
sity functions, ak=ak�X�t��, the various internal times Tk

=Tk�t�=�0
t ak�X�s��ds, and the number of firings of each Pois-

son process up to time t, Ck�Yk�Tk�t��. However, we sup-
pose we have no information about the values Yk�T�
−Yk�Tk� for T�Tk. At this time we attempt to perform a leap
with some predetermined �. By Eq. �4�, the number of jumps
of Yk over the internal time period �Tk ,Tk+ak�� has a Poisson
distribution with parameter ak�. We therefore generate M
Poisson random variables and denote them by Nk. Note that
we have now fixed the value Yk�Tk+ak��=Nk+Ck for the
course of the simulation. We next approximate the state of
the system at time t+� via Eq. �5� and check the leap con-
dition. If we verify that the leap condition has been satisfied,
we may accept the updated system and attempt another leap.

If the leap condition is not satisfied, we do not accept the
leap and we do not update the system. Instead, we decrease
the tau value by choosing some �*
� and attempt another
leap over this shorter time period. However, we still know
that Yk�Tk+ak��=Ck+Nk, for each k, and should condition
upon this knowledge when calculating Yk�Tk+ak�

*�. Note
that knowing Yk�Tk+ak��=Ck+Nk is not the same as claim-
ing to know that reaction k fired Ck+Nk times by time t+�.
The former equation is simply a statement about the values
of the Poisson process Yk�·�, while the latter is a statement
about the actual firings of the system by a certain time. We
prove the following theorem in the appendix.

Theorem 3.1. Let Y�t� be a Poisson process with inten-
sity �, and let 0�s
u
 t. Then, conditioned on Y�s� and
Y�t�, Y�u�−Y�s� has a binomial �Y�t�−Y�s� ,r� distribution,
where r= �u−s� / �t−s�.

By Theorem 3.1, the distribution of Yk�Tk+ak�
*�

−Yk�Tk�, conditioned on Yk�Tk�=Ck and Yk�Tk+ak��=Ck

+Nk, has a binomial �Nk , pk� distribution, where pk=�* /�.
After choosing the number of times Yk jumps in the internal

time period �Tk ,Tk+ak�
*� according to the binomial distribu-

tion just calculated, we repeat the process of attempting an
update of the state of the system and of checking the leap
condition. If this leap is also rejected, we simply store the
information on how many times Yk jumped by internal time
Tk+ak�

*, shorten tau, and try again. For the next attempted
leap, we only need to condition on Yk�Tk� and Yk�Tk+ak�

*�
because of the independence of intervals of Poisson pro-
cesses. Eventually, a leap will be accepted and we may move
forward in both absolute and internal time.

We note that when we accept a leap and are ready to
attempt another one we may have stored the value of Yk�T�
for many different internal times, T�Tk. When we attempt
another leap, the next proposed internal time will either fall
between two internal times we have stored, or will fall be-
yond our last stored internal time. In the former case, Theo-
rem 3.1 may be applied because of the independence of in-
tervals of Poisson processes. In the latter case, the number of
firings will be given as the number of firings up to the last
stored internal time, plus a Poisson random variable account-
ing for the extra internal time.

The above description is the backbone of our new
method. At each absolute time t we will attempt a leap of
size �. Supposing that we have stored the information
T1 , . . . ,Td and Yk�T1� , . . . ,Yk�Td�, with T1 , . . . ,Td�Tk, Tk

+ak� will either fall between two of the stored internal times
or fall beyond Td. As above, in the case when Ti�Tk+ak�

Ti+1 for some i, we apply Theorem 3.1 by conditioning
upon Yk�Ti� and Yk�Ti+1� and choosing from the appropriate
binomial distribution. Finally, we add the random variable
chosen to Yk�Ti�−Ck to find how many times Yk jumped
between the internal times Tk and Tk+ak�. In the case when
Tk+ak��Td we generate a Poisson random variable with
parameter Tk+ak�−Td and add it to Yk�Td�−Ck to find the
number of jumps. Acceptance or rejection of the leap then
depends on checking the leap condition. If we do reject the
leap, we would then store the information just learned about
each Yk, shorten �, and try again. By storing the information
gained about the processes Yk after each attempted leap we
see that no information about the processes Yk will be lost in
the course of a simulation. Because all of the randomness in
the system resides in the processes Yk, we conclude that the
rejection of leaps will not bias the statistics of the sample
paths.

We have not yet described how to update � after each
failed or accepted leap and will do so now. In the following
tau updating procedure, we suppose that we have already
fixed the � of the leap condition �8� as �̄:

�1� If a leap is rejected because it fails the leap condition
for �= �̄, then decrease � by multiplying it by some p

1.

�2� If a leap is accepted because it satisfied the leap condi-
tion for �= �̄, but would have failed the leap condition if
�=3�̄ /4, then decrease � by multiplying it by some p*

that satisfies p
 p*
1.
�3� If a leap is accepted because it satisfied the leap condi-

tion for �= �̄, and would have satisfied the leap condi-

054103-4 David F. Anderson J. Chem. Phys. 128, 054103 �2008�

Downloaded 25 May 2010 to 72.33.119.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

tion if �=3�̄ /4, then increase � by raising it to the
power q for some 0
q
1.

Unlike the method of Cao et al., we are not making an
effort to select the largest possible � for which the leap con-
dition will hold. However, based upon the tau updating pro-
cedure given above, it should be clear that we are attempting
to select a tau that is at least near such a maximal value.
However, as the value of � itself is rather arbitrary, it does
not seem critical to select such a “largest” tau.

We point out that step 2 in our tau updating procedure is
useful to keep the number of rejected leaps down. In essence,
step 2 forces the algorithm to always attempt to satisfy the
leap condition for a smaller value of epsilon than what was
originally chosen, but does not reject the leap if such a re-
strictive condition is not met. Because the generation of
Poisson and binomial random variables are computationally
intensive procedures, attempting to limit the number of failed
leaps, and hence the number of random variables generated,
seems reasonable.

B. The new algorithm

The logic of the previous section gives us a new adaptive
tau-leaping procedure that incorporates postleap checks
without biasing the sample paths. Before presenting the al-
gorithm, however, some notation is needed. Each Poisson
process Yk will have an associated matrix Sk that will serve to
store the information gained from leaps that fail the postleap
check. Each Sk has two columns. The first column will store
internal times �as opposed to absolute times�. The second
column will store the number of firings of Yk up to the inter-
nal time in the first column. That is, the elements of row i
satisfy Yk�Sk�i ,1��=Sk�i ,2�. The first row of Sk will always
contain the present internal time and the number of times Yk

has fired up to that time. Also, Tk=Tk�t� will always denote
the current internal time of Yk and Yk�Tk� will be denoted by
Ck. Combining the above gives that at each step we have
Tk=Sk�1,1� and Ck=Sk�1,2�. Finally, the values rowk will be
used to update the rows of the matrices Sk after every step.

Algorithm 2. �Postleap check tau-leaping�

�1� Initialize. Set the initial number of molecules of each
species x�Z�0

N and calculate the propensity functions
ak. Set t=0 and for each k set Tk=Ck=0, and Sk

= �0,0�. Calculate � via Eq. �7�. Set 0
 p
 p*
1 and
0
q
1.

�2� For each k, do the following:

�a� Let Bk=the number of rows of Sk.
�b� If ak�+Tk�Sk�Bk ,1�,

• Set Nk=Poisson�Tk+ak�−Sk�Bk ,1��+Sk�Bk ,2�−Ck.

• Set rowk=Bk.

�c� else

• Find the index Ik such that

Sk�Ik − 1,1� � Tk + ak�
 Sk�Ik,1� .

• Set
r= �Tk+ak�−Sk�Ik−1,1�� / �Sk�Ik ,1�−Sk�Ik−1,1��.

• Set Nk=binomial�Sk�Ik ,2�−Sk�Ik−1,2� ,r�+Sk�Ik

−1,2�−Ck.

• Set rowk= Ik−1.

�3� Check whether the leap condition holds with the se-
lected Nk.

�4� If yes, accept leap:

�a� Update each Sk.

• Delete all rows less than or equal to rowk and shift
all other rows down. Add a new first row of �Tk

+ak� ,Ck+Nk�.

�b� Set t= t+�.
�c� For each k, set Tk=Tk+ak� and Ck=Ck+Nk.
�d� Update � according to the tau updating procedure of

the previous section.
�e� Set x=x+�k=1

M Nk��k�−�k� and recalculate the propen-
sity functions.

�f� Return to step 2 or quit.

�5� Else, reject leap:

�a� Update each Sk.

• Add the row �Tk+ak�, Ck+Nk� between rows rowk

and rowk+1 �if rowk+1�Bk, just add a last row to
Sk�.

�b� Decrease � by setting �= p�.
�c� Return to step 2 or quit.

Remark. In the above algorithm, no population value can
become negative after an accepted leap. Unlike the binomial
tau-leaping method or the splitting of the reactions into criti-
cal and noncritical subsets, however, Algorithm 2 handles the
underlying problem that could cause negative population val-
ues. That is, the leap condition will never be violated.

We note that the manner in which we choose our � will
generally lead to smaller � values than the preleap computa-
tion method for a given value of � and for a given state of the
system X�t�. Therefore, for a given � we expect that our
method will need more simulation time than Algorithm 1,
but will produce more accurate results. Thus, in order to find
which algorithm is more efficient we will need to compare
them with different � values. Also, we note that Algorithm 1
chooses its tau values based upon the current state of the
system, whereas Algorithm 2 chooses its tau values based
upon the success or failure of the previously attempted leap.
While it is true that each method will �at least statistically�
produce the same leap for a given state of the system and a
given �, we note that over the course of an entire simulation
the difference in how each algorithm selects their tau values
will cause the statistics of the sample paths to diverge. There-
fore, it is entirely plausible that one method will achieve
higher accuracy than the other through fewer steps. This is
demonstrated in Sec. IV.

054103-5 Incorporating postleap checks in tau-leaping J. Chem. Phys. 128, 054103 �2008�

Downloaded 25 May 2010 to 72.33.119.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

C. Switching to an exact algorithm

As noted in the paragraph following Algorithm 1, it is
sometimes advantageous to switch between a tau-leaping
method and an exact method. Doing so for Algorithm 2 is
nontrivial as there could be stored information in the matri-
ces Sk. If any of the Sk matrices have stored information, then
the distributions of the future states of the system do not
solely depend on the current state of the system. One could
discard all stored information �that is, delete the information
in the matrices Sk� and switch to an exact method. In this
case, it is important to recognize that by discarding the stored
information, we have, in effect, changed the Poisson pro-
cesses Yk, and such a change adds a potential bias to the
choice of sample paths. For example, it is possible that the
algorithm needed to switch to an exact method because one
or more of the processes Yk had significantly more firings
than was expected over a short period of internal time. By
discarding this stored information, we may be inadvertently
biasing the system away from such instances. Typically,
however, there are not many switches made from tau-leaping
to an exact method in the course of a simulation, and so the
bias that is added may be negligible. Further, simply deleting
the rows of the Sk matrices would be simple to implement.

Another option is to keep all of the stored information
contained in the Sk matrices and switch to an exact method.
In this case, we preserve the fact that we are not approximat-
ing the processes Yk in our simulation. The exact method to
which we will switch is similar to the modified next reaction
method. See Ref. 4 for a detailed explanation of the modified
next reaction method.

We begin by letting Pk denote the internal time of the
next firing of the Poisson process Yk. That is, for each k we
let Pk=min�T�Tk Yk�T��Yk�Tk��. We will then find the
amount of absolute time that passes until the next reaction
takes place, and the reaction that happens at that time, by
minimizing over �Pk−Tk� /ak. There are two cases to con-
sider in the calculation of Pk:

Case 1: If there is no stored information for the kth re-
action we may use the fact that the Yk’s are independent, unit
rate Poisson processes and set Pk=Tk+ln�1 /rk�, where rk is
uniform �0,1�.

Case 2: If there is stored information for the kth reaction
channel we must condition upon that information in order to
calculate the distribution of the next firing time. In the Ap-
pendix we show the following.

Lemma 3.2. Let Y�t� be a Poisson process with intensity
�. Let t�0 and 0=Y�0�
Y�t�=N. Let P1=min�s Y�s��0�.
Then, for 0�r� t, P�P1�r Y�t�=N�= �1−r / t�N.

We let Bk, Ck, and Tk be as in Algorithm 2. By Lemma
3.2, we may calculate Pk in the following manner. First, find
the index j such that Ck=Sk�j ,2� and Ck
Sk�j+1,2�. Thus,
the next firing of Yk happens in the internal time interval
�Sk�j ,1� ,Sk�j+1,1��. If no such j exists, set Pk=Sk�Bk ,1�
+ln�1 /rk�, where rk is uniform�0,1�. If such a j does exist, let
tk=Sk�j+1,1�−Sk�j ,1� and let Nk=Sk�j+1,2�−Sk�j ,2�. Nk

gives the number of firings of the Poisson process Yk in the
internal time period �Sk�j ,1� ,Sk�j+1,1��, which is of length

tk. By Lemma 3.2, Pk−Sk�j ,1� has distribution function �1
−r / tk�Nk and so we may set Pk=Sk�j ,1�+ tk�1−rk

1/Nk�, where
rk is uniform �0,1�.

Algorithm 3. An exact stochastic simulation algorithm
given stored information.

�1� Input: the number of molecules of each species, t, and
for each k, the following from Algorithm 2: ak, Sk, Tk,
and Ck.

�2� For each k, find Pk as described in the previous para-
graph.

�3� Set �k= �Pk−Tk� /ak.
�4� Set �=min��k� and let �� be the value at which the

minimum is realized.
�5� Set t= t+� and update the number of each molecular

species according to reaction �.
�6� For each k, set Tk=Tk+ak�.
�7� Set C�=C�+1.
�8� Find P� as described in the previous paragraph.
�9� Recalculate the propensity functions.
�10� Update each Sk by deleting all rows with internal times

less than or equal to Tk and adding a new first row of
�Tk ,Ck�.

�11� Return to step 3 or return to tau-leaping or quit.

Remark. After the first time step, the above algorithm
uses only one random variable per time step. Also, Algorithm
3 becomes the modified next reaction method if all of the
information in each Sk is exhausted before the switch back to
tau-leaping is made.

We have shown how to switch successfully from tau-
leaping with Algorithm 2 to the exact method in Algorithm 3.
However, we now have to consider how to switch back. It is
not instantly clear that we can simply discard the information
contained in the unused Pk values without adding bias to our
system. We also note that we can not simply incorporate the
Pk values into the Sk matrices because each Sk contains in-
formation about how many jumps of Yk have taken place up
to different internal times and not information about the ex-
act jump times. However, the following theorem allows us to
discard the information stored in the Pk values when we
switch from Algorithm 3 back to Algorithm 2. The proof can
be found in the Appendix.

Theorem 3.3. The statistics of the firing times of each
reaction channel are unaffected by discarding the Pk values
when we switch from the exact method of Algorithm 3 to
tau-leaping in Algorithm 2.

IV. A NUMERICAL EXAMPLE

We compare the different tau-leaping methods on a
model of an unstable dimer that has been used in a number
of earlier papers.13,14,18 The model consists of four reactions
and three species. The reactions are

X1→
c1

0 X2→
c3

2X1

�9�

2X1→
c2

X2 X2→
c4

X3,

054103-6 David F. Anderson J. Chem. Phys. 128, 054103 �2008�

Downloaded 25 May 2010 to 72.33.119.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

with rate constant c1=1, c2=0.002, c3=0.5, and c4=0.04.
The propensity functions are a1�X�=X1, a2�X�
= �0.002 /2�X1�X1−1�, a3�X�=0.5X2, and a4�X�=0.04X2. We
chose initial conditions of X1�0�=106, X2�0�=103, and
X3�0�=0. We imposed the leap condition �8� in Algorithm 1
by calculating tau before each leap according to Eq. �7� and
imposed the leap condition in Algorithm 2 by checking that
the condition was satisfied after every leap. For Algorithm 2
we chose p=0.75, p*=0.9, and q=0.98 as the values for our
tau updating procedure described at the end of Sec. III A.

For �=0.17, �=0.1, and �=0.03 as the � values of the
leap condition �8�, we simulated the above system 104 times
using Gillespie’s original algorithm �SSA�, Algorithm 1, and
Algorithm 2. The simulations were performed using MATLAB

on a 2 GHz processor running on the Debian operating sys-
tem. To generate Poisson and binomial random variables, we
used the MATLAB Poisson and binomial random number gen-
erators. Each simulation began at time t=0 and ended at time
t=1. In Fig. 1, we show the histograms of X1�1� and X2�1�
for the different values of �. We see that for each � Algorithm
2 is significantly more accurate than Algorithm 1. As was
pointed out at the end of Sec. III B, however, the tau selec-
tion strategy for Algorithm 2 will naturally choose smaller
values of � for a given value of �. Therefore, it is not sur-
prising that Algorithm 2 is significantly more accurate for
each �. The CPU times for the different methods and differ-
ent � values are given in Table I. As was predicted in Sec.
III B, the increased accuracy of Algorithm 2 for each � came
at the price of longer CPU times.

In Fig. 2, we plot the histograms of X1�1� and X2�1�
generated by the Gillespie algorithm �SSA�, Algorithm 1
with �=0.03, and Algorithm 2 with �=0.1. We see that the
histograms of the different tau-leaping methods with their
respective � values are now nearly equivalent in their accu-
racy. However, based upon the CPU times in Table I, in order
to get such accuracy Algorithm 1 required 46% more CPU
time than Algorithm 2. We therefore see that, at least for this
model, our new postleap check method is more efficient than
the preleap computation method.

We next simulated the system 100 times using Algorithm
1 with �=0.03 and Algorithm 2 with �=0.1, except this time
we added machinery to keep track of how many leaps were
needed in each algorithm to complete the simulation. We
found that Algorithm 2 took an average of 203.4 successful
leaps per simulation and rejected an average of 37.8 leaps.
We found that Algorithm 1 took an average of 466.8 leaps.
Therefore, Algorithm 2 needed 56% fewer successful leaps
than Algorithm 1, which implies that the average size of tau
for the successful leaps of Algorithm 2 was approximately
double that of Algorithm 1. The reason Algorithm 2 can
achieve similar accuracy to Algorithm 1 with larger average
tau values was explained at the end of Sec. III B.

V. DISCUSSION

By explicitly representing the reaction times of discrete
stochastic chemical systems as the firing times of indepen-
dent, unit rate Poisson processes, we have developed an ac-
curate and efficient adaptive tau-leaping procedure. The main
difference between the method developed in this paper and
the current adaptive tau-leaping methods is that we enforce
our leap conditions via a postleap check. Also, we have dem-
onstrated how to reject leaps without biasing the sample
paths. Further, as a consequence of always satisfying a given
leap condition, our procedure is guaranteed to never produce
negative population values, which is in contrast to current

FIG. 2. Histogram plots of X1�1� and X2�1� found from 104 simulations of
system �9�. We show the SSA �dashed curve with ��, Algorithm 1 with �
=0.03 �solid curve with ��, and Algorithm 2 with �=0.1 �solid curve with
��. The distributions of the sample paths generated by Algorithms 1 and 2
with these � values have similar accuracies and can therefore be used as a
fair test for efficiency.

FIG. 1. Histogram plots of X1�1� and X2�1� for �=0.03, 0.10, 0.17. Each
plot was generated by simulating the system �9� 104 times using the SSA
�dashed curve with “�”�, Algorithm 1 �solid curve with “�”�, and Algo-
rithm 2 �solid curve with “�”�. Algorithm 2 is consistently more accurate
than Algorithm 1, as was expected.

TABLE I. CPU times needed for Algorithms 1 and 2 to complete 104 simu-
lations of system �9� for different � values.

CPU times �=0.17 �=0.10 �=0.03

Algorithm 1 31 CPU min 46 CPU min 120 CPU min
Algorithm 2 60 CPU min 82 CPU min 226 CPU min

054103-7 Incorporating postleap checks in tau-leaping J. Chem. Phys. 128, 054103 �2008�

Downloaded 25 May 2010 to 72.33.119.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

methods in which extra machinery is needed to guarantee
that population values remain non-negative. Finally, through
an example of an unstable dimer, we have demonstrated that
the method proposed in this paper is not only accurate, but
also efficient.

Algorithm 2 will surely not be more efficient than Algo-
rithm 1 for all chemical reaction systems. However, by en-
forcing a postleap check in such a way that the statistics of
the sample paths are not biased by the rejection of a leap, we
are confident that Algorithm 2 will be more accurate and will
have better stability properties for all chemical reaction sys-
tems. We also note that the method we have developed is
easily adaptable to any leap conditions, not just those given
by Eqs. �6� and �8�. Such adaptability is in contrast to meth-
ods that compute � before each leap, which need a new tau
computation procedure for every new leap condition.

This paper represents a first step in developing and ana-
lyzing tau-leaping methods through an understanding of the
random time change representation given in Eq. �2�. Future
work will focus on error analysis, the development of high
order methods, and the incorporation of delays in tau-
leaping.

ACKNOWLEDGMENTS

I would like to thank Thomas G. Kurtz for pointing out
how to reuse some information from a rejected leap. I would
also like to thank an anonymous reviewer for detailed, help-
ful comments that improved the clarity of this paper. This
work was done under the support of NSF Grant
DMS-0553687.

APPENDIX A: DEFINITION OF FUNCTIONS

The functions gi=gi�X�t�� used in Eq. �7� are defined as
follows. Let HOR�i� denote the highest order of reaction in
which species Xi appears as a reactant.

�i� If HOR�i�=1, take gi=1.
�ii� If HOR�i�=2, take gi=2, except if any second-order

reaction requires two Xi molecules in which case take
gi=2+1 / �Xi�t�−1�.

�iii� If HOR�i�=3, take gi=3, except if some third-order
reaction requires two Xi molecules in which case take

gi =
3

2
�2 +

1

Xi�t� − 1

 ,

except if some third-order reaction requires three Xi

molecules in which case take

gi = 3 +
1

Xi�t� − 1
+

2

Xi�t� − 2
.

APPENDIX B: PROOFS

Proof of Theorem 3.1: Without loss of generality, we
suppose that s=0 and Y�0�=0. Let Y�t�=N and 0
u
 t.
Then

P�Y�u� = jY�t� = N�

= P�Y�u� = j,Y�t� = N�/P�Y�t� = N�

= P�Y�t� − Y�u� = N − j�P�Y�u� = j�/P�Y�t� = N�

=
e−��t−u����t − u��N−j

�N − j�!
e−�u��u� j

j!

N!

e−�t��t�N

= �N

j

�u

t

 j�1 −

u

t

N−j

.

�

Proof of Lemma 3.2:

P�P1 � rY�t� = N�

= P�Y�r� = 0Y�t� = N�

= P�Y�r� = 0,Y�t� = N�/P�Y�t� = N�

= P�Y�t� − Y�r� = N�P�Y�r� = 0�/P�Y�t� = N�

=
e−��t−r����t − r��N

N!
e−�r N!

e−�t��t�N = �1 − r/t�N.

�

Proof of Theorem 3.3: If there are no stored reaction
times for reaction channel k, then discarding the extra infor-
mation contained in Pk is done by invoking the loss of
memory property. Now suppose that there is stored informa-
tion for reaction k. The firing times less than T�0 of a
Poisson process Y, conditioned on Y�T�, are uniform�0,T�
random variables. Therefore, it is sufficient to show that
for a uniform�a ,b� random number U, P�U�s+x U�x�
= �b− �s+x�� / �b−x�, thus showing that the conditional statis-
tics are uniform �x ,b�. The calculation is simple and is
omitted. �

1 D. T. Gillespie, J. Comput. Phys. 22, 403 �1976�.
2 D. T. Gillespie, J. Phys. Chem. 81, 2340 �1977�.
3 H. Andersson and T. Britton, Stochastic Epidemic Models and Their Sta-
tistical Analysis �Springer, New York, NY, 2000�.

4 D. F. Anderson, J. Chem. Phys. 127, 214107 �2007�.
5 K. Ball, T. G. Kurtz, L. Popovic, and G. Rempala, Ann. Appl. Probab.

16, 1925 �2006�.
6 S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and
Convergence �Wiley, New York, 1986�.

7 T. G. Kurtz, Stochastic Proc. Appl. 6, 223 �1978�.
8 M. Gibson and J. Bruck, J. Phys. Chem. A 105, 1876 �2000�.
9 A. Arkin, J. Ross, and H. H. McAdams, Genetics 149, 1633 �1998�.

10 H. H. McAdams and A. Arkin, Proc. Natl. Acad. Sci. U.S.A. 94, 814
�1997�.

11 E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. van
Oudenaarden, Nat. Genet. 31, 69 �2002�.

12 H. E. Samad, M. Khammash, L. Petzold, and D. Gillespie, Int. J. Robust
Nonlinear Control 15, 691 �2005�.

13 D. T. Gillespie, J. Chem. Phys. 115, 1716 �2001�.
14 Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 124, 044109

�2006�.
15 Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 123, 054104

�2005�.
16 T. Tian and K. Burrage, J. Chem. Phys. 121, 10356 �2004�.
17 A. Chatterjee and D. G. Vlachos, J. Chem. Phys. 122, 024112 �2005�.
18 D. T. Gillespie and L. R. Petzold, J. Chem. Phys. 119, 8229 �2003�.

054103-8 David F. Anderson J. Chem. Phys. 128, 054103 �2008�

Downloaded 25 May 2010 to 72.33.119.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

