
faug July 12, 2011 10:51 Page 1 �
�	

�
�	 �
�	

�
�	

Six Myths of Polynomial Interpolation and
Quadrature

Lloyd N. Trefethen FRS, FIMA, Oxford University

I t is a pleasure to offer this essay for Mathematics Today as a
record of my Summer Lecture on 29 June 2011 at the Royal
Society.
Polynomials are as basic a topic as any in mathematics, and

for numerical mathematicians like me, they are the starting point
of numerical methods that in some cases go back centuries, like
quadrature formulae for numerical integration and Newton itera-
tions for finding roots. You would think that by now, the basic
facts about computing with polynomials would be widely under-
stood. In fact, the situation is almost the reverse. There are indeed
widespread views about polynomials, but some of the important
ones are wrong, founded on misconceptions entrenched by gener-
ations of textbooks.

Since 2006, my colleagues and I have been solving mathemat-
ical problems with polynomials using the Chebfun software sys-
tem (www.maths.ox.ac.uk/chebfun). We have learned from
daily experience how fast and reliable polynomials are. This en-
tirely positive record has made me curious to try to pin down
where these misconceptions come from, and this essay is an at-
tempt to summarise some of my findings. Full details, including
precise definitions and theorems, can be found in my draft book
Approximation Theory and Approximation Practice, available at
www.maths.ox.ac.uk/~trefethen.

The essay is organised around ‘six myths’. Each myth has some
truth in it – mathematicians rarely say things that are simply false!
Yet each one misses something important.

Throughout the discussion, f is a continuous function defined
on the interval [−1, 1], n + 1 distinct points x0, . . . , xn in [−1, 1]
are given, and pn is the unique polynomial of degree at most nwith
pn(xj) = f(xj) for each j. Two families of points will be of partic-
ular interest: equispaced points, xj = −1 + 2j/n, and Chebyshev
points, xj = cos(jπ/n). I will also mention Legendre points, de-
fined as the zeros of the degree n+ 1 Legendre polynomial Pn+1.

The discussion of each myth begins with two or three represen-
tative quotations from leading textbooks, listed anonymously with
the year of publication. Then I say a word about the mathematical
truth underlying the myth, and after that, what that truth overlooks.

Myth 1. Polynomial interpolants diverge as n → ∞

Textbooks regularly warn students not to expect pn → f as
n→∞.

‘Polynomial interpolants rarely converge to a general
continuous function.’ (1989)
‘Unfortunately, there are functions for which inter-
polation at the Chebyshev points fails to converge.’
(1996)

On the face of it, this caution is justified by two theorems.
Weierstrass proved in 1885 [1] that any continuous function can
be approximated arbitrarily closely by polynomials. On the other
hand, Faber proved in 1914 [2] that no polynomial interpolation
scheme, no matter how the points are distributed, will converge for
all such functions.

So it sounds as if there is something wrong with polynomial in-
terpolation. Yet the truth is, polynomial interpolants in Chebyshev
points always converge if f is a little bit smooth. (We shall call
them Chebyshev interpolants.) Lipschitz continuity is more than
enough, that is, |f(x)− f(y)| ≤ L|x− y| for some constant L and
all x, y ∈ [−1, 1]. So long as f is Lipschitz continuous, as it will
be in almost any practical application, pn → f is guaranteed.

There is indeed a big problem with convergence of polynomial
interpolants, but it pertains to interpolation in equispaced points.
As Runge showed in 1901 [3], equispaced interpolants may diverge
exponentially, even if f is so smooth as to be analytic (holomor-
phic). This genuinely important fact, known as the Runge phe-
nomenon, has confused people. With Faber’s theorem seeming to
provide justification, a real problem with equispaced polynomial
interpolants has been overgeneralised so that people have suspected
it of applying to polynomial interpolants in general.

The smoother f is, the faster its Chebyshev interpolants con-
verge. If f has ν derivatives, with the ν th derivative being of
bounded variation V , then ‖f − pn‖ = O(V n−ν) as n→∞. (By
‖f − pn‖ I mean the maximum of |f(x)− pn(x)| for x ∈ [−1, 1].)
If f is analytic, the convergence is geometric, with ‖f − pn‖ =
O(ρ−n) for some ρ > 1. I will give details about the parameter ρ
under Myth 5.

For example, here is the degree 10,000 Chebyshev interpolant
pn to the sawtooth function f(x) defined as the integral from −1
to x of sign(sin(100t/(2 − t))). This curve may not look like a
polynomial, but it is! With ‖f − pn‖ ≈ 0.0001, the plot is indis-
tinguishable from a plot of f itself.

1885 that any continuous function can be approximated arbitrarily closely by poly-
nomials. On the other hand, Faber proved in 1914 that no polynomial interpolation
scheme, no matter how the points are distributed, will converge for all such functions.

So it sounds as if there is something wrong with polynomial interpolation. Yet the
truth is, polynomial interpolants in Chebyshev points always converge if f is a little bit
smooth (we shall call them Chebyshev interpolants). Lipschitz continuity is more than
enough, that is, |f(x) − f(y)| ≤ L|x − y| for some constant L and all x, y ∈ [−1, 1].
So long as f is Lipschitz continuous, as it will be in almost any practical application,
pn → f is guaranteed.

There is indeed a big problem with convergence of polynomial interpolants, but
it pertains to interpolation in equispaced points. As Runge showed in 1901, equis-
paced interpolants may diverge exponentially, even if f is so smooth as to be analytic
(holomorphic). This genuinely important fact, known as the Runge phenomenon, has
confused people. With Faber’s theorem seeming to provide justification, a real problem
with equispaced polynomial interpolants has been overgeneralized so that people have
suspected it of applying to polynomial interpolants in general.

The smoother f is, the faster its Chebyshev interpolants converge. If f has ν
derivatives, with the ν th derivative being of bounded variation, then ‖f−pn‖ = O(n−ν)
as n → ∞. (By ‖f − pn‖ I mean the maximum of |f(x) − pn(x)| for x ∈ [−1, 1].) If f
is analytic, the convergence is geometric, with ‖f − pn‖ = O(ρ−n) for some ρ > 1. I
will give details about the parameter ρ under Myth 5.

For example, here is the degree 10,000 Chebyshev interpolant pn to the sawtooth
function f(x) defined as the integral from −1 to x of sign(sin(100t/(2 − t))). This
curve may not look like a polynomial, but it is! With ‖f − pn‖ ≈ 0.0001, the plot is
indistinguishable from a plot of f itself.

There is not much use in polynomial interpolants to functions with so little smooth-
ness as this, but mathematically they are trouble-free. For smoother functions like ex,
cos(10x) or 1/(1 + 25x2), we get convergence to 15 digits of accuracy for small values
of n (14, 34 and 182, respectively).

Myth 2. Evaluating polynomial interpolants numeri-
cally is problematic

Interpolants in Chebyshev points may converge in theory, but aren’t there problems
on a computer? Textbooks warn students about this.

“Although Lagrangian interpolation is sometimes useful in theoretical investigations,
it is rarely used in practical computations.” (1985)

2

There is not much use in polynomial interpolants to functions
with so little smoothness as this, but mathematically they are trou-
ble free. For smoother functions like ex, cos(10x) or 1/(1+25x2),
we get convergence to 15 digits of accuracy for small values of n
(14, 34 and 182, respectively).

faug July 12, 2011 10:51 Page 2 �
�	

�
�	 �
�	

�
�	

Myth 2. Evaluating polynomial interpolants
numerically is problematic

Interpolants in Chebyshev points may converge in theory, but aren’t
there problems on a computer? Textbooks warn students about this.

‘Polynomial interpolation has drawbacks in addition
to those of global convergence. The determination and
evaluation of interpolating polynomials of high degree
can be too time-consuming and can also lead to diffi-
culty problems associated with roundoff error.’ (1977)
‘Although Lagrangian interpolation is sometimes use-
ful in theoretical investigations, it is rarely used in
practical computations.’ (1985)
‘Interpolation is a notoriously tricky problem from the
point of view of numerical stability.’ (1990)

The origin of this view is the fact that some of the methods one
might naturally try for evaluating polynomial interpolants are slow
or numerically unstable or both. For example, if you write down
the Lagrange interpolation formula in its most obvious form and
implement it on a computer as written, you get an algorithm that
requires O(n2) work per evaluation point. (Partly because of this,
books warn readers that they should use Newton interpolation for-
mulae rather than Lagrange – another myth.) And if you compute
interpolants ‘linear algebra style’, by setting up aVandermondema-
trix whose columns contain samples of 1, x, x2, . . . , xn at the grid
points, your numerical method is exponentially unstable. This is
the ‘polyval/polyfit’ algorithm of Matlab, and I am guilty of propa-
gating Myth 2 myself by using this algorithm in my textbook Spec-
tral Methods in Matlab [4]. Rounding errors on a computer destroy
all accuracy of this method even for n = 60, let alone n = 10,000
as in the plot above.

Or how about n = 1,000,000? Here is a plot of the polynomial
interpolant to f(x) = sin(10/x) in a million Chebyshev points.
The plot was obtained in about 30 seconds on my laptop by evalu-
ating the interpolant at 2,000 points clustered near zero.

“Interpolation is a notoriously tricky problem from the point of view of numerical
stability.” (1990)

The origin of this view is the fact that some of the methods one might naturally
try for evaluating polynomial interpolants are slow or numerically unstable or both.
For example, if you write down the Lagrange interpolation formula in its most obvious
form and implement it on a computer as written, you get an algorithm that requires
O(n2) work per evaluation point. (Partly because of this, books warn readers that they
should use Newton interpolation formulae rather than Lagrange— another myth.) And
if you compute interpolants “linear algebra style”, by setting up a Vandermonde matrix
whose columns contain samples of 1, x, x2, . . . , xn at the grid points, your numerical
method is exponentially unstable. This is the “polyval/polyfit” algorithm of Matlab,
and I am guilty of propagating Myth 2 myself by using this algorithm in my textbook
Spectral Methods in Matlab. Rounding errors on a computer destroy all accuracy of
this method even for n = 60, let alone n = 10,000 as in the plot above.

Or how about n = 1,000,000? Here is a plot of the polynomial interpolant to
f(x) = sin(10/x) in a million Chebyshev points. The plot was obtained in about 30
seconds on my laptop by evaluating the interpolant at 2000 points clustered near zero.

The fast and stable algorithm that makes these calculations possible comes from a
representation of the Lagrange interpolant known as the barycentric formula, published
by Salzer in 1972:

pn(x) =

n∑

j=0

′ (−1)jfj
x− xj

/
n∑

j=0

′ (−1)j

x− xj
,

with the special case pn(x) = fj if x = xj . The primes on the summation signs signify
that the terms j = 0 and j = n are multiplied by 1/2. The work required is O(n) per
evaluation point, and though the divisions by x − xj may look dangerous for x ≈ xj ,
the formula is numerically stable, as was proved by Nick Higham in 2004.

Myth 3. Best approximations are optimal

This one sounds true by definition!
“Since the Remes algorithm, or indeed any other algorithm for producing genuine

best approximations, requires rather extensive computations, some interest attaches to
other more convenient procedures to give good, if not optimal, polynomial approxima-
tions.” (1968)

“Ideally, we would want a best uniform approximation.” (1980)
Though the statement of this myth looks like a tautology, there is content in it. The

“best approximation” is a common name for the unique polynomial p∗n that minimizes

3

The fast and stable algorithm that makes these calculations
possible comes from a representation of the Lagrange interpolant
known as the barycentric formula, published by Salzer in 1972 [5]:

pn(x) =

n∑

j=0

′ (−1)jfj
x− xj

/
n∑

j=0

′ (−1)j

x− xj
,

with the special case pn(x) = fj if x = xj . The primes on the
summation signs signify that the terms j = 0 and j = n are multi-
plied by 1/2. The work required is O(n) per evaluation point, and
though the divisions by x − xj may look dangerous for x ≈ xj ,
the formula is numerically stable, as was proved by Nick Higham
in 2004 [6].

Myth 3. Best approximations are optimal

This one sounds true by definition!

‘Since the Remes algorithm, or indeed any other al-
gorithm for producing genuine best approximations,
requires rather extensive computations, some inter-
est attaches to other more convenient procedures to
give good, if not optimal, polynomial approximations.’
(1968)
‘Minimal polynomial approximations are clearly suit-
able for use in functions evaluation routines, where it
is advantageous to use as few terms as possible in an
approximation.’ (1968)
‘Ideally, we would want a best uniform approxima-
tion.’ (1980)

Though the statement of this myth looks like a tautology, there is
content in it. The ‘best approximation’ is a common name for the
unique polynomial p∗n that minimises ‖f − p∗n‖. So a best approx-
imant is optimal in the maximum norm, but is it really the best in
practice?

As the first quotation suggests, computing p∗n is not a triv-
ial matter, since the dependence on f is nonlinear. By contrast,
computing a Chebyshev interpolant with the barycentric formula is
easy. Here our prejudices about value for money begin to intrude.
If best approximations are hard to compute, they must be valuable!

Two considerations make the truth not so simple. First of all,
the maximum-norm accuracy difference between Chebyshev inter-
polants and best approximations can never be large, for Ehlich and
Zeller proved in 1966 [7] that ‖f −pn‖ cannot exceed ‖f −p∗n‖ by
more than the factor 2+(2/π) log(n+1). Usually the difference is
less than that, and in fact, the best known error bounds for functions
that have ν derivatives or are analytic, the two smoothness classes
mentioned under Myth 1, are just a factor of 2 larger for Chebyshev
interpolants as for best approximations.

Secondly, according to the equioscillation theorem going back
to Chebyshev in the 1850s, the maximum error of a best approx-
imation is always attained at at least n + 2 points in [−1, 1]. For
example, the black curve below is the error curve f(x) − p∗n(x),
x ∈ [−1, 1], for the best approximant to |x − 1/4| of degree 100,
equioscillating between 102 extreme values ≈ ±0.0027. The red
curve corresponds to the polynomial interpolant pn in Chebyshev
points. It is clear that for most values of x, |f(x)− pn(x)| is much
smaller than |f(x)−p∗n(x)|. Which approximation would be more
useful in an application? I think the only reasonable answer is, it
depends. Sometimes one really does need a guarantee about worst-
case behaviour. In other situations, it would be wasteful to sacrifice
so much accuracy over 95% of the range just to gain one bit of ac-
curacy in a small subinterval.

‖f − p∗n‖. So a best approximant is optimal in the maximum norm, but is it really the
best in practice?

As the first quotation suggests, computing p∗n is not a trivial matter, since the
dependence on f is nonlinear. By contrast, computing a Chebyshev interpolant with
the barycentric formula is easy. Here our prejudices about value for money begin to
intrude. If best approximations are hard to compute, they must be valuable!

Two considerations make the truth not so simple. First of all, the maximum-norm
accuracy difference between Chebyshev interpolants and best approximations can never
be large, for Ehlich and Zeller proved in 1966 that ‖f − pn‖ cannot exceed ‖f − p∗n‖
by more than the factor 2 + (2/π) log(n + 1). Usually the difference is less than that,
and in fact, the best known error bounds for functions that have ν derivatives or are
analytic, the two smoothness classes mentioned under Myth 1, are just a factor of 2
larger for Chebyshev interpolants as for best approximations.

Secondly, according to the equioscillation theorem going back to Chebyshev in the
1850s, the maximum error of a best approximation is always attained at at least n+2
points in [−1, 1]. For example, the black curve below is the error curve f(x)−p∗n(x), x ∈
[−1, 1], for the best approximant to |x−1/4| of degree 100, equioscillating between 102
extreme values ≈ ±0.0027. The red curve corresponds to the polynomial interpolant pn
in Chebyshev points. It is clear that for most values of x, |f(x)−pn(x)| is much smaller
than |f(x) − p∗n(x)|. Which approximation would be more useful in an application?
I think the only reasonable answer is, it depends. Sometimes one really does need
a guarantee about worst-case behaviour. In other situations, it would be wasteful to
sacrifice so much accuracy over 95% of the range just to gain one bit of accuracy in a
small subinterval.

Myth 4. Gauss quadrature has twice the order of

accuracy of Clenshaw–Curtis

Quadrature formulae are usually derived from polynomials. We approximate an integral
by a finite sum,

I =

∫ 1

−1

f(x)dx ≈ In =

n∑

k=0

wkf(xk), (1)

and the weights {wk} are determined by the principle of interpolating f by a polynomial
at the points {xk} and integrating the interpolant. Newton–Cotes quadrature corre-
sponds to equispaced points, Clenshaw–Curtis quadrature to Chebyshev points, and

4

faug July 12, 2011 10:51 Page 3 �
�	

�
�	 �
�	

�
�	

Myth 4. Gauss quadrature has twice the order of
accuracy of Clenshaw–Curtis

Quadrature formulae are usually derived from polynomials. We
approximate an integral by a finite sum,

I =

∫ 1

−1
f(x)dx ≈ In =

n∑

k=0

wkf(xk), (1)

and the weights {wk} are determined by the principle of inter-
polating f by a polynomial at the points {xk} and integrating
the interpolant. Newton–Cotes quadrature corresponds to equi-
spaced points, Clenshaw–Curtis quadrature to Chebyshev points,
and Gauss quadrature to Legendre points. Almost every textbook
first describes Newton–Cotes, which achieves In = I exactly if f is
a polynomial of degree n, and then shows that Gauss has twice this
order of exactness: In = I if f is a polynomial of degree 2n + 1.
Clenshaw–Curtis is occasionally mentioned, but it only has order
of exactness n, no better than Newton–Cotes.

‘However, the degree of accuracy for Clenshaw–
Curtis quadrature is only n− 1.’ (1997)
‘Clenshaw–Curtis rules are not optimal in that the de-
gree of an n-point rule is only n − 1, which is well
below the maximum possible.’ (2002)

This ubiquitous emphasis on order of exactness is misleading.
Textbooks suggest that the reason Gauss quadrature gives better
results than Newton–Cotes is its higher order of exactness, but this
is not correct. The problem with Newton–Cotes is that the sample
points are equally spaced: the Runge phenomenon. In fact, as Pólya
proved in 1933 [8], Newton–Cotes quadrature does not converge as
n→∞, in general, even if f is analytic.

Clenshaw–Curtis and Gauss quadratures behave entirely differ-
ently. Both schemes converge for all continuous integrands, and if
the integrand is analytic, the convergence is geometric. Clenshaw–
Curtis is easy to implement, using either the Fast Fourier Transform
or by an algorithm of Waldvogel in 2006 [9], and one reason it gets
little attention may be that Gauss quadrature had a big head start,
invented in 1814 [10] instead of 1960 [11]. Both Clenshaw–Curtis
and Gauss quadrature are practical even if n is in the millions, in the
latter case because nodes and weights can be calculated by an algo-
rithm implemented in Chebfun due to Glaser, Liu and Rokhlin in
2007 [12]. (Indeed, since Glaser–Liu–Rokhlin, it is another myth to
imagine that Gauss quadrature is only practicable for small values
of n.)

With twice the order of exactness, we would expect Gauss
quadrature to converge twice as fast as Clenshaw–Curtis. Yet it
does not. Unless f is analytic in a large region surrounding [−1, 1]
in the complex plane, one typically finds that Clenshaw–Curtis
quadrature converges at about the same rate as Gauss, as illustrated
by these curves for f(x) = exp(−1/x2):

Gauss quadrature to Legendre points. Almost every textbook first describes Newton–
Cotes, which achieves In = I exactly if f is a polynomial of degree n, and then shows
that Gauss has twice this order of accuracy: In = I if f is a polynomial of degree
2n+ 1. Clenshaw–Curtis is occasionally mentioned, but it only has order of exactness
n, no better than Newton–Cotes.

“However, the degree of accuracy for Clenshaw–Curtis quadrature is only n − 1.”
(1997)

“Clenshaw–Curtis rules are not optimal in that the degree of an n-point rule is only
n− 1, which is well below the maximum possible.” (2002)

This ubiquitous emphasis on order of exactness is misleading. Textbooks suggest
that the reason Gauss quadrature gives better results than Newton–Cotes is its higher
order of exactness, but this is not correct. The problem with Newton–Cotes is that the
sample points are equally spaced: the Runge phenomenon. In fact, as Pólya proved in
1933, Newton–Cotes quadrature does not converge as n → ∞, in general, even if f is
analytic.

Both Clenshaw–Curtis and Gauss quadrature behave entirely differently. Both
schemes converge for all continuous integrands, and if the integrand is analytic, the
convergence is geometric. Clenshaw–Curtis is easy to implement, using either the Fast
Fourier Transform or by an algorithm of Waldvogel in 2006, and one reason it gets
little attention may be that Gauss quadrature had a big head start, invented in 1814
instead of 1960. Both Clenshaw–Curtis and Gauss quadrature are practical even if n
is in the millions, in the latter case because nodes and weights can be calculated by an
algorithm implemented in Chebfun due to Glaser, Liu and Rokhlin in 2007. (Indeed,
since Glaser–Liu–Rokhlin, it is another myth to imagine that Gauss quadrature is only
practicable for small values of n.)

With twice the order of exactness, we would expect Gauss quadrature to converge
twice as fast as Clenshaw–Curtis. Yet it does not. Unless f is analytic in a large region
surrounding [−1, 1] in the complex plane, one typically finds that Clenshaw–Curtis
quadrature converges at about the same rate as Gauss, as illustrated by these curves
for f(x) = exp(−1/x2):

0 10 20 30 40 50 60 70 80 90 100

10
−15

10
−10

10
−5

10
0

Clenshaw−Curtis

Gauss

degree n

er
ro

r

A theorem of mine from 2008 makes this observation precise. If f has a ν th deriva-
tive of bounded variation, Gauss quadrature can be shown to converge at the rate
O(n−2ν), the factor of 2 reflecting its doubled order of accuracy. The theorem asserts
that the same rate O(n−2ν), with the same factor of 2, is also achieved by Clenshaw–
Curtis.

The explanation for this surprising result goes back to O’Hara and Smith in 1968.
It is true that (n + 1)-point Gauss quadrature integrates the Chebyshev polynomi-

5

A theorem of mine from 2008 makes this observation precise.
If f has a ν th derivative of bounded variation V , Gauss quadra-
ture can be shown to converge at the rate O(V (2n)−ν), the factor
of 2 reflecting its doubled order of exactness. The theorem asserts
that the same rate O(V (2n)−ν), with the same factor of 2, is also
achieved by Clenshaw–Curtis. (Folkmar Bornemann (private com-
munication) has pointed out that both of these rates can probably
be improved by one further power of n.)

The explanation for this surprising result goes back to O’Hara
and Smith in 1968 [13]. It is true that (n+ 1)-point Gauss quadra-
ture integrates the Chebyshev polynomials Tn+1, Tn+2, . . . ex-
actly whereas Clenshaw–Curtis does not. However, the error that
Clenshaw–Curtis makes consists of aliasing them to the Chebyshev
polynomials Tn−1, Tn−2, . . . and integrating these correctly. As it
happens, the integrals of Tn+k and Tn−k differ by only O(n−3),
and that is why Clenshaw–Curtis is more accurate than its order of
exactness seems to suggest.

Myth 5. Gauss quadrature is optimal

Gauss quadrature may not be much better than Clenshaw–Curtis,
but at least it would appear to be as accurate as possible, the gold
standard of quadrature formulae.

‘The precision is maximised when the quadrature is
Gaussian.’ (1982)
‘In fact, it can be shown that among all rules using
n function evaluations, the n-point Gaussian rule is
likely to produce the most accurate estimate.’ (1989)

There is another misconception here, quite different from the one
just discussed as Myth 4. Gauss quadrature is optimal as measured
by polynomial order of exactness, but that is a skewed measure.

The power of polynomials is nonuniform: they have greater res-
olution near the ends of an interval than in the middle. Suppose,
for example, that f(x) is an analytic function on [−1, 1], which
means it can be analytically continued into a neighbourhood of
[−1, 1] in the complex x-plane. Then polynomial approximants
to f , whether Chebyshev or Legendre interpolants or best approx-
imants, will converge at a geometric rate O(ρ−n) determined by
how close any singularities of f in the plane are to [−1, 1]. To be
precise, ρ is the sum of the semiminor and semimajor axis lengths
of the largest ellipse with foci ±1 inside which f is analytic and
bounded. But ellipses are narrower near the ends than in the mid-
dle. If f has a singularity at x0 = iε for some small ε, then we
get O(ρ−n) convergence with ρ ≈ 1 + ε. If f has a singularity at
1+ε, on the other hand, the parameter becomes ρ ≈ 1+

√
2ε, cor-

responding to much faster convergence. A function with a singu-
larity at 1.01 converges 14 times faster than one with a singularity
at 0.01i.

Quadrature rules generated by polynomials, including both
Gauss and Clenshaw–Curtis, show the same nonuniformity. This
might seem unavoidable, but in fact, there is no reason why a
quadrature formula (1) needs to be derived from polynomials. By
introducing a change of variables, one can generate alternative for-
mulae based on interpolation by transplanted polynomials, which
may converge up to π/2 times faster than Gauss or Clenshaw–
Curtis quadrature for many functions. This idea was developed in a
paper of mine with Nick Hale in 2008 [14] and is related to earlier
work by Kosloff and Tal-Ezer in 1993 [15].

faug July 12, 2011 10:51 Page 4 �
�	

�
�	 �
�	

�
�	

The following theorem applies to one of the transformed meth-
ods Hale and I proposed. Let f be a function that is analytic in an ε-
neighborhood of [−1, 1] for ε ≤ 0.05. ThenwhereasGauss quadra-
ture converges at the rate In − I = O((1 + ε)−2n), transformed
Gauss quadrature converges 50% faster, In − I = O((1 + ε)−3n).
Here is an illustration for f(x) = 1/(1 + 25x2).

0 10 20 30 40 50 60 70 80 90 100

10
−15

10
−10

10
−5

10
0

Gauss

transformed Gauss

degree n

er
ro

r

The fact that some quadrature formulae converge up to π/2 times faster than Gauss
as n → ∞ is probably not of much practical importance. The importance is conceptual.

Myth 6. Polynomial rootfinding is dangerous

Our final myth originates with Jim Wilkinson (1919–1986), a hero of mine who taught
me two courses in graduate school at Stanford. Working with Alan Turing on the Pilot
Ace computer in 1950, Wilkinson found that attempts to compute roots of even some
low-degree polynomials failed dramatically. He publicized this discovery widely.

“Our main object in this chapter has been to focus attention on the severe inherent
limitations of all numerical methods for finding the zeros of polynomials.” (1963)

“Beware: Some polynomials are ill-conditioned!” (1992)
The first of these quotations comes from Wilkinson’s book on rounding errors, and

he also coined the memorable phrase “the perfidious polynomial” as the title of a 1984
article that won the Chauvenet Prize for outstanding mathematical exposition.

What Wilkinson discovered was the extreme ill-conditioning of roots of certain
polynomials as functions of their coefficients. Specifically, suppose a polynomial pn is
specified by its coefficients in the form a0 + a1x+ · · ·+ anx

n. If pn has roots near the
unit circle in the complex plane, these pose no difficulties: they are well-conditioned
functions of the coefficients ak and can be computed accurately by Matlab’s “roots”
command, based on the calculation of eigenvalues of a companion matrix containing
the coefficients. Roots far from the circle, however, such as roots on the interval [−1, 1],
can be so ill-conditioned as to be effectively uncomputable. The monomials xk form
exponentially bad bases for polynomials on [−1, 1].

The flaw in the argument is that it says nothing about the condition of roots of
polynomials as functions of their values. For effective rootfinding on [−1, 1] based on
pointwise samples, all one must do is fix the basis: replace the monomials xk, which are
orthogonal polynomials on the unit circle, by the Chebyshev polynomials Tk(x), which
are orthogonal on the interval. Suppose a polynomial pn is specified by its coefficients
in the form a0T0(x) + a1T1(x) + · · ·+ anTn(x). If pn has roots near [−1, 1], these are
well-conditioned functions of the coefficients ak, and they can be computed accurately
by solving an eigenvalue problem involving a a “colleague matrix”. The details were
worked out by Specht in 1957 and Good in 1961.

Chebfun finds roots of a function f on [−1, 1] by approximating it by a polynomial
expressed in Chebyshev form and then solving a colleague matrix eigenvalue problem,
and if the degree is greater than 100, first subdividing the interval recursively to reduce
it. These ideas originate with John Boyd in 2002 and are extraordinarily effective.

7

The fact that some quadrature formulae converge up to π/2
times faster than Gauss asn→∞ is probably not of much practical
importance. The importance is conceptual.

Myth 6. Polynomial root-finding is dangerous

Our final myth originates with Jim Wilkinson (1919–1986), a hero
of mine who taught me two courses in graduate school at Stan-
ford. Working with Alan Turing on the Pilot Ace computer in 1950,
Wilkinson found that attempts to compute roots of even some low-
degree polynomials failed dramatically. He publicised this discov-
ery widely.

‘Our main object in this chapter has been to focus at-
tention on the severe inherent limitations of all nu-
merical methods for finding the zeros of polynomials.’
(1963)
‘Beware: Some polynomials are ill-conditioned!’
(1992)

The first of these quotations comes from Wilkinson’s book on
rounding errors [16], and he also coined the memorable phrase ‘the
perfidious polynomial’ as the title of a 1984 article that won the
Chauvenet Prize for outstanding mathematical exposition [17].

What Wilkinson discovered was the extreme ill-conditioning
of roots of certain polynomials as functions of their coefficients.
Specifically, suppose a polynomial pn is specified by its coefficients
in the form a0 + a1x + · · · + anx

n. If pn has roots near the unit
circle in the complex plane, these pose no difficulties: they are well-
conditioned functions of the coefficients ak and can be computed
accurately by Matlab’s ‘roots’ command, based on the calculation
of eigenvalues of a companion matrix containing the coefficients.
Roots far from the circle, however, such as roots on the interval
[−1, 1], can be so ill-conditioned as to be effectively uncomputable.
The monomials xk form exponentially bad bases for polynomials
on [−1, 1].

The flaw in the argument is that it says nothing about the con-
dition of roots of polynomials as functions of their values. For
effective root-finding on [−1, 1] based on pointwise samples, all
one must do is fix the basis: replace the monomials xk, which
are orthogonal polynomials on the unit circle, by the Chebyshev
polynomials Tk(x), which are orthogonal on the interval. Sup-
pose a polynomial pn is specified by its coefficients in the form
a0T0(x) + a1T1(x) + · · ·+ anTn(x). If pn has roots near [−1, 1],
these are well-conditioned functions of the coefficients ak, and

they can be computed accurately by solving an eigenvalue prob-
lem involving a ‘colleague matrix’. The details were worked out
by Specht in 1957 [18] and Good in 1961 [19].

Chebfun finds roots of a function f on [−1, 1] by approximat-
ing it by a polynomial expressed in Chebyshev form and then solv-
ing a colleague-matrix eigenvalue problem, and if the degree is
greater than 100, first subdividing the interval recursively to re-
duce it. These ideas originate with John Boyd in 2002 [20] and
are extraordinarily effective. Far from being exceptionally trouble-
some, polynomial root-finding when posed in this fashion begins
to emerge as the most tractable of all root-finding problems, for we
can solve the problem globally with just O(n2) work to get all the
roots in an interval to high accuracy.

For example, the function f(x) = sin(1000πx) on [−1, 1] is
represented in Chebfun by a polynomial of degree 4091. It takes
2 seconds on my laptop to find all 2001 of its roots in [−1, 1], and
the maximum deviation from the exact values is 4.4× 10−16.

Here is another illustration of the robustness of polynomial
root-finding on an interval. In Chebfun, we have plotted the func-
tion f(x) = exp(x/2)(sin(5x) + sin(101x)) and then executed
the commands r = roots(f-round(f)), plot(r,f(r),’.’).
This sequence solves a collection of hundreds of polynomial root-
finding problems to locate all the points where f takes a value equal
to an integer or a half-integer, and plots them as dots. The compu-
tation took 2/3 of a second.

Far from being exceptionally troublesome, polynomial rootfinding when posed in this
fashion begins to emerge as the most tractable of all rootfinding problems, for we can
solve the problem globally with just O(n2) work to get all the roots in an interval to
high accuracy.

For example, the function f(x) = sin(1000πx) on [−1, 1] is represented in Chebfun
by a polynomial of degree 4091. It takes 2 seconds on my laptop to find all 2001 of its
roots in [−1, 1], and the maximum deviation from the exact values is 4.4× 10−16.

Here is another illustration of the robustness of polynomial rootfinding on an inter-
val. In Chebfun, we have plotted the function f(x) = exp(x/2)(sin(5x) + sin(101x))
and then executed the commands r = roots(f-round(f)), plot(r,f(r),’.’). This
sequence solves a collection of hundreds of polynomial rootfinding problems to locate
all the points where f takes a value equal to an integer, and plots them as dots. The
computation took 2/3 of a second.

Conclusion

Perhaps I might close by mentioning another perspective on the misconceptions that
have affected the study of computation with polynomials. By the change of variables
x = cos θ, one can show that interpolation by polynomials in Chebyshev points is
equivalent to interpolation of periodic functions by series of sines and cosines in equis-
paced points. The latter is the subject of discrete Fourier analysis, and one cannot help
noting that whereas there is widespread suspicion that it is not safe to compute with
polynomials, nobody worries about the Fast Fourier Transform! In the end this may
be the biggest difference between Fourier and polynomial interpolants, the difference
in their reputations.

And here’s a bonus, free of charge.

Myth 7. Lagrange discovered Lagrange interpolation

It was Waring, in the Philosophical Transactions of the Royal Society in 1779. Euler
used the formula in 1783, and Lagrange in 1795.

8

Conclusion

Perhaps I might close by mentioning another perspective on the
misconceptions that have affected the study of computation with
polynomials. By the change of variables x = cos θ, one can show
that interpolation by polynomials in Chebyshev points is equiva-
lent to interpolation of periodic functions by series of sines and
cosines in equispaced points. The latter is the subject of discrete
Fourier analysis, and one cannot help noting that whereas there is
widespread suspicion that it is not safe to compute with polynomi-
als, nobody worries about the Fast Fourier Transform! In the end
this may be the biggest difference between Fourier and polynomial
interpolants, the difference in their reputations.

And here’s a bonus, free of charge.

Myth 7. Lagrange discovered Lagrange
interpolation

It was Waring in 1779 [21]. Euler used the formula in 1783, and
Lagrange in 1795. h

faug July 12, 2011 10:51 Page 5 �
�	

�
�	 �
�	

�
�	

References
1 Weierstrass, K. (1885) Über die analytische Darstellbarkeit sogenan-

nter willkürlicher Funktionen einer reellen Veränderlichen, Sitzungs-
berichte der Akademie zu Berlin, pp. 633–639 and 789–805.

2 Faber, G. (1914) Über die interpolatorische Darstellung stetiger Funk-
tionen, Jahresber. Deutsch. Math. Verein., vol. 23, pp. 190–210.

3 Runge, C. (1901) Über empirische Funktionen und die Interpolation
zwischen äquidistanten Ordinaten, Z. Math. Phys., vol. 46, pp. 224–
243.

4 Trefethen, L.N. (2000) SpectralMethods inMATLAB, SIAM, Philadel-
phia.

5 Salzer, H.E. (1972) Lagrangian interpolation at the Chebyshev points
xn,v ≡ cos(vπ/n), v = 0(1)n; some unnoted advantages, Comp. J.
vol. 15, pp. 156–159.

6 Higham, N.J. (2004) The numerical stability of barycentric Lagrange
interpolation IMA J. Numer. Anal., vol. 24, no. 4, pp. 547–556.

7 Ehlich, H. and Zeller, K. (1966) Auswertung der Normen von Interpo-
lationsoperatoren, Math. Ann., vol. 164, pp. 105–112.

8 Pólya, G. (1933) Über die Konvergenz von Quadraturverfahren,Math.
Z., vol. 37, pp. 264–286.

9 Waldvogel, J. (2006) Fast construction of the Fejér and Clenshaw–
Curtis quadrature rules, BIT Num. Math., vol. 46, no. 1. pp. 195–202.

10 Gauss, C. F. (1814) Methodus nova integralium valores per approxi-
mationem inveniendi, Comment. Soc. R. Scient. Göttingensis Rec., vol.
3, pp. 39–76.

11 Clenshaw, C.W. and Curtis, A. R. (1960) Amethod for numerical inte-
gration on an automatic computer, Numer. Math., vol. 2, pp. 197–205.

12 Glaser, A., Liu, X. and Rokhlin, V. (2007) A fast algorithm for the cal-
culation of the roots of special functions, SIAM J. Sci. Comp., vol. 29,
no. 4, pp. 1420–1438.

13 O’Hara, H. and Smith, F. J. (1968) Error estimation in the Clenshaw–
Curtis quadrature formula, Comp. J., vol. 11, pp. 213–219.

14 Hale, N. and Trefethen, L. N. (2008) New quadrature formulas from
conformal maps, SIAM J. Numer. Anal., vol. 46, pp. 930–948.

15 Kosloff, D. and Tal-Ezer, H. (1993) A modified Chebyshev pseu-
dospectral method with an O(N1) time step restriction, J. Comp.
Phys., vol. 104, pp. 457–469.

16 Wilkinson, J.H. (1994) Rounding Errors in Algebraic Processes
(Prentice-Hall Series in Automatic Computation) Dover Publications.

17 Wilkinson, J.H. (1984) The perfidious polynomial, MAA Stud. Num.
Anal.

18 Specht, W. (1957) Die Lage der Nullstellen eines Polynoms. III,Math.
Nachr., vol. 16, pp. 363–389.

19 Good, I. J. (1961) The colleague matrix, a Chebyshev analogue of the
companion matrix, Quart. J. Math., vol. 12, pp. 61–68.

20 Boyd, J.P. (2002) Computing zeros on a real interval through Cheby-
shev expansion and polynomial rootfinding, SIAM J. Numer. Anal., vol.
40, no. 5, pp. 1666–1682.

21 Waring, E. (1779) Problems concerning interpolations, Phil. Trans.,
vol. 69, pp. 59–67.

Urban Maths: Virtual Unreality
A. Townie

D riving through an unfamiliar city centre recently, with
its poorly signposted routes and confusing one-way sys-
tems, I became increasingly frustrated and completely lost.

Sometimes I went with the flow and took the direction being fol-
lowed by the majority of the traffic; at other times I deliberately
avoided such directions. I began to feel like a particle randomly
diffusing through an incomprehensible network of roads! When
I eventually reached my destination and regained my equilibrium I
realised the process I’d followed through the streets remindedme of
a technique for solving linear networks that I’ve only come across
in the relatively recent past.

q r

R1 R2

i1 i2

m

i3
R3

s

Figure 1: Segment of electrical network

Imagine an electrical circuit comprising a number of intercon-
nected electrical resistors. Focus on a particular interconnection
node and the nodes and resistors to which it is directly connected.
For example, let’s look at a segment of the circuit where node, m,
say, might be surrounded by nodes, q, r and s, to which it is con-
nected via resistors R1, R2 and R3, as in Figure 1.

We start conventionally by analysing this part of the circuit us-
ing Kirchhoff’s current law and Ohm’s law. Kirchhoff’s current
law says that the sum of the electrical currents out of any inter-
connection node must be zero (this is basically a statement of the
conservation of electric charge). So, with currents i1, i2 and i3
from Figure 1 we have:

i1 + i2 + i3 = 0. (1)

Ohm’s law relates the voltage difference across a resistor to the
current flowing through it and the value of the resistance. Using Vx
to represent the voltage at node x, we have for the three branches
of Figure 1:

Vm − Vq = i1R1,

Vm − Vr = i2R2,

Vm − Vs = i3R3. (2)

Divide each of the equations in (2) by its value of resistance, sum
the resulting equations and make use of equation (1) to obtain, after

