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Abstract. The nonuniform convergence of the Fourier series for discontinuous functions, and
in particular the oscillatory behavior of the finite sum, was already analyzed by Wilbraham in 1848.
This was later named the Gibbs phenomenon.

This article is a review of the Gibbs phenomenon from a different perspective. The Gibbs
phenomenon, as we view it, deals with the issue of recovering point values of a function from its
expansion coefficients. Alternatively it can be viewed as the possibility of the recovery of local infor-
mation from global information. The main theme here is not the structure of the Gibbs oscillations
but the understanding and resolution of the phenomenon in a general setting.

The purpose of this article is to review the Gibbs phenomenon and to show that the knowledge of
the expansion coefficients is sufficient for obtaining the point values of a piecewise smooth function,
with the same order of accuracy as in the smooth case. This is done by using the finite expansion
series to construct a different, rapidly convergent, approximation.
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1. Introduction. The Gibbs phenomenon, as we view it, deals with the issue
of recovering point values of a function from its expansion coefficients.

A prototype problem can be formulated as follows:
Given 2N + 1 Fourier coefficients f̂k, for −N ≤ k ≤ N , of an unknown function

f(x) defined everywhere in −1 ≤ x ≤ 1, construct, accurately, point values of the
function.

The straightforward method is to construct the classical Fourier sum:

fN (x) =
N∑

k=−N
f̂ke

ikπx.(1.1)

This is a very good way of reconstructing the point values of f(x) provided that
f(x) is smooth and periodic. In fact, if f(x) is analytic and periodic, it is known that
the Fourier series converges exponentially fast:

max
−1≤x≤1

|f(x)− fN (x)| ≤ e−αN , α > 0.

However, if f(x) is either discontinuous or nonperiodic, then fN (x) is not a good
approximation to f(x). In Figure 1, we present the Fourier approximation to the
function f(x) = x which is analytic but not periodic. It is self-evident that the
quality of the convergence is poor. Two features of the approximation may be noted:

• Away from the discontinuity the convergence is rather slow. If x0 is a fixed
point in (−1, 1),

|f(x0)− fN (x0)| ∼ O
(

1
N

)
.
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• There is an overshoot, close to the boundary, that does not diminish with
increasing N ; thus

max
−1≤x≤1

|f(x)− fN (x)|

does not tend to zero.
The inability to recover point values of a nonperiodic, but otherwise perfectly

smooth, function from its Fourier coefficients is the Gibbs phenomenon.
The Gibbs phenomenon seems to imply that it is inherently impossible to obtain

accurate local information (point values) from the knowledge of global properties
(Fourier coefficients) for piecewise smooth functions.

This is a far-reaching conclusion: many physical phenomena are represented by
piecewise smooth functions. For example, many problems in aeronautical and space
engineering involve fluid flows that contain shock waves, namely, discontinuities in
the pressure field. In numerical weather prediction one has to take into account the
surface of the earth, which has large gradients in the regions containing mountains.
The Gibbs phenomenon seems to rule out methods based on global approximations
for such problems.

Another example is data compression. It is essential to have a good representation
of the data in order to decide how to compress it, namely, which information to retain.
It is important to know whether the Fourier representation of the data is suitable for
nonsmooth signals.

The purpose of this article is to demonstrate that the knowledge of the Fourier
expansion coefficients is sufficient for obtaining the point values of a piecewise smooth
function, with the same order of accuracy as in the smooth case.

There are two stages involved in providing information on a function: storage and
retrieval. A good way to keep information about a function is to store its expansion
coefficients; however, in the case of a discontinuous function one should use more sen-
sitive methods to retrieve this information rather than naively sum up the expansion.
Thus in the numerical simulations of problems involving shock waves it is meaningful
to compute accurately the Fourier coefficients of the pressure function—though not
to get its point values by summing up the finite Fourier series. For data compression
it is also feasible to store the expansion coefficients of a function even if it is only
piecewise smooth.

We have presented the Gibbs phenomenon in the case of the Fourier approxima-
tion of an analytic but nonperiodic function. However, there are many more situations
in which the phenomenon manifests itself. In the following we will state a series of
problems pertaining to the Gibbs phenomenon.

Problem 1. Given 2N + 1 Fourier coefficients f̂k, for −N ≤ k ≤ N , of an
analytic but nonperiodic function f(x) in −1 ≤ x ≤ 1, construct, accurately, the point
values of the function.

In Problem 1 it is assumed that the function is analytic but nonperiodic. This
is equivalent to assuming that we deal with functions where the location of the dis-
continuity is known. We note that the location of the discontinuity can be obtained
from its Fourier coefficients; however, it is more logical to assume that a subinterval
[a, b] ⊂ [−1, 1] is free of discontinuities. This leads us to Problem 2.

Problem 2. Given 2N + 1 Fourier coefficients f̂k, for −N ≤ k ≤ N , of a
piecewise analytic function f(x) in −1 ≤ x ≤ 1, construct, accurately, the point
values of the function in any subinterval that does not include a discontinuity point.
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The Gibbs phenomenon is not limited to Fourier expansions. In fact many re-
searchers have reported the phenomenon in many different eigenfunction expansions.
Common expansions include those based on the Chebyshev and Legendre polynomials.
Those polynomials are special cases of the Gegenbauer polynomials. See the Appendix
for the definition.

In general, given the Gegenbauer expansion coefficients of a piecewise analytic
function one faces the same convergence problems.

We pose, therefore, the following problem.
Problem 3. Consider a piecewise analytic function f(x) defined in [−1, 1]. Sup-

pose that the first 0 ≤ k ≤ N expansion coefficients, based upon the Gegenbauer
polynomials Cµk (x) with the weight function (1−x2)µ−

1
2 for any constant µ ≥ 0, over

the full interval [−1, 1], are given:

f̂µk =
1
hµk

∫ 1

−1
(1− x2)µ−

1
2Cµk (x)f(x)dx, 0 ≤ k ≤ N.(1.2)

Construct the point values of f(x) with exponential accuracy at all points (including
at the discontinuities themselves). Exponential accuracy means that the error decays
as e−αN for some α > 0.

In Problems 1–3 we assume the knowledge of the expansion coefficients or, al-
ternatively, the knowledge of the integrals as in (1.2). Most often these integrals are
evaluated by quadrature formulas, leading to pseudospectral methods. In this context
the following two problems are relevant.

Problem 4. Let f(x) be an (unknown) analytic and nonperiodic function in
−1 ≤ x ≤ 1. Let f( kN ), −N ≤ k ≤ N − 1 be known. Construct, within exponential
accuracy, the point values of the function everywhere.

It is well known that constructing an interpolation polynomial at the evenly
spaced collocation points yields a divergent approximation (the Runge phenomenon).
Constructing a trigonometric polynomial would also not do because of the Gibbs phe-
nomenon. The remedy will be to construct the Fourier approximation and then to
treat it as a subcase of Problem 1.

The obvious extension of Problem 4 is Problem 5.
Problem 5. Let f(x) be an (unknown) piecewise analytic function in −1 ≤ x ≤ 1.

Let f( kN ), −N ≤ k ≤ N − 1 be known. Construct, within exponential accuracy, the
point values of the function everywhere.

Polynomial interpolations of smooth functions converge if the collocation points
are related to the zeros of orthogonal polynomials. Again, the Gibbs phenomenon
occurs in the case of piecewise smooth functions. We pose therefore the following
problem.

Problem 6. Assume that the point values f(xi), where xi are the Gauss or
Gauss–Lobatto points of the orthogonal basis {φk(x)}, of a discontinuous but piecewise
analytic function f(x), are given. Recover exponentially accurate point values over
any subinterval [a, b] of analyticity of f(x).

Remark 1.1. All of these problems assume piecewise analyticity. This is done
in order to simplify the discussion and sharpen the results. Both the phenomenon
and its resolution are valid for a piecewise smooth function having a finite number of
derivatives in their domain of smoothness.

This article is a review on the Gibbs phenomenon from the perspective discussed
above, i.e., the recovery of local information from the knowledge of some global in-
formation. We will not be particularly interested in the structure of the Gibbs oscil-
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lations but more with the attempts to resolve the phenomenon itself, attempts that
have recently led to the complete resolution of the phenomenon.

We will review the fascinating history of the discovery of the phenomenon in
section 2. From our point of view the phenomenon was discovered by A. Michelson
in 1898.

In section 3 we will review the use of filters in attempting to remove the phe-
nomenon. This effort started with Fejér in 1900.

In section 4 we present our resolution of the Gibbs phenomenon. We demonstrate
that from the knowledge of the Fourier (or Gegenbauer) expansion coefficients we can
reconstruct a rapidly converging series based on other expansion functions. Thus the
retrieval of the information should be done in a different basis than the storage of the
information. The Fourier coefficients of a function contain enough information such
that a different expansion, which is highly accurate, can be reconstructed.

2. History. A review of the Gibbs phenomenon is given in the beautiful paper
by Hewitt and Hewitt [20]. They view the Gibbs phenomenon as the issue of the
convergence of the partial sums of certain Fourier series in the neighborhood of the
discontinuity; in particular they concentrate on the oscillations and the magnitude of
the overshoot and undershoot. Our point of view is that the Gibbs phenomenon deals
with the issue of recovering a function from a finite number of its Fourier coefficients.
These two issues are related but not the same. In particular our approach raises the
question of how to overcome the Gibbs phenomenon. The following historical review
will be motivated by this viewpoint.

The fact that a discontinuous function can be represented as an infinite sum of
sines and cosines was known already to Euler, who presented, in the middle of the
18th century, the following sum:

∞∑
k=1

sin(kx)
k

=
1
2

(π − x) , 0 < x < 2π.(2.1)

Moreover, the nonuniform convergence of the Fourier series for discontinuous
functions, and in particular the oscillatory behavior of the finite sum, was already
analyzed by Wilbraham in 1848 [37]. This result was forgotten, maybe because of the
context in which it appeared. Only in 1925 (see Carslaw [3]) did Wilbraham get the
proper recognition for his work.

The Gibbs phenomenon, from our point of view, was first observed by Michelson.
In 1898 Michelson and Stratton built a mechanical device, named a harmonic analyzer,
that stored the Fourier coefficients of a given curve in its springs, using the fact that the
springs obey Hooke’s law. They used 80 springs but claimed that there was no limit
to the number of springs that could be employed. The machine was also described in
The Encyclopedia Britannica (1910) [6] and can be found at the Smithsonian Institute
in Washington DC.

They published a paper [30] describing the machine together with some graphs
of functions reconstructed from their Fourier coefficients obtained by the harmonic
analyzer. The purpose of these graphs was to demonstrate that the machine computed
accurately the Fourier coefficients of the functions. One of those curves was a square
wave that displayed the Gibbs oscillations, but no comment was made in the paper
related to the phenomenon.

Lanczos [22, p. 51] claimed that Michelson was puzzled by the fact that he could
not reconstruct the square wave function and posed the problem to his friend J.
Willard Gibbs. We have not been able to find evidence to support this. However, it
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seems that Michelson did notice the phenomenon, since within several months of the
publication of [30] he wrote a letter to the British journal Nature (October 6, 1898)
[27] that pointed out the difficulty in constructing the function f(x) = x from its
Fourier coefficients. In particular, he argued that if one considered the finite Fourier
approximation (1.1) fN (xN ), xN = π(1+ k

N ) (where k is small), then it would converge
to a different value for different k’s. Michelson then showed that the same problem
existed with the derivative of the function.

The mathematician A.E.H. Love attacked Michelson in the next issue of Nature
(October 13, 1898!) [24]. He started by suggesting a textbook (Hobson’s “Trigonom-
etry”) to Michelson (and in fact to all other physicists bothered by nonuniform con-
vergence) for reading. He claimed (correctly) that “the process employed is invalid.”
It is interesting that Love just pointed out the mathematical weakness of Michel-
son’s argument but did not bother to understand the difficulty that Michelson had
raised. It is apparent that Love was not aware of the harmonic analyzer, and he
did not realize that the problem was synthesizing a function from its Fourier coeffi-
cients.

The next chapter of our story took place on December 29, 1898 in the form of
three letters to the editor of Nature. The first one was by Michelson [28] pointing out
that from his point of view convergence should be uniform at any neighborhood of
the discontinuity. The note was dated December 1.

We now come to the name of Gibbs who was the author of the next note in
the same issue (written on November 29) [9]. Gibbs explained Michelson’s concerns
(pointing out that Love ignored those concerns) and described the oscillations. How-
ever, he seemed to imply that the oscillations decayed with N !

Gibbs’s letter was followed by another note from Love [25] expounding on the no-
tion of nonuniform convergence and admitting “The matter. . .is perhaps that referred
to by Prof. Michelson. . .but I did not understand his letter so”.

Only on April 27, 1899 did Gibbs publish the correct result [10] (apologizing, “I
should like to correct a careless error”) and showed that the oscillations do not decay,
but rather the overshoot tends to a fixed number.

The last communications appeared again in Nature. In May 1899 Michelson com-
municated a letter from Poincaré [29], and in June 1899 Love [26] basically repeated
his points. Again Love was not aware that the behavior of the finite sum was crucial
in reconstructing a function from its Fourier series.

The name Gibbs phenomenon was first used by Bôcher (1906) [2] who had ex-
tended the result of Gibbs.

In the 1920s the Gibbs phenomenon had been studied for expansions in other basis
functions. Expansions in Bessel and Schlömlich functions were considered by Wilton
[38, 39] and Cook [4, 5]. It is interesting to note that in expanding a constant function
by the Fourier Bessel series one has the expected Gibbs phenomenon at x = 1 but
also a very slow convergence that looks like the Gibbs phenomenon (but in fact is not)
around x = 0. This was found by Gottlieb and Orszag (1977) [12] and independently
by Gray and Pinsky (1993) [19] as a result of using the computer to generate the
graphs of the Fourier Bessel finite series at x = 1. One might only speculate what
form the debate on the Gibbs phenomenon would be in the age of computers!

H. Weyl [36] considered the Gibbs phenomenon for expansions in spherical har-
monics, a subject most relevant nowadays since numerical weather prediction codes
use expansions in spherical harmonics. For illustrations of the Gibbs phenomenon for
expansions in other polynomials see [12].
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The first attempt to resolve the Gibbs phenomenon was made by the Hungarian
mathematician Fejér. In 1900 he discovered that the Cesàro means of the partial
sums converges uniformly. This method is equivalent to first-order filters (see next
section). Fejér extended this result to surface harmonics. Since then an explosion
of filtering techniques, motivated by signal analysis, has occurred, the description of
which is outside the scope of this limited review.

3. Filters. In this section we review the attempts to resolve the Gibbs phe-
nomenon in the case of the Fourier expansion of a piecewise smooth function (see
Problem 2 in the introduction). Methods to resolve the Gibbs phenomenon fall into
one of two classes. The first class contains those methods that treat the approxima-
tion in the Fourier space, by modifying the expansion coefficients. In the second class
we consider methods that treat the approximation in the physical space.

Both classes of methods are successful in enhancing the accuracy but only away
from the discontinuity.

Consider the Fourier–Galerkin projection of a piecewise smooth function f(x),
0 ≤ x ≤ 2π (note that in this section we use the interval [0, 2π] instead of [−1, 1]):

fN (x) =
N∑

k=−N
f̂ke

ikx,(3.1)

where the coefficients f̂k are given by

f̂k =
1

2π

∫ 2π

0
f(x)e−ikxdx.(3.2)

The reason for the slow (and nonuniform) convergence of fN (x) to f(x) can be
traced to two facts:

• the slow decay of the Fourier coefficients f̂k;
• the global nature of the Fourier series, where the Fourier coefficients are

determined by integration over the whole interval (see (3.2)), even across
discontinuities.

These are two different manifestations of the same phenomenon and not two
independent causes of it. However, in attempting to resolve the Gibbs phenomenon,
two different approaches have been taken; each approach treats a different aspect of
the phenomenon.

3.1. Fourier space filters. In this subsection we will review efforts to resolve
the Gibbs phenomenon by enhancing the decay rate of the given Fourier coefficients
without reducing the accuracy.

Assume that we are given the first 2N+1 Fourier coefficient of a piecewise smooth
(Cq or analytic) function f(x) with a discontinuity point x = ξ. We would like to
recover the value f(y), 0 ≤ y ≤ 2π, by multiplying the Fourier coefficients by the
factors σ

(
k
N

)
such that the modified sum

fσN (y) =
N∑

k=−N
f̂kσ

(
k

N

)
eiky(3.3)

converges faster than the original sum

fN (y) =
N∑

k=−N
f̂ke

iky.(3.4)
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Note that we can rewrite (3.3) as a convolution in the physical space:

fσN (y) =
1

2π

∫ 2π

0
S(y − t)fN (t)dt,(3.5)

where the filter function S(x) (which depends on N) is the representation of the filter
σ
(
k
N

)
in the physical space; namely,

S(x) =
N∑

k=−N
σ

(
k

N

)
eikx, 0 ≤ x ≤ 2π.(3.6)

The definition of a filter characterizes the behavior of σ(η) as a function of its
argument. We will follow here the presentation by Vandeven [33].

DEFINITION 3.1 (the Fourier space filter of order p). A real and even function
σ(η) is called a filter of order p if

(a) σ(0) = 1, σ(l)(0) = 0, 1 ≤ l ≤ p− 1.
(b) σ(η) = 0, |η| ≥ 1.
(c) σ(η) ∈ Cp−1, η ∈ (−∞,∞).
Remarks.
1. The filter does not modify the low modes but only the high ones. Note that

because of conditions (b) and (c),

σ(l)(1) = 0, 0 ≤ l ≤ p− 1.

However, just zeroing out high modes is not enough. It is essential that the
filter function σ(η) is a smooth function of η. It is well known to practitioners
that cutting high modes and leaving the rest unchanged (namely, using σ(η) =
1 for |η| ≤ η0 and σ(η) = 0 for |η| > η0) will not improve the convergence,
since this will only give the original sum with fewer number of terms.

2. If f(x) is a Cp−1 periodic function, then multiplying its Fourier coefficients
by a filter that satisfies condition (a) does not change the order of accuracy.
It is the other two conditions, (b) and (c), that become important when f(x)
is only piecewise smooth.

3. Condition (b) assures that we can extend the finite sum in (3.3) to an infinite
series:

fσN (y) =
∞∑

k=−∞
f̂kσ

(
k

N

)
eiky.(3.7)

And, consequently, instead of (3.5) we have a convolution with f(t) itself:

fσN (y) =
1

2π

∫ 2π

0
S(y − t)f(t)dt.(3.8)

The function f(x) appears in the right side of (3.8), rather than its finite
Fourier sum fN (x) as in (3.5). The effect of truncating the infinite Fourier
sum of f(x) is eliminated. We loosely define the term truncation error as

TEN (y) =
∞∑

k=−∞
f̂kσ

(
k

N

)
eiky −

N∑
k=−N

f̂kσ

(
k

N

)
eiky.

In this case, with the conditions (b) and (c), this error TEN (y) will vanish.
The concept of truncation error will again appear later in this section and the
next section. Truncation errors are manifestations of the weak convergence
of the Fourier partial sum fN (x) to f(x).
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4. It will be shown that conditions (b) and (c) together assure that the filter
function S(x) and its integrals decay in N for any fixed x, 0 < x < 2π.

Of major importance in the analysis are the integrals of the filter function S(x)
defined in (3.6).

DEFINITION 3.2. Let S(x) be defined in (3.6); then its integrals Sl(x) are defined
by

S0(x) = S(x),(3.9)

S
′

l (x) = Sl−1(x), l ≥ 1,(3.10) ∫ 2π

0
Sl(t)dt = 0, l ≥ 1,(3.11)

and extended periodically outside (0, 2π).
The functions Sl(x) have several alternative representations. Some are given in

Lemma 3.1.
LEMMA 3.1. Assume that σ is a filter of order p according to Definition 3.1. The

functions Sl(x), defined in (3.6), (3.9)–(3.11), for 0 ≤ x ≤ 2π, have the following
equivalent representations:

Sl(x) = N−l
∞∑

k=−∞
Gl

(
k

N

)
1
il
eikx, 1 ≤ l ≤ p,(3.12)

where

Gl(η) =
σ(η)− 1

ηl
.(3.13)

Sl(x) = N1−l
∞∑

m=−∞

∫ ∞
−∞

eiN(x+2mπ)ηGl(η)i−ldη, 1 ≤ l ≤ p.(3.14)

S0(x) = 1 +
∑
k 6=0

σ

(
k

N

)
eikx,(3.15)

S1(x) = x− π +
∑
k 6=0

σ

(
k

N

)
1
ik
eikx,(3.16)

Sl(x) = Bl(x) +
∑
k 6=0

σ

(
k

N

)
1

(ik)l
eikx, l ≥ 2,(3.17)

where Bl(x) are the Bernoulli polynomials of degree l.
The importance of the integrals Sl(x) of the filter function S(x) becomes evident

if we integrate the right side of equation (3.8) by parts, taking care not to cross the
point of discontinuity ξ. We get Theorem 3.1.

THEOREM 3.1. Let f(x) be a piecewise Cp function with one point of discontinuity
ξ. Then

fσN (y) = f(y) +
1

2π

p−1∑
l=0

Sl+1(c)
(
f (l)(ξ+)− f (l)(ξ−)

)
+

1
2π

∫ 2π

0
Sp(y − t)f (p)(t)dt,

(3.18)

where c is either y−ξ (if y > ξ) or 2π+y−ξ (if y < ξ). Here and below the integration∫ 2π
0 is understood to be the sum

∫ ξ
0 +

∫ 2π
ξ

; i.e., the singularity of f (p)(t) at t = ξ is
not considered in the integration.
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Theorem 3.1 provides the precise error between the (unknown) point value f(y)
and the filtered sum fσN (y). The last two terms in the right-hand side of (3.18) can
be estimated from the properties of the filter.

Note first that if f(x) is a Cp−1 function then the first term in the right-hand
side of (3.18) vanishes and we are left only with the second term. Thus it is really the
error term for smooth functions. We estimate this term with the use of condition (a)
in the definition of the filter.

LEMMA 3.2. Let Sl(x) be defined by (3.9)–(3.11); then

1
2π

∣∣∣∣∫ 2π

0
Sp(y − t)f (p)(t)dt

∣∣∣∣ ≤ CN 1
2−p

(∫ 2π

0
|f (p)(t)|2dt

) 1
2

,(3.19)

where C is a constant independent of f or N .
Proof. We begin by noting that by a standard application of the Cauchy–Schwarz

inequality and the periodicity of Sp(t),∣∣∣∣∫ 2π

0
Sp(y − t)f (p)(t)dt

∣∣∣∣ ≤ (∫ 2π

0
S2
p(t)dt

) 1
2
(∫ 2π

0
|f (p)(t)|2

) 1
2

.(3.20)

Using the representation of Sl(x) given in Lemma 3.1 (3.12) we get

1
2π

∫ 2π

0
S2
p(t)dt =

∞∑
k=−∞

(
σ
(
k
N

)
− 1

kp

)2

= N1−2p
N∑

k=−N

(
σ
(
k
N

)
− 1

( kN )p

)2
1
N

+
∑
|k|>N

1
k2p .(3.21)

The first term on the right side of (3.21) is N1−2p times the Riemann sum of the
integral ∫ 1

−1
G2
p(η)dη =

∫ 1

−1

(
σ(η)− 1

ηp

)2

dη,

which is bounded because of condition (a) in Definition 3.1 of the filter. The second
term on the right-hand side of (3.21) is bounded by the same power of N .

Thus, (∫ 2π

0
S2
p(t)dt

) 1
2

≤ CN 1
2−p

∫ 1

−1

(
σ(η)− 1

ηp

)2

dη.(3.22)

Substituting (3.22) into (3.20) proves (3.19) with the constant C proportional to∫ 1
−1(σ(η)−1

ηp )2dη.
We go back now to equation (3.18) and treat the terms Sl(c). We will show that

condition (b) and (c) of the filter implies that these terms are small. For that we use
representation (3.14) to shuttle between the physical space and the Fourier space.

THEOREM 3.2. Let Sl(x), l ≥ 1, be given in (3.9)–(3.11); then for 0 < x < 2π,

|Sl(x)| ≤ A 1
Np−1

(
1
|x|p−l +

1
|2π − x|p−l

)∫ ∞
−∞
|G(p−l)

l (η)|dη, 1 ≤ l ≤ p.(3.23)
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Proof. We begin with (3.14) and integrate by parts (p − l) times. Since the
function Gl(η) is a Cp−1 function from the definition of the filter (in fact this is
exactly the reason why σ(1) has to vanish with its derivatives), we have

|Sl(x)| = N1−l

∣∣∣∣∣
∞∑

m=−∞

∫ ∞
−∞

eiN(x+2mπ)η

Np−l(x+ 2mπ)p−l
G

(p−l)
l (η)dη

∣∣∣∣∣ .(3.24)

The significant terms for m are m = 0,−1, leading to (3.23).
We can now summarize the following result.
THEOREM 3.3. Let f(x) be a piecewise Cp function with one point of discontinuity

ξ. Let σ
(
k
N

)
be a filter of order p satisfying Definition 3.1. Let now y be a point in

[0, 2π] and denote by d(y) = mink=−1,0,1 |y − ξ + 2kπ|. Let

fσN (y) =
∞∑

k=−∞
f̂kσ

(
k

N

)
eiky.(3.25)

Then

|f(y)− fσN (y)| ≤ CN1−pd(y)1−pK(f) + CN
1
2−p||f (p)||L2 ,(3.26)

where

K(f) =
p−1∑
l=0

d(y)l
(
f (l)(ξ+)− f (l)(ξ−)

)∫ ∞
−∞
|G(p−l)

l (η)|dη.(3.27)

Proof. From Theorem 3.1 we get

fσN (y)− f(y) =
1

2π

p−1∑
l=0

Sl+1(c)
(
f (l)(ξ+)− f (l)(ξ−)

)
+

1
2π

∫ 2π

0
Sp(y − t)f (p)(t)dt.

(3.28)

The last term in (3.28) is bounded by Lemma 3.2:

1
2π

∣∣∣∣∫ 2π

0
Sp(y − t)f (p)(t)dt

∣∣∣∣ ≤ CN 1
2−p

(∫ 2π

0
|f (p)(t)|2dt

) 1
2

.(3.29)

The first term in (3.28) is bounded by Theorem 3.2. Note that c = y − ξ if y > ξ
and c = 2π + y − ξ if y < ξ and, therefore,

1
cp−l

+
1

|2π − c|p−l ≤
2

dp−l
.(3.30)

Combining (3.23), (3.29), and (3.30) yields the theorem.
The theorem demonstrates that the filtering process works away from the discon-

tinuity, since all the terms on the right-hand side of (3.18) can be made O(N1−p).
Thus the pth order of accuracy can be achieved even for piecewise smooth functions.

Theorem 3.3 can be cast in a different way as was suggested by Vandeven [33].
THEOREM 3.4. We have

|f(y)− fσN (y)| ≤ AN1−pd(y)1−p|||f |||p,(3.31)

where |||f |||p is the local Sobolev p-norm, that is, the sum of the Sobolev p-norms in
each interval of smoothness.

There are many examples of filters that have been used during the years. We
would like to mention some of them.
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1. In 1900 Fejér suggested using averaged partial sums instead of the original
sums. This is equivalent to the first-order filter

σ1(η) = 1− η.

2. The Lanczos filter is formally a first-order filter

σ2(η) =
sin(πη)
πη

.

However, note that at η = 0, it satisfies the condition for a second-order filter.
3. A second-order filter is the raised cosine filter

σ3(η) =
1
2

(1 + cos(πη)) .

4. The sharpened raised cosine filter is given by

σ4(η) = σ4
3(η)(35− 84σ3(η) + 70σ2

3(η)− 20σ3
3(η)).

This is an eighth-order filter.
5. The exponential filter of order p (for even p) is given by

σ5(η) = e−αη
p

.

Note that formally the exponential filter does not conform to the definition
of the filter as σ5(1) = e−α. Thus the truncation error does not vanish. In
practice we choose α such that e−α is within the roundoff error of the specific
computer.

6. Vandeven [33] suggested a filter of order p that minimizes the constant A in
the right side of (3.31):

σ6(η) = 1− (2p− 1)!
(p− 1)!2

∫ η

0
[t(1− t)]p−1dt.(3.32)

This is essentially the Daubechies filter leading to wavelets [32].
What about piecewise analytic functions?
It has been shown by Vandeven [33] that if we allow the order p of the filter σ6(η)

to grow with the number of known coefficients N , then an exponential accuracy can
be recovered away from the discontinuity.

We close this section by noting that there is no additional computational cost in
applying the Fourier space filters. Constructing either the Fourier partial sum or the
filtered sum can be done in N log(N) operations.

3.2. Filters in physical space. The second approach to overcome the Gibbs
phenomenon is based on trying to localize the information that determines the Fourier
coefficients f̂k.

Denote again by

fN (x) =
N∑

k=−N
f̂ke

ikx.(3.33)

We look for a function Ψ(y, t) such that∫ 2π

0
fN (t)Ψ(y, t)dt ∼ f(y).(3.34)
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Note that if Ψ(y, t) = Ψ(y − t) we get back the formulation (3.5). Now, though,
the truncation error does not vanish. In fact,∫ 2π

0
fN (t)Ψ(y, t)dt = f(y) +

(∫ 2π

0
f(t)Ψ(y, t)dt− f(y)

)
(3.35)

+
(∫ 2π

0
fN (t)Ψ(y, t)dt−

∫ 2π

0
f(t)Ψ(y, t)dt

)
.(3.36)

We recall now the concept of truncation error (see section 3.1).
DEFINITION 3.3. The truncation error Te(y) is defined as (see (3.36)).

Te(y) =
∣∣∣∣∫ 2π

0
fN (t)Ψ(y, t)dt−

∫ 2π

0
f(t)Ψ(y, t)dt

∣∣∣∣ .(3.37)

The regularization error Re(y) is the second term in the right-hand side of (3.35)

Re(y) =
∣∣∣∣∫ 2π

0
f(t)Ψ(y, t)dt− f(y)

∣∣∣∣ .(3.38)

Our aim is to find Ψ(y, t) such that both the truncation and regularization errors
are small. We start with the estimation of the truncation error.

LEMMA 3.3. Let the truncation error be defined in (3.37). Then

Te(y) ≤ CN−p||Ψ(p)||L2 .(3.39)

Proof. We start with

Te(y) =
∣∣∣∣∫ 2π

0
(f(t)− fN (t)) Ψ(y, t)dt

∣∣∣∣(3.40)

=
∣∣∣∣∫ 2π

0
(f(t)− fN (t)) (Ψ(y, t)−ΨN (y, t)) dt

∣∣∣∣(3.41)

≤
(∫ 2π

0
(f(t)− fN (t))2dt

) 1
2
(∫ 2π

0
(Ψ(y, t)−ΨN (y, t))2dt

) 1
2

(3.42)

≤ CN−p||Ψ(p)||L2 ,(3.43)

where ΨN (y, t) is the partial Fourier sum of Ψ(y, t) with respect to the variable t.
(3.41) follows from the fact that ΨN (y, t) is orthogonal to any polynomials with degree
greater than N . (3.43) is a direct application of the approximation theory for smooth
functions.

We assume now that f(x) is a Cp function in a symmetric interval around y, say,
[y − ε, y + ε]. Define

ξ =
x− y
ε

.

In [18] the following filter function Ψ was suggested:

Ψ(y, x) = ρ(ξ(x))
1
2ε

m∑
k=−m

eπikξ(x),

ρ(ξ(x)) ∈ Cp[−∞,∞],

ρ(0) = 1, and ρ(ξ(x)) = 0, |ξ| > 1.
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Note that the function ρ is a localizer whereas 1
2ε

∑m
k=−m e

πikξ(x) is an approxi-
mation to the δ function.

The rationale behind this choice is clear when one looks at the regularization
error: ∫ 2π

0
f(t)Ψ(y, t)dt =

1
2ε

∫ y+ε

y−ε
f(t)ρ

(
t− y
ε

) m∑
k=−m

eπikξ(t)dt

(3.44)
=

1
2

∫ 1

−1
f(y + εξ)ρ(ξ)

m∑
k=−m

eπikξdξ.

Note that the function

f(y + εξ)ρ(ξ)

is Cp for −1 ≤ ξ ≤ 1, and, when extended periodically, if we denote its Fourier
coefficients by ĝk, we get that∫ 2π

0
f(t)Ψ(y, t)dt =

m∑
k=−m

ĝke
πik = f(y) +R(y),(3.45)

where R(y) is the tail of the Fourier series for the periodic smooth function f(y +
εξ)ρ(ξ), and thus tends quickly to zero with m.

In [18] these arguments were quantified. We quote the following theorem.
THEOREM 3.5. Let m = 1

2N ; then∣∣∣∣∫ 2π

0
fN (t)Ψ(y, t)− f(y)

∣∣∣∣
≤ N− s2

(
Cs||R||sN1.5||fN − f ||L1ε−s + max

0≤k≤s
max
|y−x|≤επ

|Dkf(x)|
)
.

We should note that no attempt to optimize the filter had been made.
We close this section with the following remarks.
1. We can replace eπikξ by the Legendre polynomials Pk(ξ) (see [11]).
2. The computational cost here is significantly higher than in the case of the

Fourier space filters. However, if one decides beforehand on a distance ε from
the discontinuity, then the filter is of convolution type and can be computed
efficiently.

3. One can view (3.44) as multiplying f(x) by a localizer around y and then
expanding the new function in an orthogonal expansion in the subinterval
[y − ε, y + ε]. Note that the approximation deteriorates as ε → 0. The fact
that the interval is symmetric implies that with this approach we cannot
recover the accuracy close to the discontinuity.

4. The resolution of Gibbs phenomenon. In this section we describe recent
work on the resolution of the Gibbs phenomenon [13], [14], [15], [16], [17], [7]. In these
papers we outlined a procedure to remove the Gibbs phenomenon completely, i.e., to
obtain exponential accuracy in the maximum norm in any interval of analyticity,
based on the Fourier or Gegenbauer series of a discontinuous but piecewise analytic
function.
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We revisit Problem 1 to explain the methodology employed; i.e., we assume the
knowledge of the first 2N + 1 Fourier coefficients of an analytic but nonperiodic
function.

This procedure utilizes the Gegenbauer polynomials Cλk (x), which are orthogonal
over the range x ∈ [−1, 1] with the weight function (1 − x2)λ−

1
2 for large λ ∼ N .

See the Appendix for definitions and properties of Gegenbauer polynomials. The
Gegenbauer polynomials arise naturally when we try to generalize the physical space
filter (3.34) to nonsymmetric intervals. In fact we have shown in section 3.2 that the
truncation error is small if Φ, viewed as a periodic function, is smooth (3.39), while
the regularization error is small if Ψ approximates a δ-function (3.45). It is therefore
natural to choose Ψ as a product of w(x) = (1 − x2)µ for a large µ and a δ-function
based on the inner product with the weight w(x). This leads to the Gegenbauer
polynomials.

The proof of exponential convergence involves showing that the error committed
by expanding the Nth Fourier coefficient into Gegenbauer polynomials can be made
exponentially small. Calling fmN the expansion of fN into mth-degree Gegenbauer
polynomials and fm the expansion of f(x) into mth-degree Gegenbauer polynomials,
one proves that the error

||f − fmN || ≤ ||f − fm||+ ||fm − fmN ||

can be made exponentially small by showing this for each term separately, where the
norm is the maximum norm over [−1, 1]. The first term is the regularization error,
while the second term is the truncation error.

The suggested procedure thus consists of the following two steps.
Step one. Compute the first m+ 1 Gegenbauer coefficients of fN (x):

ĝλk =
1
hλk

∫ 1

−1
(1− x2)λ−

1
2 fN (x)Cλk (x)dx, 0 ≤ k ≤ m,

where hλk are normalization constants. The truncation error is

||fm − fmN || = max
−1≤x≤1

∣∣∣∣∣
m∑
k=0

(
f̂λk − ĝλk

)
Cλk (x)

∣∣∣∣∣ ,(4.1)

where f̂λk are the (unknown) Gegenbauer coefficients of the original function f(x). It
can be proven that this truncation error is exponentially small if both λ and m grow
linearly with N .

Step two. Construct the Gegenbauer series

m∑
k=0

ĝλkC
λ
k (x) ∼

m∑
k=0

f̂λkC
λ
k (x) = fm(x),

where λ is proportional to m. The error incurred at this stage is labeled regularization
error :

||f − fm|| = max
−1≤x≤1

∣∣∣∣∣f(x)−
m∑
k=0

f̂λkC
λ
k (x)

∣∣∣∣∣ .
It can be proven that this regularization error is again exponentially small for the
choice λ = γm with any positive constant γ.
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The combination of the two steps gives us the procedure to obtain an exponentially
convergent approximation in the maximum norm over the whole interval [−1, 1].

The idea presented above can be generalized to solve all the problems presented
in the introduction. The first N expansion coefficients (or the value of the function in
N appropriate collocation points) provide enough information to construct accurately
the first m Gegenbauer expansion coefficients based on a subinterval [a, b] in which
the function is smooth.

In the first subsection we consider the truncation errors corresponding to the
problems raised in the introduction. The second subsection is devoted to the esti-
mation of the regularization error. In the last subsection we show how the previous
subsections lead to the elimination of the Gibbs phenomenon.

4.1. The truncation error. In this subsection we consider the truncation error.
We assume we are given a spectral partial sum of an arbitrary L1 function f(x) defined
in [−1, 1]:

fN (x) =
N∑
k=0

f̂kφk(x),(4.2)

where φk(x) could be the trigonometric function e2πkix (where the summation in
(4.2) runs from −N to N), or the general Gegenbauer function Cµk (x) including the
Legendre µ = 1

2 and Chebyshev µ = 0 as special cases. The spectral coefficients f̂k
could be from either a Galerkin expansion or a collocation (pseudospectral) expansion.

We are interested in getting an exponentially accurate approximation to the
Gegenbauer expansion of f(x) over a subinterval [a, b] ⊂ [−1, 1] (which could be
[−1, 1] itself or a true subinterval), based on the given spectral partial sum fN (x) in
(4.2). If f(x) contains any discontinuity, this is typically not possible if the parameter
λ in the Gegenbauer expansion is fixed. However, it is possible if we choose λ ∼ N .

For the Galerkin cases an L1 assumption on f(x) is enough for this subsection.
For the collocation cases additional smoothness of f(x) in the subinterval [a, b] is
needed:

max
a≤x≤b

∣∣∣∣dkfdxk
(x)
∣∣∣∣ ≤ C(ρ)

k!
ρk

for all k ≥ 0.(4.3)

This is a standard assumption for analytic functions; ρ > 0 is actually the distance
from [−1, 1] to the nearest singularity of f(x) in the complex plane (see, for example,
[21]).

We define the local variable ξ by ξ = ξ(x) = x−δ
ε , or x = x(ξ) = εξ + δ, with

ε = b−a
2 , δ = b+a

2 . Thus −1 ≤ ξ ≤ 1 corresponds to a ≤ x ≤ b. The L1 function f(x)
has a Gegenbauer expansion in the subinterval [a, b]:

f(εξ + δ) =
∞∑
l=0

f̂λε (l)Cλl (ξ), −1 ≤ ξ ≤ 1,(4.4)

where the Gegenbauer coefficients f̂λε (l) are defined by

f̂λε (l) =
1
hλl

∫ 1

−1
(1− ξ2)λ−

1
2Cλl (ξ)f(εξ + δ)dξ.(4.5)

See the Appendix for the definition of hλl .
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Of course, we do not know the function f(x) itself but just its spectral partial
sum fN (x). Therefore, we have at our disposal only an approximation ĝλε (l), based
on fN (x), to the true Gegenbauer coefficients f̂λε (l) defined in (4.5). For the Galerkin
case, this approximation is given by

ĝλε (l) =
1
hλl

∫ 1

−1
(1− ξ2)λ−

1
2Cλl (ξ)fN (εξ + δ)dξ.(4.6)

For the collocation case, we have difficulty in proving exponential accuracy if (4.6) is
used. Instead, we incorporate the weight function into f(x) before collocation. We
thus define

gN (x) = IN (α · f) (x),(4.7)

where IN is the collocation operator, and α(x) is the weight function defined by

α(x) =
{

(1− ξ(x)2)λ−
1
2 , a ≤ x ≤ b,

0 otherwise.
(4.8)

This works for the case
∫ 1
−1

1
w(x)dx < ∞, where w(x) is the weight function of the

basis {φk}. Most commonly used bases belong to this class, for example, the Fourier
case where w(x) = 1 and the Gegenbauer case where w(x) = (1−x2)µ−

1
2 , when µ < 3

2 ,
which includes Chebyshev and Legendre cases. If the weight function is not inversely
integrable, a slightly different definition for gN (x) is needed (see [17] for details). The
approximation ĝλε (l) is then given by

ĝλε (l) =
1
hλl

∫ 1

−1
gN (εξ + δ)Cλl (ξ)dξ.(4.9)

We now formally define the truncation error.
DEFINITION 4.1. The truncation error is defined by

TE(λ,m,N, ε) = max
−1≤ξ≤1

∣∣∣∣∣
m∑
l=0

(f̂λε (l)− ĝλε (l))Cλl (ξ)

∣∣∣∣∣ ,(4.10)

where f̂λε (l) are defined by (4.5) and ĝλε (l) are defined by (4.6) for the Galerkin case
and by (4.9) for the collocation case.

The truncation error is the measure of the distance between the true Gegenbauer
expansion of f(x) in the interval [a, b] and its approximation based on the spectral
partial sum. We can summarize the estimates of truncation errors under different
situations [13, 15, 16, 17, 7] in Theorem 4.1.

THEOREM 4.1. Let the truncation error be defined by (4.10). Let λ = αεN and
m = βεN with α, β constants; then

TE(αεN, βεN,N, ε) ≤ AqεNT ,(4.11)

where A grows at most as a fixed-degree polynomial of N , and qT is given by the
following:

(i) For the Galerkin expansion in Fourier spectral series [13, 15],

qT =
(β + 2α)β+2α

(2πe)αααββ
.(4.12)

In particular, if α = β < 2πe
27 then qT < 1.
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(ii) For the Galerkin expansion in general Gegenbauer series (this includes Cheby-
shev and Legendre) [16],

qT =
(β + 2α)β+2α

2αααββ
.(4.13)

In particular, if α = β < 2
27 then qT < 1.

(iii) For the collocation expansion in Fourier or general Gegenbauer spectral series
[17],

qT =
(β + 2α)β+2α

eαααββ
·
(

1
2

+
1
4ρ

)α
,(4.14)

where ρ is given by (4.3). In particular, if α = β < 2e
27(1+ 1

2ρ ) , then qT < 1.

(iv) For the spherical harmonic expansion [7],

qT =
(β + 2α)β+2α

2αααββ
.(4.15)

In particular, if α = β < 2
27 , then qT < 1.

We note that for the Galerkin case, the estimate for the general Gegenbauer
expansions is less sharp (missing a factor of 1

πe ) than that of the Fourier expansion.
This is perhaps due to the different methods of proof. For the special case of Legendre
expansion among general Gegenbauer expansions, sharper results similar to that for
the Fourier case can be obtained [15].

We now describe some key ideas in the proof of Theorem 4.1. For the Galerkin
case, by (4.2), (4.4), (4.5), and (4.6), the truncation error (4.10) can be expressed as

TE(λ,m,N, ε) = max
−1≤η≤1

∣∣∣∣∣
m∑
l=0

Cλl (η)
hλl

∫ 1

−1
(1− ξ2)λ−

1
2Cλl (ξ)

∞∑
k=N+1

f̂kφk(εξ + δ) dξ

∣∣∣∣∣
≤ A

m∑
l=0

∞∑
k=N+1

Cλl (1)
hλl

∣∣∣∣∫ 1

−1
(1− ξ2)λ−

1
2Cλl (ξ)φk(εξ + δ) dξ

∣∣∣∣ .
We have used (6.5) from the Appendix and the fact that f(x) is in L1; hence, |f̂k| ≤ A.
Now, the first sum in l will only give a factor of m ∼ N , and the dominant term in
the second sum is the first term k = N + 1. Also the factor Cλl (1)

hλl
can be absorbed

into A by (6.7). Thus the key in the proof is to estimate∫ 1

−1
(1− ξ2)λ−

1
2Cλl (ξ)φN+1(εξ + δ)dξ.(4.16)

For the Fourier case φk(x) = e2kπix, there is an explicit formula for the integral (4.16)
in terms of the Bessel function Jl+λ(π(N+1)). This, together with detailed estimates
on the Bessel function and other asymptotic terms, gives the result (i) in Theorem
4.1 (see [13, 15]). The same formula also helps us in getting the estimate for the
Legendre case, by writing the Legendre polynomial as a Fourier series [15]. However,
this procedure does not work for the general Gegenbauer case, because of the existence
of the weight function. We have thus resorted to finding recursive formulas for (4.16),
which allowed us to reduce λ to 0 by changing l and N , hence arriving at an explicit
formula which can be analyzed by asymptotics [16]. This procedure gives a less sharp
estimate, as indicated before.
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The proof for the collocation case is different and uses the analytical assumption
(4.3). Details can be found in [17].

We have thus showed that for all the expansions mentioned in the introduction,
the truncation error is exponentially small. Thus it is possible to accurately obtain
the Gegenbauer expansion coefficients provided λ ∼ N .

4.2. The regularization error. In this subsection we study the regularization
error, which is the approximation error of using a finite (first m+1 terms) Gegenbauer
expansion to approximate an analytic function f(x) in [−1, 1]. What makes it different
from the usual approximation results is that we require that the exponent λ in the
weight function (1−x2)λ−

1
2 shall grow linearly with m, the number of terms retained

in the Gegenbauer expansion. Thus we have the following problem.
• Given an analytic function f(x) defined on −1 ≤ x ≤ 1, estimate the approx-

imation error in the maximum norm:

RE(λ,m) = max
−1≤x≤1

∣∣∣∣∣f(x)−
m∑
l=0

f̂λ(l)Cλl (x)

∣∣∣∣∣ ,(4.17)

where the Gegenbauer coefficients f̂λ(l) are given by (6.10), and λ = γm
where γ > 0 is a constant.

We will provide here a proof of the exponential decay of the regularization error,
due to Vandeven (private communication). This proof covers more general cases
(however, see Remark 4.1 below) than the proof provided in [13].

We first make the following assumption.
Assumption 4.1. There exists a constant 0 ≤ r0 < 1 and an analytic extension of

f(x) onto the elliptic domain

Dρ =
{
z : z =

1
2

(
reiθ +

1
r
e−iθ

)
, 0 ≤ θ ≤ 2π, r0 ≤ r ≤ 1

}
.(4.18)

This assumption is satisfied by all analytic functions defined on [−1, 1]. In fact,
the smallest r0 in Assumption 4.1 is characterized by the following property [23]:

lim
m→∞

(Em(f))
1
m = r0(4.19)

with Em(f) defined by

Em(f) = min
P∈Pm

max
−1≤x≤1

|f(x)− P (x)|,(4.20)

where Pm is the set of all polynomials of degree at most m.
We start by estimating the Gegenbauer coefficients f̂λ(l).
LEMMA 4.1. The Gegenbauer coefficient f̂λ(l), as defined in (6.10), can be bounded

by

|f̂λ(l)| ≤

√
(l + λ)Γ(l + 2λ)

λl!Γ(2λ)
1

Cλl (1)
max
−1≤x≤1

|f(x)|.(4.21)

Proof. Using the definition (6.10) for f̂λ(l) and the Cauchy–Schwarz inequality,
we get

|f̂λ(l)| ≤ 1√
hλl

√∫ 1

−1
f2(x)(1− x2)λ−

1
2 dx ≤

√
hλ0
hλl

max
−1≤x≤1

|f(x)|.

Invoking (6.2) and (6.4), we obtain (4.21).
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We are now ready for the following estimate on the regularization error (4.17).
THEOREM 4.2. If f(x) is an analytic function on [−1, 1] satisfying Assumption

4.1, then for any r0 < r < 1, we have

RE(λ,m) ≤ Am
√
m+ λ

m

√
(m+ 2λ)m+2λ

mm(2λ)2λ rm.(4.22)

Proof. Using (4.17) and (6.5), we get the very crude estimate

RE(λ,m) ≤ max
−1≤x≤1

|f(x)|+
m∑
l=0

|f̂λ(l)|Cλl (1).

Using (4.21), we then obtain

RE(λ,m) ≤ max
−1≤x≤1

|f(x)|
[

1 +
m∑
l=0

√
(l + λ)Γ(l + 2λ)

λl!Γ(2λ)

]

≤ max
−1≤x≤1

|f(x)|
[

(m+ 1)

√
(m+ λ)Γ(m+ 2λ)

λm!Γ(2λ)

]

≤ A max
−1≤x≤1

|f(x)|
[
m

√
(m+ λ)(m+ 2λ)m+2λ

λmm(2λ)2λ

]
,

where in the last inequality we have used Stirling’s formula (6.6).
Now, we note that in RE(λ,m) we can replace f by f − P for any polynomial P

with degree at most m. Thus using (4.19) we obtain (4.22).
From the above estimate we can easily obtain Theorem 4.3.
THEOREM 4.3. If λ = γm where γ > 0 is a positive constant, then the regulariza-

tion error defined in (4.17) satisfies

RE(γm,m) ≤ Amqm,(4.23)

where q is given by

q =
(1 + 2γ)

1+2γ
2

(2γ)γ
r.(4.24)

Moreover, for γ small enough we have q < 1.
Proof. We use (4.22) with λ = γm to obtain (4.23). The fact that q < 1 for γ

small enough is due to the fact that r < 1 and

lim
γ→0+

(1 + 2γ)
1+2γ

2

(2γ)γ
= 1.

We have the following remarks.
Remark 4.1. If, instead of Assumption 4.1, we assume that f(x) satisfies the

assumption that there exist constants ρ ≥ 1 and C(ρ) such that, for every k ≥ 0,

max
−1≤x≤1

∣∣∣∣dkfdxk
(x)
∣∣∣∣ ≤ C(ρ)

k!
ρk
,(4.25)

then we can prove [13] that the regularization error (4.17) is bounded by

RE(λ,m) ≤ A
C(ρ)Γ(λ+ 1

2 )Γ(m+ 2λ+ 1)

m
√
λ(2ρ)mΓ(2λ)Γ(m+ λ)

.(4.26)
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Assuming that λ = γm for a constant γ > 0, this becomes
RE(γm,m) ≤ Aqm,(4.27)

where q is given by

q =
(1 + 2γ)1+2γ

ρ21+2γγγ(1 + γ)1+γ < 1(4.28)

since ρ ≥ 1.
As was mentioned in the previous subsection, (4.25) is a standard assumption for

analytic functions. ρ is actually the distance from [−1, 1] to the nearest singularity
of f(x) in the complex plane. Of course the assumption ρ ≥ 1 restricts the class of
analytic functions to which this estimate can apply. If a function f(x) satisfies both
Assumption 4.1 and assumption (4.25) with ρ ≥ 1, estimate (4.23) may be better or
worse than estimate (4.27) depending on the circumstances. To see this, just notice
that, roughly speaking, 1

2 (r0 + 1
r0

)− 1 in Assumption 4.1 is equivalent to ρ in (4.25).
Thus, we can take, as an example, ρ = 1 in (4.25), which corresponds to r0 = 2−

√
3

in Assumption 4.1. If γ = 1, then q ≈ 0.696 in (4.23) and q ≈ 0.844 in (4.27); hence,
(4.23) is a better estimate in this case. However, if γ = 2.5, then (4.23) produces a
useless estimate q > 1, while (4.27) still gives a useful estimate q ≈ 0.920.

Remark 4.2. If f(x) is analytic not in the whole interval [−1, 1] but in a subinterval
[a, b] ⊂ [−1, 1], we can introduce a change of variable x = εξ + δ with ε = b−a

2
and δ = a+b

2 such that g(ξ) = f(x(ξ)) is defined and is analytic on −1 ≤ ξ ≤ 1.
The previous estimates will then apply to g(ξ), which can be translated back to the
function f(x) with a suitable factor involving ε; see [15]. For example, the counterpart
of (4.27)–(4.28) is

RE(γm,m, ε) ≤ Aqm(4.29)
with q given by

q =
ε(1 + 2γ)1+2γ

ρ21+2γγγ(1 + γ)1+γ .(4.30)

Remark 4.3. If f(x) is not analytic but only Ck, standard analysis [12] gives an
O( 1

mk
) estimate for the regularization error.

4.3. The resolution of the Gibbs phenomenon. We can now combine the
results in the previous two subsections to get the following result, which completely
removes the side effect of Gibbs phenomenon and gives uniform exponential accuracy
for the approximation.

THEOREM 4.4. Consider an L1 function f(x) on [−1, 1], which is analytic in a
subinterval [a, b] ⊂ [−1, 1], and satisfies Assumption 4.1, and (4.3) for the collocation
case, suitably scaled to [a, b]. Assume that either the first 2N + 1 Fourier coefficients
or the first N+1 Gegenbauer coefficients based on the Gegenbauer polynomials Cµk (x),
either Galerkin or collocation, are known. Let ĝλε (l), 0 ≤ l ≤ m be the Gegenbauer
expansion coefficients, based on the subinterval [a, b], of the spectral partial sum fN (x),
defined by (4.6) for the Galerkin case and by (4.9) for the collocation case; then for
λ = m = βεN where β < 2πe

27 (Fourier Galerkin case), or β ≤ 2
27 (general Gegenbauer

or spherical harmonic Galerkin case), or β ≤ 2e/(27(1 + 1
2ρ )) (Fourier or general

Gegenbauer collocation case, ρ is defined by (4.3)), we have

max
−1≤ξ≤1

∣∣∣∣∣f(εξ + δ)−
m∑
l=0

ĝλε (l)Cλl (ξ)

∣∣∣∣∣ ≤ A (qεNT + qεNR
)
,(4.31)

where 0 < qT < 1 and 0 < qR < 1.
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f4(x)
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FIG. 1. The function f(x) = x (solid line), the Fourier partial sum fN (x) with N = 4 (short
dashed line) and N = 8 (dotted line), and the approximation through the Gegenbauer procedure using
m = λ = N/4 for N = 4 (long dashed line). Reprinted from Journal of Computational and Applied
Mathematics, 43/1–2, D. Gottlieb, C.-W. Shu, A. Solomonoff, and H. Vandeven, On the Gibbs phe-
nomenon I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic
function, pp. 81–98, 1992 with kind permission from Elsevier Science - NL, Sara Burgerhartstraat
25, 1055 KV Amsterdam, The Netherlands.

We return now to problems outlined in the introduction. Theorem 4.4 answers
directly Problems 1 and 3. Problems 4 and 5 can be solved by constructing the trigono-
metric interpolation polynomial and then applying the procedure outlined above using
Theorem 4.4. To solve Problem 6 we construct the interpolation polynomial based on
the Gauss (or Gauss–Lobatto) points and then apply the procedure outlined above.

5. Numerical examples. An advantage of the procedure described in the pre-
vious section is that it is computationally effective even for small N . There are nu-
merical examples given in, e.g., [13, 14, 16, 17, 31, 7, 34, 35]. Some of the numerical
difficulties due to round-off errors are addressed in [34]. We will show three samples
in this section to illustrate the theory.

The first is the original Gibbs phenomenon as presented by Michelson in [27]:
given the first 2N + 1 Fourier coefficients of the analytic but nonperiodic function
f(x) = x, find an approximation to f(x) itself. In Figure 1, taken from [13], we can
see that the Fourier series fN (x) with N = 4 and N = 8 gives poor approximations
throughout the domain and a Gibbs overshoot near the discontinuity. The solution
obtained by the Gegenbauer procedure gives excellent results even for the small N = 4.

In the second example, we assume that the first N + 1 Chebyshev coefficients of

f(x) = I[−0.5,0.5](x) · sin(cos(x))

are given, where I[−0.5,0.5](x) is the characteristic function of the interval [−0.5, 0.5],
and we try to obtain exponentially accurate point values of f(x) in [−0.5, 0.5].
Figure 2, taken from [16], shows the errors (in a logarithm scale) for various N in
the interval [−0.5, 0.5]. We can clearly see that the errors are uniformly small, even
at the discontinuities x = −0.5 and x = 0.5, and they decay fast with N .

The third example is two dimensional. We assume that the first 2N + 1 Fourier
coefficients of the function f(x) = ei2.3πx+i1.2πy are given in each of the four quadrants:
−1 ≤ x ≤ 0,−1 ≤ y ≤ 0; −1 ≤ x ≤ 0, 0 ≤ y ≤ 1; 0 ≤ x ≤ 1,−1 ≤ y ≤ 0; and
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FIG. 2. Errors in log scale, for f(x) = I[−0.5,0.5](x) · sin(cos(x)), through the Gegenbauer
procedure, with N = 20, 40, 80, 160. Reprinted from D. Gottlieb and C.-W. Shu, On the Gibbs phe-
nomenon V: Recovering exponential accuracy in a sub-interval from the Gegenbauer partial sum of a
piecewise analytic function, Mathematics of Computation, 64 (1995), pp. 1081–1095 with permission
from the American Mathematical Society.
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FIG. 3. Contour plots of f(x) = ei2.3πx+i1.2πy using the Fourier partial sum with N = 32
in each subdomain. Left, without the Gegenbauer procedure; right, with the Gegenbauer procedure.
Reprinted from Computers and Mathematics with Applications, Volume 33, A. Gelb and D. Gottlieb,
The resolution of the Gibbs phenomenon for ‘spliced’ functions in one and two dimensions, pp. 35–
58, 1997, with kind permission from Elesvier Science Ltd, The Boulevard, Langford Lane, Kidlington
0X5 1GB, UK.

0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Since the function is not periodic in any of the quadrants,
we clearly see the Gibbs oscillations in Figure 3, left, which is the contour of plot of
the Fourier sum for each quadrant with N = 32. The application of the Gegenbauer
procedure completely removes these oscillations; see Figure 3, right. This example is
taken from [8].

6. Appendix. In this appendix we will introduce the Gegenbauer polynomials
and discuss their asymptotic behavior. We rely heavily on the standardization in
Bateman [1].

DEFINITION 6.1. The Gegenbauer polynomial Cλn(x), for λ ≥ 0, is the polynomial
of degree n that satisfies∫ 1

−1
(1− x2)λ−

1
2Cλk (x)Cλn(x)dx = 0, k 6= n(6.1)
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and is normalized by

Cλn(1) =
Γ(n+ 2λ)
n!Γ(2λ)

.(6.2)

The Gegenbauer polynomials thus defined are not orthonormal. In fact, the norm
of Cλn(x) is given by ∫ 1

−1
(1− x2)λ−

1
2
(
Cλn(x)

)2
dx = hλn,(6.3)

where

hλn = π
1
2Cλn(1)

Γ(λ+ 1
2 )

Γ(λ)(n+ λ)
.(6.4)

The Gegenbauer polynomials achieve their maximum at the boundary

|Cλn(x)| ≤ Cλn(1), −1 ≤ x ≤ 1.(6.5)

In order to study the asymptotics of the Gegenbauer polynomials for large n and
λ, we will use heavily the well-known Stirling formula: for any number x ≥ 1 we have

(2π)
1
2xx+ 1

2 e−x ≤ Γ(x+ 1) ≤ (2π)
1
2xx+ 1

2 e−xe
1

12x .(6.6)

The first useful fact is that, for large λ and n, hλn and Cλn(1) are almost of the
same size: there exists a constant A independent of λ and n such that

A−1 λ
1
2

(n+ λ)
Cλn(1) ≤ hλn ≤ A

λ
1
2

(n+ λ)
Cλn(1),(6.7)

which is easily provable from (6.4) and the Stirling formula (6.6).
We would also like to quote the Rodrigues formula [1, page 175], which gives an

explicit expression for Cλn(x):

(1− x2)λ−
1
2Cλn(x) = G(λ, n)

dn

dxn

[
(1− x2)n+λ− 1

2

]
,(6.8)

where G(λ, n) is given by

G(λ, n) =
(−1)nΓ(λ+ 1

2 )Γ(n+ 2λ)
2nn!Γ(2λ)Γ(n+ λ+ 1

2 )
.(6.9)

Given a function f(x) defined on [−1, 1], its Gegenbauer coefficients f̂λ(l) are
defined by

f̂λ(l) =
1
hλl

∫ 1

−1
(1− x2)λ−

1
2 f(x)Cλl (x)dx(6.10)

with hλl given by (6.4), and the Gegenbauer expansion based on the first m+ 1 terms
is defined by

fλm(x) =
m∑
l=0

f̂λ(l)Cλl (x).(6.11)
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