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Monte Carlo is one of the most versatile and widely used numerical methods.
Its convergence rate, O(N~1^2), is independent of dimension, which shows
Monte Carlo to be very robust but also slow. This article presents an intro-
duction to Monte Carlo methods for integration problems, including conver-
gence theory, sampling methods and variance reduction techniques. Acceler-
ated convergence for Monte Carlo quadrature is attained using quasi-random
(also called low-discrepancy) sequences, which are a deterministic alternative
to random or pseudo-random sequences. The points in a quasi-random se-
quence are correlated to provide greater uniformity. The resulting quadrature
method, called quasi-Monte Carlo, has a convergence rate of approximately
O((log N^N'1). For quasi-Monte Carlo, both theoretical error estimates and
practical limitations are presented. Although the emphasis in this article is
on integration, Monte Carlo simulation of rarefied gas dynamics is also dis-
cussed. In the limit of small mean free path (that is, the fluid dynamic limit),
Monte Carlo loses its effectiveness because the collisional distance is much less
than the fluid dynamic length scale. Computational examples are presented
throughout the text to illustrate the theory. A number of open problems are
described.
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1. Introduction

Monte Carlo provides a direct method for performing simulation and integ-
ration. Because it is simple and direct, Monte Carlo is easy to use. It is
also robust, since its accuracy depends on only the crudest measure of the
complexity of the problem. For example, Monte Carlo integration converges
at a rate O{N~1/2) that is independent of the dimension of the integral.
For this reason, Monte Carlo is the only viable method for a wide range of
high-dimensional problems, ranging from atomic physics to finance.

The price for its robustness is that Monte Carlo can be extremely slow.
The order O(N~1^2) convergence rate is decelerating, since an additional
factor of 4 increase in computational effort only provides an additional factor
of 2 improvement in accuracy. The result of this combination of ease of use,
wide range of applicability and slow convergence is that an enormous amount
of computer time is spent on Monte Carlo computations.

This represents a great opportunity for researchers in computational sci-
ence. Even modest improvements in the Monte Carlo method can have
substantial impact on the efficiency and range of applicability for Monte
Carlo methods. Indeed, much of the effort in the development of Monte
Carlo has been in construction of variance reduction methods which speed
up the computation. A description of some of the most common variance
reduction methods is given in Section 4.

Variance reduction methods accelerate the convergence rate by reducing
the constant in front of the O(N~1/2) for Monte Carlo methods using ran-
dom or pseudo-random sequences. An alternative approach to acceleration
is to change the choice of sequence. Quasi-Monte Carlo methods use quasi-
random (also known as low-discrepancy) sequences instead of random or
pseudo-random. Unlike pseudo-random sequences, quasi-random sequences
do not attempt to imitate the behaviour of random sequences. Instead, the
elements of a quasi-random sequence are correlated to make them more uni-
form than random sequences. For this reason, Monte Carlo integration using
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quasi-random points converges more rapidly, at a rate O(N~1 (log N)k), for
some constant k. Quasi-random sequences are described in Sections 5 and 6.

In spite of their importance in applications, Monte Carlo methods re-
ceive relatively little attention from numerical analysts and applied math-
ematicians. Instead, it is number theorists and statisticians who design the
pseudo-random, quasi-random and other types of sequence that are used
in Monte Carlo, while the innovations in Monte Carlo techniques are de-
veloped mainly by practitioners, including physicists, systems engineers and
statisticians.

The reasons for the near neglect of Monte Carlo in numerical analysis and
applied mathematics are related to its robustness. First, Monte Carlo meth-
ods require less sophisticated mathematics than other numerical methods.
Finite difference and finite element methods, for example, require careful
mathematical analysis because of possible stability problems, but stability
is not an issue for Monte Carlo. Instead, Monte Carlo nearly always gives
an answer that is qualitatively correct, but acceleration (error reduction)
is always needed. Second, Monte Carlo methods are often phrased in non-
mathematical terms. In rarefied gas dynamics, for example, Monte Carlo
allows for direct simulation of the dynamics of the gas of particles, as de-
scribed in Section 7. Finally, it is often difficult to obtain definitive results on
Monte Carlo, because of the random noise. Thus computational improve-
ments often come more from experience than from a particular insightful
calculation.

This article is intended to provide an introduction to Monte Carlo methods
for numerical analysts and applied mathematicians. In spite of the reasons
cited above, there are ample opportunities for this community to make sig-
nificant contributions to Monte Carlo. First of all, any improvements can
have a big impact, because of the prevalence of Monte Carlo computations.
Second, the methodology of numerical analysis and applied mathematics,
including well controlled computational experiments on canonical problems,
is needed for Monte Carlo. Finally, there are some outstanding problems
on which a numerical analysis or applied mathematics viewpoint is clearly
needed; for example:

• design of Monte Carlo simulation for transport problems in the diffusion
limit (Section 7)

• formulation of a quasi-Monte Carlo method for the Metropolis al-
gorithm (Section 6)

• explanation of why quasi-Monte Carlo behaves like standard Monte
Carlo when the dimension is large and the number of simulation is of
moderate size (Section 6).

Some older, but still very good, general references on Monte Carlo are Kalos
and Whitlock (1986) and Hammersley and Handscomb (1965).
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The focus of this article is on Monte Carlo for integration problems. Integ-
ration problems are simply stated, but they can be extremely challenging.
In addition, integration problems contain most of the difficulties that are
found in more general Monte Carlo computations, such as simulation and
optimization.

The next section formulates the Monte Carlo method for integration and
describes its convergence. Section 3 describes random number generators
and sampling methods. Variance reduction methods are discussed in Sec-
tion 4 and quasi-Monte Carlo methods in Section 5. Effective use of quasi-
Monte Carlo requires some modification of standard Monte Carlo techniques,
as described in Section 6. Monte Carlo methods for rarefied gas dynamics
are described in Section 7, with emphasis on the loss of effectiveness for
Monte Carlo in the fluid dynamic limit.

2. Monte Carlo integration

The integral of a Lebesgue integrable function f(x) can be expressed as the
average or expectation of the function / evaluated at a random location.
Consider an integral on the one-dimensional unit interval

nn= f1 f(x)dx = f. (2.i)
Jo

Let a; be a random variable that is uniformly distributed on the unit interval.
Then

I[f] = E[f(x)]. (2.2)
For an integral on the unit cube Id = [0, l]d in d dimensions,

)dx, (2.3)

in which a; is a uniformly distributed vector in the unit cube.
The Monte Carlo quadrature formula is based on the probabilistic inter-

pretation of an integral. Consider a sequence {xn} sampled from the uniform
distribution. Then an empirical approximation to the expectation is

M/] = ^ £ / ( * n ) . (2.4)
n=l

According to the Strong Law of Large Numbers (Feller 1971), this approx-
imation is convergent with probability one; that is,

(2.5)

In addition, it is unbiased, which means that the average of Iff [/] is exactly
/[/] for any N; that is,

E[IN[f]] = I[f], (2.6)
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in which the average is over the choice of the points {xn}.
In general, define the Monte Carlo integration error

(2.7)

so that the bias is .E[ejv[/]] and the root mean square error (RMSE) is

£ M / ] 2 ] 1 / 2 . (2.8)

2.1. Accuracy of Monte Carlo

The Central Limit Theorem (CLT) (Feller 1971) describes the size and stat-
istical properties of Monte Carlo integration errors.

Theorem 2.1 For N large,

eN[f] « aN-l'2u (2.9)

in which v is a standard normal (N(0,1)) random variable and the constant
a = a[f] is the square root of the variance of / ; that is,

O f \ 1 / 2

'id(f(x)-I[f])2dxJ . (2.10)
A more precise statement is that

lim Prob I a < eN <b\ = Prob(a < v < b)
N—>oo \ a I

= fh{2n)-1'2e-x2l2dx. (2.11)
Ja

This says that the error in Monte Carlo integration is of size O{N~1/2)
with a constant that is just the variance of the integrand / . Moreover,
the statistical distribution of the error is approximately a normal random
variable. In contrast to the usual results of numerical analysis, this is a
probabilistic result. It does not provide an absolute upper bound on the
error; rather it says that the error is of a certain size with some probability.
On the other hand, this result is an equality, so that the bounds it provides
are tight. The use of this result will be discussed at the end of this section.

Now we present a partial proof of the Central Limit Theorem, which
proves that the error size is O(7V~1//2). Derivation of the Gaussian dis-
tribution for the error is more difficult (Feller 1971). First define & =
a~1(f(x{) — / ) for Xi uniformly distributed. Then

= 0,

= ja-2(f(Xi)-f-)
2dx = l,

= 0 if M 3- (2.12)
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The last equality is due to the independence of the
Now consider the sum

N

(2.13)

Its variance is

- JV"1 I E
N

L i = l

•'{£-}

+ E

1/2

N
1/2

(2.14)

Therefore

E[e2
N] = aN-1/2, (2.15)

which shows that the RMSE is of size O(uN~1/2).
The converse of the Central Limit Theorem is useful for determining the

size of N required for a particular computation. Since the error bound
from the CLT is probabilistic, the precision of the Monte Carlo integration
method can only be ensured within some confidence level. To ensure an
error of size at most e with confidence level c requires the number of sample
points N to be

AT = e -V s(c), (2.16)

in which s is the confidence function for a normal variable; that is,

= r
J- {c)

= evi(s(c)/V2). (2.17)

For example, 95 per cent confidence in the error size requires that s = 2,
approximately.

In an application, the exact value of the variance is unknown (it is as
difficult to compute as the integral itself), so the formula (2.16) cannot be
directly used. There is an easy way around this, which is to determine the
empirical error and variance (Hogg and Craig 1995). Perform M computa-
tions using independent points Xi for 1 < i < MN. For each j obtain values
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n for 1 < j < M. The empirical RMSE is then ejy, given by

M 2 \ l'2

( g ) )( g ) (2.18)

in which
M

IN = M-lY.IN)- (2-19)

The empirical variance is a given by

a = A^1/2eiv. (2.20)

This value can be used for a in (2.16) to determine the value of N for a
given precision level e and a given confidence level c.

2.2. Comparison to grid-based methods

Most people who see Monte Carlo for the first time are surprised that it is
a viable method. How can a random array be better than a grid? There
are several ways to answer this question. First, compare the convergence
rate of Monte Carlo with that of a grid-based integration method such as
Simpson's rule. The convergence rate for grid-based quadrature is O(N~k/d)
for an order k method in dimension d, since the grid with N points in the unit
cube has spacing N~1^d. On the other hand, the Monte Carlo convergence
rate is O(N~1^2) independent of dimension. So Monte Carlo beats a grid in
high-dimension d, if

k/d < 1/2. (2.21)

On the other hand, for an analytic function on a periodic domain, the
value of k is infinite, so that this simple explanation fails. A more realistic
explanation for the robustness of Monte Carlo is that it is practically im-
possible to lay down a grid in high dimension. The simplest cubic grid in d
dimensions requires at least 2d points. For d = 20, which is not particularly
large, this requires more than a million points. Moreover, it is practically
impossible to refine a grid in a high dimension, since a refinement requires
increasing the number of points by factor 2d. In contrast to these difficulties
for a grid in high dimension, the accuracy of Monte Carlo quadrature is
nearly independent of dimension and each additional point added to the
Monte Carlo quadrature formula provides an incremental improvement in
its accuracy. To be sure, the value of N at which the O(N^1^2) error estim-
ate becomes valid (that is, the length of the transient) is difficult to predict,
but experience shows that, for problems of moderate complexity in mod-
erate dimension (for instance d = 20), the 0{N~1/2) error size is typically
attained for moderate values of N.
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Two additional interpretations of Monte Carlo quadrature are worthwhile.
Consider the Fourier representation of a periodic function with period one

/(*)= £ /»e 2 ^ . (2.22)
k=—oo

The integral /[/] is just /(0); that is, the contributions to the integral are
0 from all wave-numbers k ^ 0. For a grid of spacing 1/n, the grid-based
quadrature formula is

i n ) . (2.23)

The contributions to this sum are 0 (as they should be) from wave-numbers
k 7̂  mn for some integer m, and the contributions are f(k) for wave-numbers
k = mn. That is, the accuracy of grid-based quadrature is 100 per cent for
k T̂  mn, but 0 per cent for k = mn (with m^O) . Monte Carlo quadrature
using a random array is partially accurate for all k, which is superior to a
grid-based method if the Fourier coefficients decay slowly.

Finally, insight into the relative performance of grid-based and Monte
Carlo methods is gained by considering the points themselves in a high
dimension. For a regular grid, the change from one point to the next is
only a variation of one component at a time, that is, (0,0,... , 0,0) H->
(0,0,... ,0,1/n). In many problems, this is an inefficient use of the un-
varied components. In a random array, all components are varied in each
point, so that the state space is sampled more fully. This accords well with
the global nature of Monte Carlo: each point of a Monte Carlo integration
formula is an estimate of the integral over the entire domain.

3. Generation and sampling methods

3.1. Random number generators

The numbers generated by computers are not random, but pseudo-random,
which means that they are made to have many of the properties of ran-
dom number sequences (Niederreiter 1992). While this is a well-developed
subject, occasional problems still occur, mostly with very long sequences
(N > 109). The methods used to generate pseudo-random numbers are
mostly linear congruential methods. There is a series of reliable pseudo-
random number generators in the popular book Numerical Recipes (Press,
Teukolsky, Vettering and Flannery 1992). It is important to use the routines
ranO, rani, ran2, ranS, ran4 from the second edition (for instance, rani is
recommended for N < 108); the routines RANO, RANI, RAN2, RANS from.
the first edition of this book had some deficiencies (see Press and Teukolsky
(1992)).
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For very large problems requiring extremely large values of N (as high as
1013!), reliable sequences can be obtained from the project Scalable Parallel
Random Number Generators Library for Parallel Monte Carlo Computa-
tions (http://www.ncsa.uiuc.edu/Apps/SPRNG/).

3.2. Sampling methods

Standard (pseudo-) random number generators produce uniformly distrib-
uted variables. Non-uniform variables can be sampled through transforma-
tion of uniform variables. For a non-uniform random variable with density
p(x), the expectation of a function f(x) is

= Jf(x)p(x)dx. (3.1)

For a sequence of random numbers {xn} distributed according to the density
p, the empirical approximation to the expectation is

W ] = ̂ E/(*n) (3-2)

and the resulting quadrature error is

eN[f] = I[f}-lN[f}. (3.3)

As in the one-dimensional case, the Central Limit Theorem says that

eN[f] ~ N-^ov (3.4)

in which v is -/V(0,1) and

a2 = j{f-f)2p{x)dx. (3.5)

Next we discuss methods for generating non-uniform random variables
starting from uniform random variables.

3.3. Transformation method

This is a general method for producing a random variable x with density
p(x), through transformation of a uniform random variable. Let y be a
uniform variable and look for a function X(y), so that x — X(y) has the
desired density p(x).

Define the cumulative distribution function

P(x) = fX p(x') dx'. (3.6)
• /—oo

Determination of the mapping X(y) is through the following computation
of the expectation. For any function / ,

Ep[f(x)} = EaDi{[f(X(y))}, (3.7)
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so that, using a change of variables,

J f(x)p(x)dx = J f(X(y))dy

= J f{x){dy/dx)dx. (3.8)

This implies that p(x) = dy/ dx = 1/X'(y) so that / (y' p(x)dx = y; i.e.,

P(X(y)) = y
X(y) = P~\y). (3.9)

This formulation is convenient and explicit but not necessarily easy to im-
plement, as it may be difficult to compute the inverse of the function P.

3.4- Gaussian random variables

As an example of the transformation method, a Gaussian (normal) random
variable has density p and cumulative distribution function P given by

p{x) =

r
J-

= i + \ erf (x/V2), (3.10)

in which erf is the error function defined by

erf(z) = - = / e-t2dt. (3.11)
V71" Jo

One way to sample from a Gaussian distribution is to apply the inverse
of the Gaussian cumulative distribution function P to a uniform random
variable y. Sample a normal variable x, starting from a uniform variable y,
by

y = P(x) = ± + ±eTf(x/V2), (3.12)

that is,

x = v /2erf~1(2j/- l) . (3.13)

Approximate formulas for P^~1\y) or erf"1 are found in Kennedy and
Gentle (1980).

For the Gaussian distribution, as well as for a number of other distribu-
tions, special transformations are a useful alternative to the general trans-
formation method. The simplest of these is the Box-Muller method. It
provides a direct way of generating normal random variables without in-
verting the error function. Starting with two uniform variables y\,y2, two
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normal variables £i,£2 are obtained by

= ^/-21og(yi)cos(27n/2),

x2 = ^/-21og(yi)ain(27ry2). (3.14)

Box-Muller is based on the following observation. First change from rect-
angular to polar coordinates, that is,

(x\,X2) = (r cos 0,r sin 9), (3.15)

so that

dxidx2 = rdrd9. (3.16)

The corresponding transformation of the probability density function is

(27r)-1e-(xi+x2)/2 dxi dx2 = (2Tr)'1e'r2/2r dr 66. (3.17)

This shows that the angular variable y\ = 9/(2ir) is uniformly distributed
over the unit interval. Next the variable r is easily sampled, since it has
density re~r I2 and corresponding cumulative distribution function

P(r) = f e"r'2/V dr' = 1 - e~^2. (3.18)
Jo

Therefore r can be sampled by

^ ^ ) . (3.19)

After replacing 3/2 by 1 — 3/2, the resulting transform

(VUV2) ^ {r,0)-* {xi,x2) (3.20)

is given in (3.14).
The only disadvantages of the Box-Muller method are that it requires

evaluation of transcendental functions and that it generates two random
variables when only one may be needed. See Marsaglia (1991) for examples
of efficient use of Box-Muller.

3.5. Acceptance-rejection method

Another general way of producing random variables from a given density
p(x) is based on a probabilistic approach. This method shows the power
and flexibility of stochastic methods. For a given density function p(x),
suppose that we know a function q(x) satisfying

q(x)>p(x), (3.21)

and that we have a way to sample from the probability density

q{x) = q(x)/I[q], (3.22)
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1. Typical choice of p, q and p/q. Accept for y < p/q and reject for y > p/q

in which I[q] = J q(x') dx'. In practice, q is often chosen to be a constant.
The acceptance—rejection procedure goes as follows. Pick two random

variables, x', y, in which x' is a trial variable chosen according to the prob-
ability density q(x'), and y is a decision variable chosen according to the
uniform density on 0 < y < 1. The decision is to

• accept if 0 < y < p(x')/q(x')
• reject if p(x')/q(x') < y < 1.

This procedure is repeated until a value x' is accepted. Once a value x' is
accepted, take

x = x'. (3.23)

This procedure is depicted graphically in Figure 1.
Here is a derivation of the acceptance-rejection method. Since 0 < p < q,

p(x) =
q(x)

(3.24)
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So,

Jf(x)p(x)dx = J jT1 f(x)X(^>y)q(x)dydxI[q]

f{<) i[q\
p(x'n)/q(x'n)>yn

« TV"1 X ! /(*")> (3-25)
accepted pts

in which

A7"' = total number of trial points,

N = total number of accepted points

« N'/I[q]. (3.26)

The acceptance-rejection method has some obvious advantages that often
make it the method of choice for generating random variables with a given
distribution. It does not require inversion of the cumulative distribution
function P. In addition, it works even if the density function p has not been
normalized to have integral 1. One disadvantage of the method is that it
may be inefficient, requiring many trials before acceptance. In practice this
is often not a serious deficiency, since the largest share of the computation
is on the integrand rather than on the random point selection.

An extension of the acceptance—rejection method called the Metropolis
algorithm (Kalos and Whitlock 1986) is used to find the equilibrium distri-
bution for a stochastic process.

4. Variance reduction

In Monte Carlo integration, the error e and the number N of samples are
related by

e = O (aN'l/2) , (4.1)

N = O(a/e)2. (4.2)

The computational time required for the method is proportional to the
sample number N and thus is of size O(a/e)2, which shows that compu-
tational time grows rapidly as the desired accuracy is tightened. There are
two options for acceleration (error reduction) of Monte Carlo. The first is
variance reduction, in which the integrand is transformed in a way that re-
duces the constant variance a. The second is to modify the statistics, that is,
to replace the random variables by an alternative sequence which improves
the exponent 1/2. In this section, various strategies for variance reduction
are described. In Section 5, we discuss quasi-random variables, an example
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of the second approach. One note of caution is that the acceleration meth-
ods described here may require extra computational time, which must be
balanced against savings gained by reduced N. In most examples, however,
the savings due to variance reduction are quite significant.

4-1. Antithetic variables

Antithetic variables is one of the simplest and most widely used variance
reduction methods. The method is as follows: for each (multi-dimensional)
sample value x, also use the value — x. The resulting Monte Carlo quadrat-
ure rule is

n) + f(-Xn)}. (4.3)
7 1 = 1

For example, the vector x could be the discrete states in a random walk, so
that the dimension would be the number of time-steps in the walk. When
antithetic variables are used for a problem involving a random walk, then
for each path x = (x\,..., x^), we also use the path —x = (—x\,..., — x^).

The use of antithetic variables is motivated by an expansion for small
values of the variance. Consider, for example, the expectation E[f(x)] in
which x is an JV(O, <r2) random variable with a small. Set

x — ax. (4-4)

The Taylor expansion of / = f(crx) (for small a) is

x + O(a2). (4.5)

Since the distribution of x is symmetric about 0, the average E[x] of the
linear term is zero. In a standard Monte Carlo integral of / , these terms do
not cancel exactly, so that the Monte Carlo error is proportional to a. With
antithetic variables, on the other hand, the linear terms cancel exactly, so
that the remaining error is proportional to a2.

4-2. Control variates

The idea of control variates is to use an integrand g, which is similar to /
and for which the integral I[g] = f g(x)dx is known. The integral /[/] is
then written as

j f{x) dx = J (f(x) - g(x)) dx + J g{x) dx. (4.6)

Monte Carlo quadrature is used on the integral of / — g to obtain the formula

7«[/] = Jj E (/(*") - 9(xn)) + I[9}. (4.7)
n=l
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The resulting integration error ejv[/] = /[ / ] — IN[I] is of size

eN[f] « aj-gN-1'2, (4.8)

in which the relevant variance is

°3f-g = J{fc)-9(x))2<te (4-9)

using the notation

f{x) = f{x) - /[ /] , g(x) = gix) - I[g}. (4.10)

This shows that the control variate method is effective if

CTf-g < Of. (4.11)

Optimal use of a control variate is made by introducing a multiplier A.
For a given function g, write the integral of / as

j fix) dx = f ifix) - Xg(x)) dx + A J gix) dx. (4.12)

The error in Monte Carlo quadrature of the first integral is proportional to
the variance

dx. (4.13)

The optimal value of A is found by minimizing <7/_Ag t ° obtain

A = E[fg]/E[g2]

( y > ) (4.14)

4-3. Matching moments method

Monte Carlo integration error is partly due to statistical sampling error, that
is, differences between the desired density function p(x) and the empirical
density function of the sampled points {xn}^=1. Part of this difference can
be seen directly through comparison of the moments of the two distributions.
Define the first and second moments mi and 7712 of p as

77ii = / xp{x) dx, 7712 = / x2pix)dx. (4-15)

The first and second moments Mi and M2 of the sample {xn}^=1 are

N N

Ml = N~l ^ xn, M2 = A ^ 1 y ^ x2 (4-16)
n=l n=l

The moment error is due to the inequality of these moments, that is,

Ml 7^ m i > M2 7^ rn2- (4-17)
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A partial correction to the statistical sampling error is to make the mo-
ments exactly match. This can be done by a simple transformation of the
sample points. To match the first moment of the sample with that of p,
replace xn by

yn = (xn-fJ'i) + m1. (4.18)

This satisfies
lYn = mi (4.19)

so that the first moment is exactly right. To match the first two moments,
replace xn by

\Vtl2 771? . ,
Vn = (xn- mj/c + mi, c=J f. (4.20)

V M - Mi

Then

N-1Y,Vn = ml, N-1'£i& = rn2. (4.21)
These transformed sequences with the correct moments must be used with

some caution. Since the transformation involves Hi and ^2, the new sample
points yn are no longer independent, and Monte Carlo error estimates are not
so straightforward. For example, the Central Limit Theorem is not directly
applicable, and the method may be biased. Actually, this is an example of
the second approach to acceleration of Monte Carlo, through modification
of the properties of the random sequence. It is presented here along with
variance reduction methods, however, because the resulting improvement
in Monte Carlo accuracy is comparable to that gained through variance
reduction.

Pullin (1979) has formulated a method in which the sample points are
independent and have a prescribed empirical mean and variance, but come
from a Gaussian distribution with a randomly chosen mean and variance.

4-4- Stratification

Stratification combines the benefits of a grid with those of random variables.
In the simplest case, stratification is based on a regular grid with uniform
density in one dimension. Split the integration region fi = [0,1] into M
pieces Q/- given by

[W]
Then, each subset has the same measure, |fifc| = 1/M. Define the averages
over each fi^ by

/ » = fk = l^fcl"1 / f(x) dx for x € nk. (4.23)
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For each k, sample Nk = N/M points {x\ '} uniformly distributed in fife.
Then the stratified quadrature formula is just the sum of the quadratures
over each subset, that is,

M N/M

IN = iV-1 £ £ / (*!fc)) • (4.24)
fc=l i = l

The Monte Carlo quadrature error for this stratified sum is

°l = I (f(x) - f(x)f dx
M f

— 2_j I \J\XI Jk) ax- {^•zo)

For this stratified quadrature rule, there is a simple result. Stratified
Monte Carlo quadrature always beats the unstratified quadrature, since

as < a. (4.26)

The proof of this inequality is straightforward. For each k, c = fk is the
minimizer of

jf (f(x) - c)2 dx. (4.27)

In particular,

/ (f(x)-fk)
2dx<[ (f(x)-f)2dx. (4.28)

Add this over all A; to get
M

dx°l = TtL
dx

= a2. (4.29)

Stratification can be phrased more generally as follows. Split the integra-
tion region f2 into M pieces fife with

n = ujf=1nk. (4.30)

Take Nk random variables in each piece fife with

M

Y^Nk = N. (4.31)
fc=i
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In each subset £lk choose points xi distributed with density p^ (x) in which

x) = p(x)/pk,

Pk = [ p(x)dx. (4.32)

The stratified quadrature formula is the following sum over k:

M - Nk

M/] = £ f £/«)• (4.33)
fc=l i V f c n = l

The resulting integration error is

eN[f] = I[f]-IN[f]
M

= £$[/]• (4-34)
fc=i

The components of this error are

(4.35)

in which the variances are

O r \ V2

' (f(x)- f^)2v(-k)(x)dx)
nk )

1/2
(4.36)

\JUk /

and the averages are
fk= ! f(x)p(x)dx/pk. (4.37)

Jnk

Stratification always lowers the integration error if the distribution of
points is balanced. The balance condition is that, for all k,

pk/Nk = 1/N, (4.38)

that is, the number of points in set Clk is proportional to its weighted size
pk- The resulting error for stratified quadrature is

(fc)2. (4.39)

Since the variance over a subset is always less than the variance over the
whole set, that is,

as < a, (4.40)
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then stratification always lowers the integration error. Actually, a better
choice than the balance condition may be to put more points where / has
largest variation. An adaptive method for stratification was formulated by
Lepage (1978) and is described by Press et al. (1992).

4-5. Importance sampling

Importance sampling is probably the most widely used Monte Carlo variance
reduction method. Consider the simple integral / f(x) dx and rewrite it by
introducing a density p as

nn =

Now think of this as an integral with density function p. Sample points xn

from the density p{x) and form the Monte Carlo estimate

The resulting error epj[f} = I[f] — IN[I} has size

eN[f] « apN-1'2, (4.43)

in which the variance av is

So importance sampling will reduce the Monte Carlo quadrature error, if

Op <C u. (4.45)

Importance sampling is an effective method when f/p is nearly constant,
so that Up is small. One difficulty in this method is that sampling from the
density p is required, but this can be performed using acceptance-rejection,
if necessary. One use of importance sampling is to emphasize rare but im-
portant events, i.e., small regions of space in which the integrand / is large.

4-6. Russian roulette

Some Monte Carlo computations involve infinite sums, for instance, due to
iteration of an integral equation. The Russian roulette method converts an
infinite sum into a sum that is of finite length for each sample. Consider the
sum

oo

S = Y, an (4-46)
n=0
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and suppose that the terms an are exponentially decreasing, that is,

an\ < c\n, (4.47)

in which 0 < A < 1. Choose A < K < 1, and let M be chosen according to a
discrete exponential distribution, so that

Prob(M > n) = Kn. (4.48)

Define the random sum
M

S=J2 K~n<1n- (4-49)
n=0

Since |K~nan| < (A/K)™ and |A/K| < 1, then this sum is uniformly bounded
for all M. Then

oo

E[S] = Yl Prc-b(M > n)K-nan
n=0

= S. (4.50)

This formula leads to the following Monte Carlo method for computation
of the infinite sum (4.46):

N Mi

SN = iv-1 E E K~na^ (4-51)
i=0 n=0

in which the values Mj are chosen according to the probability distribution
(4.48). In this method, the terms an could also be computed by a Monte
Carlo integral.

4-7. Example of variance reduction

As an example of the use of variance reduction consider the three-dimensional
Gaussian integral

I[u\ = (2TT)-3/2 r f°° [°° mr^+^+^dzidzadzs, (4.52)
J—oo J—oo J—oo

in which the integrand u is defined by

u = (l + ro)-
1a + ri)-1(l + r2)-

1(l + r3)-
1,

r i = ™'-*2/2

r2 =

r3 = r2e
ax*-a2/2. (4.53)

This integral can be interpreted as the present value of a payment of $1 four
years from now, for an interest rate of r» in year i. The interest rates are
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allowed to evolve according to a lognormal model with variance a, that is,

n = ri-1e
aXi-a2/2, (4.54)

in which the x[s are independent N(0,1) Gaussian random variables. The
factors (1 + n)" 1 are the discount factors. For the computations below, we
take r0 = 0.10 and a = 0.1.

We evaluate I[u] by sampling X{ from an N(0,1) distribution using the
transformation method, that is, by direct inversion of the cumulative dis-
tribution function for a normal random variable. Then we apply antithetic
variables and control variates to this problem.

Approximate (1 + r,)"1 by 1 — r, for i > 1. Then form the control variate
as

g = (1 + ro)"1^ - n ) ( l - r2)(l - rs). (4.55)

Since g consists of a sum of linear exponentials, its integral can be performed
exactly, for instance

r
J—o

(4.56)

Numerical results are presented in Figure 2. This compares the quad-
rature error from standard Monte Carlo, antithetic variables and control
variates, using both standard pseudo-random points and the quasi-random
(Sobol') points that will be discussed in the next section. In order to make a
meaningful comparison, we have performed an average (root mean square)
of the error over 20 runs for each value of N. The computations are all
independent, that is, the same random number is never used twice. The
figure also shows the results from a single run without averaging or variance
reduction. The results show the following points.

• Both control variates and antithetic variables provide significant error
reduction.

• Control variates and antithetic variables together perform better than
either one alone. This shows that the error reduction from the two
methods are different.

• Quasi-Monte Carlo, which will be discussed in Section 5, has smaller
error and a faster rate of convergence.

• Control variates and antithetic variables, both separately and together,
provide further error reduction when used with quasi-Monte Carlo.
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5. Quasi-random numbers

Quasi-random sequences are a deterministic alternative to random or pseudo-
random sequences (Kuipers and Niederreiter 1974, Hua and Wang 1981,
Niederreiter 1992, Zaremba 1968). In contrast to pseudo-random sequences,
which try to mimic the properties of random sequences, quasi-random se-
quences are designed to provide better uniformity than a random sequence,
and hence faster convergence for quadrature formulas. Uniformity of a se-
quence is measured in terms of its discrepancy, which is defined in Sec-
tion 5.2 below, and for this reason quasi-random sequences are also called
low-discrepancy sequences. Some have objected to the name quasi-random,
since these sequences are intentionally not random. We continue to use this
name, however, because of the unpredictability of quasi-random sequences.

5.1. Monte Carlo versus quasi-Monte Carlo

The difference between standard Monte Carlo and quasi-Monte Carlo is best
illustrated by Figure 3, which compares a pseudo-random sequence with a
quasi-random sequence (a Sobol' sequence) in two dimensions. Standard
Monte Carlo methods use pseudo-random sequences and provide a conver-
gence rate of (^(iV"1/2) for Monte Carlo quadrature using N samples. In
addition to integration problems, standard Monte Carlo is applicable to op-
timization and simulation problems.

The limiting factor in accuracy of standard Monte Carlo is the clumping
that occurs in the points of a random or pseudo-random sequence. Clumping
of points, as well as spaces that have no points, is clearly seen in the pseudo-
random sequence in Figure 3. The reason for this clumping is that the points
are independent. Since different points know nothing about each other,
there is some small chance that they will lie very close together. A simple
argument shows that about i/N out of TV" points lie in clumps.

Quasi-Monte Carlo methods use quasi-random sequences, which are de-
terministic, with correlations between the points to eliminate clumping. The
resulting convergence rate is O((logN)kN~l). Because of the correlations,
quasi-random sequences are less versatile than random or pseudo-random
sequences. They are designed for integration, rather than simulation or op-
timization. On the other hand, the desired result of a simulation can often
be written as an expectation, which is an integral, so that quasi-Monte Carlo
is then applicable. As discussed below, this often introduces high dimen-
sionality, which can limit the effectiveness of quasi-Monte Carlo sequences.

5.2. Discrepancy

Quasi-random sequences were invented by number theorists who were in-
terested in the uniformity properties of numerical sequences (Kuipers and
Niederreiter 1974, Hua and Wang 1981). An important first step is formu-
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Fig. 3. Two-dimensional projection of a pseudo-random sequence (top)
and a Sobol' sequence (bottom)
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lating a quantitative measure of uniformity. Uniformity of a sequence of
points is measured in terms of its discrepancy.

For a sequence of iV points {xn} in the unit cube Id, define

RN( J) = ^#{xn € J} - m( J) (5.1)

for any subset J of Id. RN(J) is just the Monte Carlo quadrature error in
measuring the volume of J. The discrepancy is then defined by some norm
applied to Rj^(J). First, restrict J to be a rectangular set, and define the
set of all such subsets to be E. Since a rectangular set can be defined by two
antipodal vertices, a rectangle J can be identified as J = J(x, y) in which
the points x and y are antipodal vertices. Now define two discrepancies:
DN, which is an L°° norm on J, and T/v, which is an 1? norm, defined by

DN =
J€E

TN = f RN(J{x,y))2 dx
J(x,y)£l2d,xi<yi

dy (5.2)

It is useful to also define the discrepancy over rectangular sets with one
vertex at 0, as

D*N = sup \RN(J)\
JeE*

(5.3)

in which E* is the set {J(0, x)}. Other definitions include terms from lower-
dimensional projections of the sequence (Hickernell 1998).

5.3. Koksma-Hlawka inequality

Quasi-random sequences are useful for integration because they lead to much
smaller error than standard Monte Carlo quadrature. The basis for analys-
ing quasi-Monte Carlo quadrature error is the Koksma-Hlawka inequality.

Consider the integral

/[/] = / /(*) dx (5.4)

and the Monte Carlo approximation

^ / ( * n ) , (5.5)

and define the quadrature error

(5.6)
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Define the variation (in the Hardy-Krause sense) of / , a function of a single
variable, as

V[f] = f
Jo dt

In d dimensions, the variation is denned as

9*f
• dtd

dt. (5.7)

(5.8)

in which /} is the restriction of the function / to the boundary X{ = 1.
Since these restrictions are functions of d — 1 variables, this definition is
recursive.

Theorem 5.1 (Koksma-Hlawka theorem) For any sequence {xn} and
any function / with bounded variation, the integration error e is bounded
as

e[f] < V[f] D*N. (5.9)

It is instructive to compare the Koksma-Hlawka result to the root mean
square error (RMSE) of standard Monte Carlo integration using a random
sequence, that is,

EW\2]l/2 = v[f]N~l/2, (5.10)

in which

°\f\ = <Kfid{f{x)-I[f])2dxY\

{x)dx-^Yjf(xn). (5.11)

In comparing the Koksma-Hlawka inequality (5.9) and the RMSE for
standard Monte Carlo integration (5.10), note the following points.

• Both error bounds are a product of one factor that depends on the
sequence {i.e., DN for Koksma-Hlawka and JV"1/2 for RMSE) and a
factor that depends on the function / {i.e., V[f] for Koksma-Hlawka
and a[f] for RMSE).

• The Koksma-Hlawka inequality is a worst-case bound, whereas the
RMSE (5.10) is a probabilistic bound.

• The RMSE (5.10) is an equality, and so it is tight, whereas Koksma-
Hlawka is an upper bound.

• Our experience is that V[f] in Koksma-Hlawka is usually a gross over-
estimate, while the discrepancy is indicative of actual performance.
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A further, more subtle point is that for standard Monte Carlo each point is
an estimate of the entire integral. A typical quasi-random sequence, on the
other hand, has a hierarchical structure, so that the initial points sample
the integrand on a coarse scale and later points sample it on a finer scale.
This is the source of the log N terms in the discrepancy bounds cited below.

5.4- Proof of the Koksma-Hlawka inequality

First consider functions / that vanish on the boundary of the unit cube.
Note that

N }

(5.12)1
= <T-Y6(x-xn)-l\dx,

N ^
n=l

in which R(x) = RN(J(0,X)) as defined in Section 5.2. Since there are no
boundary terms, then

elf] =
I

N

n=l

R(x)df{x)

(supi?(a;))

D*NV[f}. (5.13)

For / that is nonzero on the boundary of the unit cube, the terms from
integration by parts are bounded by the boundary terms in V[/].

5.5. Average integration error

Most computational experience confirms that discrepancy is a good indicator
of quasi-Monte Carlo performance, while variation is not a typical indicator.
In 1990, Wozniakowski (Wozniakowski 1991) proved the following surprising
result.

Theorem 5.2 We have

(5.14)

in which the expectation E is taken with respect to functions / distributed
according to the Brownian sheet measure.
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The Brownian sheet measure is a measure on function space. It is a natural
generalization of simple Brownian motion b(x) to multi-dimensional 'time'
x. With probability one, a function f(x), chosen from the Brownian sheet
measure, is approximately 'half-differentiable'. In particular, its variation is
infinite. In this context, we can definitely say that variation is not a good
indicator of integration error. Since Wozniakowski's identity (5.14) is an
equality, it follows that the I? discrepancy Tjy does agree with the typical
size of quasi-Monte Carlo integration error. Our computational experience
is that Tjy and DN are usually of the same size.

Denote x' = {x'^)f=1 in which x\ = 1 — Xi\ also denote the finite difference
operator Dif(x') = f (x'+Aii'j)—f (x'), in which ê  is the ith coordinate vec-
tor. The Brownian sheet is based at the point x' = 0, that is, x = ( 1 , . . . , 1),
and has f(x' = 0) = / ( I , . . . , 1) = 0. For any point x' in /dand any set
of positive lengths Aj (with x\ + Aj < 1), the multi-dimensional difference
D\ ... Ddf(x) is a normally distributed random variable with mean zero and
variance

E[(D1... Ddf{x)f] = Ax . . . Ad. (5.15)

This implies that

E[ df(x) df(y)} = 6(x - y) dx dy, (5.16)

in which d/ is understood in the sense of the Ito calculus (Karatzas and
Shreve 1991). Moreover f(x') = 0 if x\ = 0 for any i. For any x in Id, f(x)
is normally distributed with mean zero and variance

E[f(x)2} = f[x'i. (5.17)
i=l

Wozniakowski's proof of (5.14) was a straightforward calculation of both
sides of the equality. The following proof, derived by Morokoff and Caflisch
(1994), is based on the properties of the Brownian sheet measure and follows
the same lines as the proof of the Koksma-Hlawka inequality.

Proof of Wozniakowski's identity. First rewrite the integration error E[f]
using integration by parts, following the steps of the proof of the Koksma-
Hlawka inequality. Note that

( 1 N 1

I n=l )

in which R(x) = RN(J(0,X)) as defined in Section 5.2. Also, R(x) — 0 if
Xi = 0, and f(x) = 0 if x, = 1, for any i. This implies that the boundary
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terms all disappear in the following integration by parts:
N

e\f\ = //w*~E/w

f
Jid R(x)df(x)

The quantity d/ in this identity is denned here through the Ito calculus,
even though V[f] = 00 with probability one.

It follows from (5.16) that the average square error is

E[s[f\2} = E

[
ldxld

R(x)R(y)E[df(x)df(y)}

[
id

R(x)2dx

(5.19)

5.6. Quasi-random number generators

An infinite sequence {xn} is uniformly distributed if

lim DN = 0.
N-*oo

(5.20)

The sequence is quasi-random if

DN < cQogAQkjV"1, (5.21)

in which c and k are constants that are independent of N, but may depend
on the dimension d. In particular, it is possible to construct sequences for
which k = d. It is also common to say that a sequence is quasi-random only
if the exponent k is equal to the dimension d of the sequence.

The simplest example of a quasi-random sequence is the Van der Corput
sequence in one dimension (d = 1) (Niederreiter 1992). It is described most
simply as follows. Write out n in base 2. Then obtain the nth point xn by
reversion of the bits of n around the decimal point, that is,

n =
xn =

a m a m _i . . . aiao (base 2)
• • • am-iam (base 2). (5.22)

Halton sequences (Halton 1960) are a generalization of this procedure. In
the kth dimension, expand n in base p^, the fcth prime, and form the fcth
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component by reversion of this expansion around the decimal point. The
discrepancy of a Halton sequence is bounded by

£>jv(Halton) < cd(log A^iV" 1 (5.23)

in which Cd is a constant depending on d. On the other hand, the average
discrepancy of a random sequence is

E[Tl (random)]1/2 = c ^ " 1 / 2 . (5.24)

Additional sequences go by the names of Haselgrove (Haselgrove 1961),
Faure (Faure 1982), Sobol' (Sobol' 1967, 1976), Niederreiter (Niederreiter
1992, Xing and Niederreiter 1995), and Owen (Owen 1995, 1997, 1998, Hick-
ernell 1996). Niederreiter has formulated a general theory for quasi-random
sequences in terms of (t,s) nets (Niederreiter 1992). All of these sequences
satisfy bounds like (5.23), but the more recent constructions have much
better constants ca-

An algorithm for construction of a Sobol' sequence is found in Press et
al. (1992) and for Niederreiter sequences in Bratley, Fox and Niederreiter
(1994). Various quasi-random number generators are found in the software
collection ACM-Toms at ht tp: / /www.net l ib .org/ toms/ index.html .

For quasi-random sequences with discrepancy of size O((log N)dN~l), the
Koksma-Hlawka inequality implies that the integration error is of this same
size, that is,

e[f]<cV\f]{\ogN)dN-\ (5.25)

Note that the Koksma-Hlawka inequality applies for any sequence. For
quasi-random sequences, the discrepancy is small, so that the integration
error is also small.

5.7. Limitations: smoothness and dimension

The Koksma-Hlawka inequality and discrepancy bounds for a quasi-random
sequence together imply that quasi-Monte Carlo quadrature converges much
faster than standard Monte Carlo quadrature. On the other hand, there are
several distinct limitations to the effectiveness of quasi-Monte Carlo methods
(Morokoff and Caflisch 1994, 1995).

First, there is no theoretical basis for empirical estimates of accuracy of
quasi-Monte Carlo methods. Recall from Section 2 that the Central Limit
Theorem can be used to test the accuracy of standard Monte Carlo quadrat-
ure as the computation proceeds, and then to predict the required number
of samples N for a given accuracy level. Since there is no Central Limit
Theorem for quasi-random sequences, there is no corresponding empirical
error estimate for quasi-Monte Carlo. On the other hand, confidence in
the accuracy of quasi-Monte Carlo integration comes from refining a set of
computations.
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Second, quasi-Monte Carlo methods are designed for integration and are
not directly applicable to simulation. This is because of the correlations
between the points of a quasi-random sequence. However, in many simula-
tions the desired result is an expectation of some quantity, which can then
be written as a high-dimensional integral on which quasi-Monte Carlo can
be used. In fact, we can think of the different dimensions of a quasi-random
point as independent, so that quasi-random sequences can represent a simu-
lation by allocating one dimension per time-step or decision. This approach
often requires a high-dimensional quasi-random sequence.

Third, quasi-Monte Carlo integration is found to lose its effectiveness when
the dimension of the integral becomes large. This can be anticipated from
the bound (log N^N'1 on discrepancy. For large dimension d, this bound
is dominated by the (log N)d term unless

N > 2d. (5.26)

Fourth, quasi-Monte Carlo integration is found to lose its effectiveness
if the integrand / is not smooth. The factor V[/] in the Koksma-Hlawka
inequality (5.9) is an indicator of this dependence, although we actually find
that a much smaller amount of smoothness, somewhere between continuity
and differentiability, is usually enough. The limitation on smoothness is
significant, because many Monte Carlo methods involve decisions of some
sort, which usually correspond to multiplication by 0 or 1.

In the next subsection, some computational evidence for limitations on
dimension and smoothness will be presented. Techniques for overcoming
these limitations will be discussed in Section 6.

An important lesson from our computational experience is that quasi-
Monte Carlo integration is almost always as accurate as standard Monte
Carlo integration. So the 'loss of effectiveness' cited above means that quasi-
Monte Carlo performs no better than standard Monte Carlo. The reasons
for this are not clear, but it is consistent with the discrepancy computations
presented in the next subsection.

5.8. Dependence on dimension

To demonstrate how quasi-random sequences depend on dimension, we will
present results from two computational tests. The first is a computation of
I? discrepancy for a quasi-random sequence. The second is an examination
of the one- and two-dimensional projections of quasi-random sequences.

The L2 discrepancy T/v can be computed directly (Morokoff and Caflisch
1994) by an explicit formula. Figure 4 shows computation of T/v for a Sobol'
sequence for dimension 4 and 16. In addition to Tjv, each graph shows a
plot of TV"1/2 with a constant coming from the expected discrepancy of a
random sequence. Each graph also shows a plot of N^1 (with a constant of
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Fig. 4. Log-log (base 10) plot of discrepancy T/v for a Sobol' sequence
in 4 dimensions (top) and for 16 dimensions (bottom)
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no significance). Since the plots are on a log-log scale, these reference curves
are lines of slope — 1/2 and — 1.

The figure for small dimension (4) and for large N, shows that T/v ~
O(N~1). We have not tried to match the logN terms, since we do not seem
to be able to detect them reliably. On the other hand, the graph for large
dimension (16), shows that for moderate sized N, TJV ~ O(N~1^2), with a
constant that agrees with the discrepancy of a random sequence. Eventually,
as N gets very large, T/v must be nearly of size O(N~1). The agreement
between discrepancy of quasi-random and random sequences for large d and
moderate N has not been explained.

Next we consider one- and two-dimensional projections of a quasi-random
sequence. Many, but not all, quasi-random sequences have the following
special property. All one-dimensional projections of the sequence {i.e., all
single components) are equally well distributed. The Sobol' sequence, for
example, has this property. This implies that any function / that consists of
a sum of one-dimensional functions will be well integrated by quasi-Monte
Carlo, in other words, functions of the form

/n(*n). (5.27)
n=l

In particular, quasi-Monte Carlo performs very well for linear functions

d

f(x) « ^ajXj. (5.28)
i= l

Now consider two-dimensional projections. Figure 5 shows a 'good' and
a 'bad' two-dimensional projection of a Sobol' sequence. The top plot of
the 'good' projection is very uniform, while the bottom plot of the 'bad'
projection shows gaps and a repetitive structure to the points. For this
projection, the holes would be filled in as the further points of the sequence
are laid down. At certain special values of N, the sequence would be quite
uniform. We have observed patterns of this sort in a variety of quasi-random
sequences (Morokoff and Caflisch 1994), but they are not expected to occur
in the randomized quasi-random points of Owen (1995, 1997).

6. Quasi-Monte Carlo techniques

In this section, two techniques are described for overcoming the smoothness
and high-dimension limitations of quasi-Monte Carlo. The first method is
a smoothing method and will be demonstrated on the acceptance-rejection
method, which involves a characteristic function in its standard form, coming
from the decision to accept or reject. The second technique is a rearrange-
ment of dimension, so as to put most of the weight of an integral into the
leading dimensions of the quasi-random sequence.
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Fig. 5. Good and bad two-dimensional projections of a Sobol' sequence
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6.1. Smoothing

The effectiveness of quasi-Monte Carlo is often lost on problems involving
discontinuities, such as decisions in the acceptance-rejection method. One
way to overcome this difficulty is to smooth out the integrand without chan-
ging the value of the integral. Here we describe a smoothed version of
the acceptance-rejection method and compare it with standard acceptance-
rejection, when used with a quasi-random sequence.

Standard acceptance—rejection can be expressed in an integration problem
in the following way. Consider the integral of a function / multiplying a
function p on the unit interval, with 0 < p(x) < 1. Rewrite the integral as

f1 f1 f1

/ f(x)p(x)dx = / f(x)X(y <p(x))dydx. (6.1)
Jo Jo Jo

The acceptance-rejection method is a slight modification of the usual Monte
Carlo formula for this integral, that is,

• sample (x, y) uniformly
• weight w = x{y < p(%)) — 1 (accept), if y < p(x)
• weight w = x(y < P(x)) — 0 (reject), if y > p{x)
• repeat until number of accepted points is N.

The Monte Carlo quadrature formula is then

M

Wif(xi), (6.2)

in which
M

(6.3)

The smoothed acceptance-rejection method (Spanier and Maize 1994,
Moskowitz and Caflisch 1996) is formulated by replacing the discontinuous
function x(y < p(x)) by a smooth function q(x,y) satisfying

/ q(x,y)dy=p(x). (6.4)
Jo

For example, one choice of q is a piecewise linear function:

{ 1 if y < p(x) - e,

0 if y > p(x) + e, (6.5)
linear p(x) — e < y < p(x) + e.

The integral can then be rewritten as
/ f(x)p(x)dx= f f f(x)q(x,y)dydx, (6.6)
Jo Jo Jo
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and the sampling procedure is the following:

• sample (x, y) uniformly
• set the weight w = q(x, y)
• repeat until

M

,yi)~N. (6.7)

The quadrature formula, using smoothed acceptance-rejection, is then

M

JN = N-1J2<l(xi,yi)f(xi), (6.8)

in which
M

q{xi,yi)~N. (6.9)

Figure 6 shows the results of standard and smoothed acceptance—rejection
for Monte Carlo using both a pseudo-random sequence and a quasi-random
sequence. The integral evaluated here (Moskowitz and Caflisch 1996) has
the form

x)ax, (6.10)
JI<

in which I7 = [0,1]7 and

p(x) = exp | - ^sin2 (^|^ij + sin2 \^x2j + sin2 (̂ ^̂ â -ij) J) J-,

/(a;) = e arcsm sin(l)+ — . (6.11)

The integral / is evaluated in several ways. First, by 'raw Monte Carlo',
by which we mean evaluation of the product f(x)p(x) at points from a
uniformly distributed sequence. Second, points are sampled from the (un-
normalized) density function p using acceptance-rejection, then / is eval-
uated at these points. Third, standard acceptance-rejection is replaced
by smoothed acceptance-rejection. Finally, all three of these methods are
performed both with pseudo-random and quasi-random points. These nu-
merical results show the following.

• Importance sampling, using acceptance-rejection, reduces variance and
leads to smaller errors for both Monte Carlo and quasi-Monte Carlo.

• For Monte Carlo, smoothing has little effect on errors, since it does not
change the variance.

• Without importance sampling, the quasi-Monte Carlo method con-
verges at a rapid rate, but with a constant that is larger than for the
method with importance sampling.
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• For quasi-Monte Carlo, the error for unsmoothed acceptance-rejection
decreases at a slower rate, because of discontinuities involved in the
acceptance-rejection decision.

• For quasi-Monte Carlo, the rapid convergence rate is regained using
smoothing.

Although smoothed acceptance—rejection regains much of the effective-
ness of quasi-Monte Carlo, it entails a loss of efficiency. Since fractional
weights are involved, more accepted samples are required to get total weight
N. Moreover, we do not have an effective quasi-Monte Carlo method for
the Metropolis algorithm (Kalos and Whitlock 1986), which is a stochastic
process involving acceptance-rejection.

6.2. Dimension reduction: Brownian bridge method

For problems in a dimension of moderate size, quasi-Monte Carlo provides
a significant speed-up over standard Monte Carlo. Many of the most im-
portant applications of Monte Carlo, however, involve integrals of a very
high dimension. One class of examples comprises path integrals involving
Brownian motion b(t). A typical example is a Feynman-Kac integral (Kar-
atzas and Shreve 1991) of the form

I = E j f(b(t))expi f \{b{s),s)ds\ dt (6.12)

In order to evaluate this expectation by Monte Carlo, we need to discretize
the time in the Brownian motion to obtain a random walk with M steps.
Then the integral becomes an integral over the M steps of a random walk,
each of which is distributed by a normal distribution. An accurate rep-
resentation of the integral requires a large number M of time-steps, which
results in an integral of large-dimension M. Because of the high dimension,
we find that quasi-Monte Carlo loses much of its effectiveness on such a
problem. The main point of this section is to show how a rearrangement
of the dimensions can regain the effectiveness of quasi-Monte Carlo for this
problem.

The standard discretization of a random walk is to represent the position
b(t + At) in terms of the previous position b(t) by the formula

b(t + At) = b(t) + VAt v, (6.13)

in which v is an N(0,1) random variable. Using a sequence of independent
samples of is, we can generate the random walk sequentially by

j/o = 0, y i = b(At), y 2 = b(2At),.... (6.14)

This representation leads to the M-dimensional integral discussed above.
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The effectiveness of quasi-Monte Carlo will be regained using an alternat-
ive representation of the random walk, the Brownian bridge discretization,
which was first introduced as a quasi-Monte Carlo technique by Moskowitz
and Caflisch (1996). This representation relies on the following Brownian
bridge formula (Karatzas and Shreve 1991) for b(t + At\), given b(t) and
b(T = t + Ah + At2):

b(t + Ah) = ab(t) + (1 - a)b(T) + cu, (6.15)

in which

a = At2/(Ah + At2) (6.16)

Using this representation, the random walk can be generated by successive
subdivision. Suppose for simplicity that M is a power of 2. Then generate
the random walk in the following order:

V0 = 0 , D M , V M / 2 , V M / 4 , V 3 M / 4 , •••• (6-17)

The standard discretization and Brownian bridge discretization are repres-
ented schematically in Figures 7 and 8.

The significance of this representation is that it first chooses the large
time-steps over which the changes in b(t) are large. Then it fills in the small
time-steps in between, in which the changes in b(t) are quite small. The
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advantage of this representation is that it concentrates the variance into the
early, large time-steps. This is much like a principal component analysis
(Acworth, Broadie and Glasserman 1997).

Although the actual dimension of the problem is not changed, in some
sense the effective dimension of the problem is lowered, so that quasi-Monte
Carlo retains its effectiveness. To make this statement quantitative, suppose
that, at some given value of N, the discrepancy is of size N^1 for dimension
d (omitting logarithmic terms for simplicity), but is of size N~ll2 for the
remaining dimensions. We expect that the integration error is roughly of the
size of the variance times the discrepancy. Using the Brownian bridge dis-
cretization, the variance over the first d dimensions is CTO, which is about the
same size as the original value of a, whereas the variance over the remaining
M — d dimensions is ai, which is much smaller, that is,

(j\ <?C fo ~ &• (6.18)

Denote es and Ebb to be the errors for quasi-Monte Carlo using the standard
discretization and the Brownian bridge discretization, respectively. Then,
approximately,

es = ebb = (6.19)
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The ordering (6.18) then implies that

£bb < (6.20)

This shows that the Brownian bridge discretization can provide a significant
improvement in quasi-Monte Carlo integration for path integral problems.

As an example, consider an integral of the form (6.12), in which

X(x,t) = 1 1
—r + ̂ r~

4x2

(6.21)

According to the Feynman-Kac formula (Karatzas and Shreve 1991), the
integral / = F(x, t), in which x is the starting point of the Brownian motion,
solves the following linear parabolic differential equation:

^ t\ = I S^L(X t) + X(x t) — (x t)
dx

with F(x,0) = f(x). (6.22)
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The exact solution is F(x,t) = (t + l)(x2 + I ) " 1 .
Computational results for this problem of Moskowitz and Caflisch (1996)

are presented in Figure 9, at time T = 0.08 with M = 32. The results show
the following.

• For Monte Carlo using pseudo-random numbers, the error is the same
for the standard and Brownian bridge discretizations. This is because
the variance of the two is the same.

• For quasi-Monte Carlo with the standard discretization, the error is
only a little less than for standard Monte Carlo; i.e., the effectiveness
of quasi-Monte Carlo has been lost for this high-dimension (M = 32).

• With the Brownian bridge discretization, the error for quasi-Monte
Carlo is substantially reduced, in terms of both the rate of convergence
and the constant; i.e., the effectiveness of quasi-Monte Carlo has been
regained.

It is necessary to use the transformation method (Section 3.3) rather than
the Box-Muller method (Section 3.4), since the latter method has large
gradients (Morokoff and Caflisch 1993). Similar results have been obtained
on problems from computational finance by Caflisch, Morokoff and Owen
(19976).

7. Monte Carlo methods for rarefied gas dynamics

Computations for rarefied gas dynamics, as occur in the outer parts of the
atmosphere, are difficult since the gas is represented by a distribution func-
tion over space, time and molecular velocity. For general problems, the only
effective method has been a Monte Carlo method, as described below. One
reason for including this application of Monte Carlo in this survey is that
formulation of an effective Monte Carlo method in the fluid dynamic limit
is an open problem.

7.1. The Boltzmann equation

The kinetic theory of gases describes the behaviour of a gas in which the
density is not too large, so that the only interactions between gas particles
are binary collisions. The resulting nonlinear Boltzmann equation,

for the molecular distribution function F(x,£,t), is a basic equation of
nonequilibrium statistical mechanics (Cercignani 1988, Chapman and Cowl-
ing 1970). The collision operator is

Q(F,F)(C = | ( F « i ) F « ' ) - F(^)F^))B(LJ, \d ~ *|)da;d4i, (7.2)
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in which £, £j represent velocities before a collision, £', £[ represent velocities
after a collision, and the collision parameters are represented by w € 5 2 ,
where S2 is the unit sphere in M3. The parameter e is a measure of the 'mean
free time', which is defined as the characteristic time between collisions of a
particle.

For a molecular distribution F, the macroscopic (or fluid dynamic) vari-
ables are the density p, velocity u and temperature T defined by

P =

u =

T = (3P)-1 J\£-u\2Fdt (7.3)

The importance of these moments of F is that they correspond to conserved
quantities, namely, mass, momentum and energy, for the collisional process,
which is expressed as follows:

/
Q(F,F)d£ = 0,

£Q(F,F)d$ = 0,

2 = 0. (7.4)

These also provide the degrees of freedom for the equilibrium case, the Max-
wellian distributions

M(£, p, u, T) = p(27rr)-3/2 exp ( - | £ - u\2/2T) . (7.5)

In the limit e —> 0, the solution F of ( 7.1) is given by the Hilbert (or
Chapman-Enskog) expansion, in which the leading term is a Maxwellian
distribution of the form (7.5), in which p, u, T satisfy the compressible
Euler (or Navier-Stokes) equations of fluid dynamics (Chapman and Cowl-
ing 1970). The Euler equations are

pt + V • (up) = 0,
(pu)t + V • (uup) + V(pT) = 0,

This expansion is not valid in layers around shocks, boundaries and non-
equilibrium initial data, where special boundary, shock or initial layer ex-
pansions can be constructed (Caflisch 1983). By varying this limit, taking
the velocity u to be size e as well, the compressible equations are replaced
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by the incompressible fluid equations (Bardos, Golse and Levermore 1991,
1993, De Masi, Esposito and Lebowitz 1989).

7.2. Particle methods

In particle methods for transport theory, the distribution F(x., £, t) is rep-
resented as the sum

N

FN(X,£,t) = J26(Z- U*)W* - *»(*)), (7-7)
7 1 = 1

and the positions xn(£) and velocities £n(t) are evolved in time to simulate
the effects of convection and collisions. The most common particle methods
use random collisions between a reasonable number of particles (e.g., 103-
106) to simulate the dynamics of many particles (e.g., 1023).

In the direct simulation Monte Carlo (DSMC) method pioneered by Bird
(1976, 1978), the numerical method is designed to simulate the physical
processes as closely as possible. This makes it easy to understand and to
insert new physics; it is also numerically robust. First, space and time
are discretized into spatial cells of size Ax3 and time-steps of duration At.
In each time-step the evolution is divided into two steps: transport and
collisions. For the transport step each particle is moved from position xn(£)
to xn(t + At) = xn(t) + At£„(*).

In the collision step, random collisions are performed between particles
within each spatial bin. In each collision, particles £n and £m are chosen
randomly from the full set of particles in a bin, with probability pmn given
by

_ ff([srn £nl) in o\
"52l<i<j<N0 S(\£i — £j\)

in which No is the number of particles in the spatial bin, and

,\£m-U)&» (7-9)s2

is the total collision rate between particles of velocity £j and £,•. As written,
this choice requires O(N2) operations to evaluate the sum in the denom-
inator in (7.8). By a standard acceptance—rejection scheme, however, each
choice can be made in 0(1) steps, so that the total method requires only
O(N) steps.

Next the collision parameters u> are randomly chosen from a uniform dis-
tribution on S2. The outcome of the collision is two new velocities £'n and
£'m which replace the old velocities £n and £m.

The number of collisions performed in each time-step has been determined
by several methods. In the original 'time-counter' (TC) method, a collision
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time Atc is determined. It is equal to one over the frequency for that collision
type, that is,

Atc = 2(nN0S^m-U))~1, (7.10)

in which n is the number density of particles. This is added to the time-
counter tc = J2 Atc. In the time interval of length At beginning at t, colli-
sions are continued until tc exceeds the final time, that is, until tc > t + At.
For N particles this method has operation count O(N).

The unlikely possibility of choosing a collision with very small frequency
can result in a large collisional time-step that may cause relatively large
errors. To remove such errors, Bird (1976) has developed a 'no time-counter'
(NTC) method. This method uses a maximum collision probability 5m a x .
The number of collisions to be performed in time-step dt is chosen as if the
collision frequency were exactly 5m a x for all collision pairs. For each selection
of a collision pair, the collision between £m and £„ is then performed with
probability S(\£m — £n\)/Smax, as in an acceptance-rejection scheme. The
DSMC method with the time-counter or no-time-counter algorithm has been
enormously successful. A rigorous convergence result for DSMC was proved
by Wagner (1992).

Several related methods have been developed by other researchers, in-
cluding Koura (1986), Nanbu (1986), and Goldstein, Sturtevant and Broad-
well (1988). Additional modifications of Nanbu's method, including use of
quasi-random sequences, have been developed by Babovsky, Gropengiesser,
Neunzert, Struckmeier and Wiesen (1990).

7.3. Methods with the correct diffusion limit

One of the most difficult problems of transport theory is that there may be
wide variation of mean free paths within a single problem. In regions where
the mean free path is large, there are few collisions, so that large numerical
time-steps may be taken, whereas in regions where the mean free path is
small, the time- and space-steps must be small. Thus the highly collisional
regions determine the numerical time-step, which may make computations
impractically slow. On the other hand, much of the extra effort in the
collisional regions seems wasted, since in those regions the gas will be nearly
in fluid dynamic equilibrium, so that a fluid dynamic description (7.6) should
be valid.

A partial remedy to this problem is to use a numerical method that con-
verts to a numerical method for the correct fluid equations in regions where
the mean free time is small. This allows large, fluid dynamic time-steps in
the collisional region and large collisional time-steps in the large mean free
time region.

Consider a discretization of the Boltzmann equation (7.1) with discrete
space and time scales Ax and At. If Ax, At are much smaller than e, then
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the Boltzmann solution is well resolved. On the other hand, in regions of
small mean free path, we want to let the discretization scale be much larger
than the collision scale e. So we consider the limit in which the numerical
parameters Ax, At are held fixed, while e —> 0. We say that the discretized
equation has the correct diffusion limit, if in this limit the solution of the
discrete equations for (7.1) goes to the solution for a discretization of the
fluid equation (7.6).

In the context of linear neutron transport, Larsen and co-workers (Larsen,
Morel and Miller 1987, Borgers, Larsen and Adams 1992) have investigated
the diffusion limit for a variety of difference schemes and have found that
many of them have the correct diffusion limit only in special regimes. They
have constructed some alternative methods that always have the correct
diffusion limit. Jin and Levermore (1993) have applied a similar procedure
to an interface problem to get a constraint on the quadrature set for the
discretization of a scattering integral. Another class of methods that uses
information from the diffusion limit to improve a numerical transport meth-
ods is the family of 'diffusion synthetic acceleration methods' (Larsen 1984).
For the Broadwell model of the Boltzmann equation, finite difference numer-
ical methods with the correct diffusion limit have been developed (Caflisch,
Jin and Russo 1997a, Jin, Pareschi and Toscani 1998). These use implicit
differencing for the collision step, because it is a stiff problem with rate e"1.

For the nonlinear Boltzmann equation, on the other hand, Monte Carlo
methods are the most practical because of the large number of degrees of
freedom. Application of the methods would require some kind of implicit
step to handle the collisions, but no such method has been formulated so far.
We believe that a method that uses fluid dynamic information to improve
the collisional step for rarefied gas dynamic computations would have great
impact. Some important partial steps in this direction have been taken
(Gabetta, Pareschi and Toscani 1997), but they have not yet been extended
to particle methods such as DSMC.
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