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Abstract

We report an error estimate of the multi-dimensional fast Gauss transform (FGT), which is much sharper than that
previously reported in the literature. An application to the Karhunen–Loeve decomposition in the three-dimensional phys-
ical space is also presented that shows savings of three orders of magnitude in time and memory compared to a direct
solver.
� 2006 Elsevier Inc. All rights reserved.
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1. A new error estimate for the fast Gauss transform

The first version of the fast Gauss transform (FGT) method was proposed by Greengard and Strain [1], and
it was later improved in [2,3] in terms of its computational speed-up. However, a wrong error estimate of trun-
cated Hermite expansion was employed there. This was corrected later by Baxter and Roussos [4] but this new
correct estimate overestimates the error and is not as useful in high-dimensional problems because of its
restriction on the side length of mesh. Motivated by the work in [4], we have constructed a new error estimate
for the original FGT method.

Let Rhh(x, y) denote the Gaussian kernel
0021-9
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E-m
Rhhðx; yÞ ¼ e�kx�yk2
2=d; ð1Þ
where ||Æ||2 indicates the L2 norm. Following the notations of [1,4], we define for the one-dimensional case the
Hermite function
hnðxÞ ¼ e�x2

HnðxÞ; ð2Þ

where Hn(x) are one-dimensional Hermite polynomials. A d-dimensional multi-index a = (a1,a2, . . ., ad) is a
d-tuple of nonnegative integers, playing the role of a multi-dimensional index. For any multi-index a and
any x 2 Rd , we define
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jaj ¼ a1 þ a2 þ � � � þ ad ; a! ¼ a1!a2! . . . ad !; xa ¼ xa1
1 xa2

2 . . . xad
d : ð3Þ
If p is an integer, we say a P p if ai P p for 1 6 i 6 d. We can now define the multi-dimensional Hermite poly-
nomials and Hermite functions as
HaðxÞ ¼ H a1
ðx1Þ . . . H ad ðxdÞ;

haðxÞ ¼ e�jxj
2

HaðxÞ ¼ ha1
ðx1Þ . . . had ðxdÞ;

ð4Þ
where jxj2 ¼ x2
1 þ � � � þ x2

d .

Theorem 1. If a source point y 2 Rd lies in a box B with center cB and side length r
ffiffiffiffiffi
2d
p

, then for any x 2 Rd
e�kx�yk2
2=d ¼

X
a<p

T a ¼
X
a<p

1

a!

y� cBffiffiffi
d
p

� �a

ha
x� cBffiffiffi

d
p

� �
ð5Þ
with error estimate
jEðpÞj ¼
X
aPp

T a

�����
����� 6

Xd

i¼1

d

i

� �
Kp�1=4

rp
p

1� rp

� �i

; ð6Þ
where K = 1.09(2p)�1/4 and rp ¼ r
ffiffiffiffiffiffiffi
e=p

p
< 1. Here e denotes the base of natural logarithm and p the order of Her-

mite polynomials in the truncated expansion.

Proof. Consider the ith components of x, y and cB with 1 6 i 6 d. By the properties of one-dimensional Her-
mite polynomials, see [5, Eq. (22.9.17)], it is easy to obtain
e�ðxi�yiÞ2=d ¼
X1
ni¼0

1

ni!

yi � ciffiffiffi
d
p

� �ni

hni

xi � ciffiffiffi
d
p

� �
:

We introduce the following definitions as in [4]:
ui
pðxi; yi; ciÞ ¼

Xp�1

ni¼0

1

ni!

yi � ciffiffiffi
d
p

� �ni

hni

xi � ciffiffiffi
d
p

� �
; 1 6 i 6 d;

vi
pðxi; yi; ciÞ ¼

X1
ni¼p

1

ni!

yi � ciffiffiffi
d
p

� �ni

hni

xi � ciffiffiffi
d
p

� �
; 1 6 i 6 d;
which we can use to write the corresponding Gaussian kernel as
e�kx�yk2
2=d ¼

Yd

i¼1

ðui
p þ vi

pÞ:
Using the fact that
jui
pj � jvi

pj 6 jui
p þ vi

pj ¼ je�ðxi�yiÞ2=dj ¼ e�ðxi�yiÞ2=d 6 1; ð7Þ
we have
jEðpÞj ¼ e�kx�yk2
2=d �

Yd

i¼1

ui
p

�����
����� 6 f ðjv1

pj; jv2
pj; . . . ; jvd

p jÞ; ð8Þ
where
f ðjv1
pj; jv2

pj; . . . ; jvd
p jÞ ¼

Xd

n¼1

X
i1<���<in

jvi1
p jjvi2

p j; . . . ; jvin
p j:
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For example, if d = 2,
jEðpÞj ¼ jðu1
p þ v1

pÞðu2
p þ v2

pÞ � u1
pu2

pj
¼ jðu2

p þ v2
pÞv1

p þ u1
pv2

pj
6 ju2

p þ v2
pjjv1

pj þ ju1
pjjv2

pj
6 jv1

pj þ ð1þ jv1
pjÞjv2

pj ðby Eq: ð7ÞÞ
¼ jv1

pj þ jv2
pj þ jv1

pjjv2
pj:
Considering the inequality for Hermite functions [5, Eq. (22.14.17)]
1

n!
jhnðxÞj 6 K1

2n=2ffiffiffiffi
n!
p e�x2=2; n P 0 and x 2 R ð9Þ
with K1 being a numerical constant less than 1.09 in value, and the Stirling’s formula [5, Eq. (6.1.38)] for the
factorial n!, we can bound each jvi

pj as
jvi
pj ¼

X1
ni¼p

1

ni!

yi � ciffiffiffi
d
p

� �ni

hni

xi � ciffiffiffi
d
p

� ������
�����

6 K1

X1
ni¼p

1ffiffiffiffiffi
ni!
p rffiffiffi

2
p
� �ni

2ni=2 e�x2
i =2

6 K1

X1
ni¼p

1ffiffiffiffiffi
ni!
p rni

¼ K1

X1
ni¼p

rnið2pÞ�1=4n
�ni

2�
1
4

i e
ni
2�

h
24ni ; 0 < h < 1 ðStirlingÞ

6 K1ð2pÞ�1=4
X1
ni¼p

rni
e

ni

� �ni=2

n�1=4
i

6 K1ð2ppÞ�1=4
X1
ni¼p

rni
e

p

� �ni=2

6 K1ð2ppÞ�1=4 rp
p

1� rp
; ð10Þ
where rp ¼ r
ffiffiffiffiffiffiffi
e=p

p
. Since f ðjv1

pj; jv2
pj; . . . ; jvd

p jÞ is an increasing function in terms of each jvi
pj, it can be bounded

by replacing each jvi
pj with the bound given in Eq. (10). Then the truncation error estimate (6) follows

immediately. h

Theorem 1 is based on a simple case with only one source point in a box; it can be easily generalized for the
case with many source points in a box. Now we restate the lemma given by Greengard and Strain in [1] with-
out proof, and apply a new error bound for the truncated Hermite expansion.

Lemma 2 (Greengard and Strain, 1991). Let NB sources yi with weights qi lie in a box B with center cB and side

length r
ffiffiffiffiffi
2d
p

. Then the Gaussian field due to the sources in B,
GðxÞ ¼
XNB

i¼1

e�kx�yik2
2=dqi; ð11Þ
is equal to a single Hermite expansion about cB:
GðxÞ ¼
X
aP0

Baha
x� cBffiffiffi

d
p

� �
: ð12Þ
The coefficients Ba are given by
Ba ¼
1

a!

XNB

i¼1

qi
yi � cBffiffiffi

d
p

� �a

: ð13Þ



10 X. Wan, G.E. Karniadakis / Journal of Computational Physics 219 (2006) 7–12
If the Hermite expansion is truncated at order p, the error E(p) satisfies the bound:
jEðpÞj ¼
X
aPp

Baha
x� cBffiffiffi

d
p

� ������
����� 6 QB

Xd

i¼1

d

i

� �
Kp�1=4

rp
p

1� rp

� �i

; ð14Þ
where QB ¼
P
jqij, K = 1.09(2p)�1/4, and rp ¼ r

ffiffiffiffiffiffiffi
e=p

p
.

The new error bound given in Theorem 1 is much sharper, especially in three-dimensions, than the one
given by Baxter and Roussos in [4]; the latter has the form:
jEðpÞj 6 ð1� rÞ�d
Xd�1

i¼0

d

i

� �
ð1� rpÞi K1rpffiffiffiffi

p!
p

 !d�i

: ð15Þ
If we ignore the high-order terms in both error bounds, we can get the corresponding simple versions
jEnewðpÞj 6 dKp�1=4
rp

p

1� rp
ð16Þ
and
jEBRðpÞj 6 dK1ð1� rÞ�dð1� rpÞd�1 rpffiffiffiffi
p!

p ð17Þ
of our error estimate and Baxter and Roussos’s error estimate, respectively, which are the dominant parts of
the two error estimates. To compare the two error bounds, we define a function q as
qðpÞ ¼ EBRðpÞ
EnewðpÞ

: ð18Þ
It is easy to verify that q is an increasing function in terms of p. In Fig. 1, we show the values of q(p) at dif-
ferent p when d = 3. We can see that Enew(p) is much sharper than EBR(p), especially when p is relatively large
and r is close to 1. Next we check the accuracy of the two error bounds by reconsidering the example in [4]. We
assume that there is a single Gaussian at source point y = (0,0,0) with parameter d = 1 and weight q = 1. We
evaluate G(x) on a 50 · 50 · 50 grid in the unit box [0, 1]3. In Table 1, we compare the two error bounds with
the L1 error on the grid points. It can be seen that Enew(p) is about four times as big as the L1 error for dif-
ferent polynomial orders; however, the ratio of EBR(p) over the L1 error keeps growing as p increases. For this
case, EBR(p) overestimates the error by two orders of magnitude while Enew(p) is of the same order as the ac-
tual error. Thus, the new error bound is more reliable to be used in controlling the accuracy of FGT.
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Fig. 1. Ratio of the two error bounds at different polynomial orders for spatial dimension d = 3.



Table 1
Comparison of L1 error �max and error bounds in a cube with a single Gaussian at one vertex of the cube; r ¼ 1=

ffiffiffi
2
p

p 6 8 10 12 14 16 18

Enew(p)/�max 4.03 3.89 3.86 3.88 3.92 3.97 4.02
EBR(p)/�max 68.02 79.06 87.06 93.46 98.62 103.19 107.16
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In addition, the mesh restriction for the new error estimate is rp ¼ r
ffiffiffiffiffiffiffi
e=p

p
< 1 instead of r < 1, which means

that we can group the points in a relative bigger box if the polynomial order p is sufficiently large. For exam-
ple, consider the three-dimensional case with r = 1 and d = 1. EBR(p) will be infinity for this case; however,
Enew(p) = 0.012 for p = 8. This is very important for three-dimensional problems because if we can increase
the side length of mesh by a factor g, where g > 1, the total number of boxes in a cube can be reduced signif-
icantly by a factor 1/g3.

Remark 3. During the review process, John Strain pointed out another paper, see [2], where he derived a
similar error estimate of the form
jEpj 6
rp

p

1� rp
; ð19Þ
where rp ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e=ðp þ 1Þ

p
. It can be seen that this error estimate is similar with the error bound of jvi

pj in Eq.
(10) for the one-dimensional case. In fact, our error estimate is somewhat sharper in the one-dimensional case.
However, this error estimate cannot be applied in high dimensions as it is not mathematically correct when
d > 1 since it does not contain any information about the dimensionality d. This can be easily verified by
an exponential function e�x2

in a box [�a, a]d, whose approximation by low-order Hermite polynomials is
e�x2 ¼
Yd

i¼1

ð1� x2
i Þ: ð20Þ
Let a = 0.1 and check the error at point x̂ with x̂i ¼ a, i = 1, 2, . . ., d. The approximation error at x̂ is larger
than the error estimate given by (19) for d P 3!
2. Application: a fast three-dimensional eigensolver

We present an eigensolver [6] accelerated by FGT for
Z
D

Rhhðx; yÞ/ðxÞdx ¼ k/ðyÞ; ð21Þ
where D is a three-dimensional domain. Such a problem is extensively used in applications, e.g., the Karh-
unen–Loeve expansion of random inputs for the polynomial chaos methods [7]. Using the Nyström method
and a proper set {yi} of quadrature points [8], we obtain the following general eigenproblem
Av ¼ kB�1v; ð22Þ
where
vi ¼ wi/ðyiÞ; Ai;j ¼ Rhhðyi; yjÞ; Bi;j ¼ dijwi; i; j ¼ 1; 2; . . . ;M :
Here M = 190,825 is the number of unknowns, dij is Kronecker delta and wi are the corresponding integration
weights on quadrature points yi.

For an iterative eigensolver, e.g., the implicitly restarted Arnoldi method [9], the essential part is the
matrix–vector multiplication, which is also the most time-consuming part. We employ FGT to accelerate
the computation of Av in each Arnoldi iteration. According to Lemma 2, we can rewrite the matrix–vector
multiplication in Eq. (22) as
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Fig. 2. Speed-up of the fast eigensolver. The solutions given by the direct parallel solver serve as reference ones.
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Av 7!
XM

j¼1

e�kyi�yjk2
2=dqj ¼

X
aP0

Baha
yi � cBffiffiffi

d
p

� �
; ð23Þ
where qj = /(yj)wj. If the Hermite series is truncated after pd terms, we can form the coefficients Ba first at a
cost of O(pdM) work and evaluate the Hermite series at all quadrature points, with a total cost of O(2pdM).
We note that the memory cost is O(nM) with n being the number of Lanczos basis vectors. To this end, we
obtain an O(M) algorithm in both time and memory.

We use boxes with side length r = 1.06 to group the grid points. We note that Baxter and Roussos’s error
estimate does not work for this case since r > 1 here. Based on such a ‘‘coarse’’ mesh, savings of about three

orders of magnitude in time and memory are obtained compared to a direct eigensolver, which is an O(M2)
algorithm due to the direct matrix–vector multiplication. Let k be a vector consisting of the approximate
eigenvalues. We assume that ki P kj, if i < j. We define a normalized error for k as
� ¼ kk� krefk2

kkrefk2

; ð24Þ
where kref is a reference solution. The speed-up is shown in Fig. 2 with respect to the normalized error � of the
first 38 eigenvalues, where the reference solutions are obtained from a parallel eigensolver on 256 processors
with direct matrix–vector multiplications.
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