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An algorithm is presented for the rapid evaluation of the potential and force fields in 
systems involving large numbers of particles whose interactions are Coulombic or 
gravitationai in nature. For a system of N particles, an amount of work of the order O(N’) 
has traditionally been required to evaluate all pairwise interactions. unless some 
approximation or truncation method is used. The algorithm of the present paper requires an 
amount of work proportional to N to evaluate all interactions to within roundoff error. 
making it considerably more practical for large-scale problems encountered in plasma physics, 
fluid dynamics, molecular dynamics, and celestial mechanics. c 1987 Academic Press, Inc. 

1. INTRODUCTION 

The study of physical systems by means of particle simulations is well established 
in a number of fields and is becoming increasingly important in others. The most 
classical example is probably celestial mechanics, but much recent work has been 
done in formulating and studying particle models in plasma physics, fluid dynamics, 
and molecular dynamics [S]. 

Thee are two major classes of simulation methods. Dynamical simulations follow 
the trajectories of N particles over some time interval of interest. Given initial 
positions (xl) and velocities, the trajectory of each particle is governed by New- 
ton’s second law of motion: 

n~.dzxi= -V,@ 
{tit2 r 

for i= 1, ..,) N, 

where mi is the mass of ith particle and the force is obtained from the gradient of a 
potential function @. When one is interested in an equilibrium configuration of a set 
of particles rather than their time-dependent properties, an alternative approach is 
the Monte Carlo method. In this case, the potential function @ has to be evaluated 
for a large number of configurations in an attempt to determine the potential 
minimum. 

* The authors were supported in part by the Office of Naval Research under Grant NO001482-K- 
0184. 
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We restrict our attention in this paper to the case where the potential (or force) 
at a point is a sum of pairwise interactions. More specifically, we consider poten- 
tials of the form 

where Qnsa, (when present) is a rapidly decaying potential (e.g., Van der Waais), 
co eXtzma, (when present j is independent of the number of particles, and Afar, the 
far-field potential, is Coulombic or gravitational. Such models describe classical 
celestial mechanics and many problems in plasma physics and molecular dynamics. 
In the vortex method for incompressible fluid flow calculations [4], an important 
and expensive portion of the computation has the same formal structure (the 
stream function and the vorticity are related by Poisson’s equationj. 

In a system of N particles, the calculation of Q5,,,, requires an amount of work 
proportional to N, as does the calculation of Qexterna,. The decay of the Coulombic 
or gravitational potential, however, is sufliciently slow that all interactions must be 
accounted for, resulting in CPU time requirements of the order Q(N’). In this 
paper a method is presented for the rapid (order O(N)) evaluation of these interac- 
tions for all particles. 

There have been a number of previous efforts aimed at reducing the com- 
putational complexity of the N-body problem. Particle-in-cell methods [S] have 
received careful study and are used with much success, most notably in plasma 
physics. Assuming the potential satisfies Poisson’s equation, a regular mesh is layed 
out over the computational domain and the method proceeds by: 

(1) interpolating the source density at mesh points, 
(2) using a “fast Poisson solver” to obtain potential values on the mesh, 
(3) computing the force from the potential and interpolating to the particle 

positions. 

The complexity of these methods is of the order O(N + Mlog M), where M is the 
number of mesh points. The number of mesh points is usually chosen to be propor- 
tional to the number of particles, but with a small constant of proportionality so 
that M< N. Therefore, although the asymptotic complexity for the method is 
O(N log N), the computational cost in practical calculations is usually observed to 
be proportional to N. Unfortunately, the mesh provides limited resolution, and 
highly nonuniform source distributions cause a significant degradation of perfor- 
mance. Further errors are introduced in step (3) by the necessity for numerical 
differentiation to obtain the force. 

To improve the accuracy of particle-in-cell calculations, short-range interactions 
can be handled by direct computation, while far-field interactions are obtained from 
the mesh, giving rise to so-called particle-particle/particle-mesh (P3jt4) methods 
[S]. For an implementation of these ideas in the context of vortex calculations, see 
[ 11. While these algorithms still depend for their efficient performance on a 
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reasonably uniform distribution of particles, in theory they do permit arbitrarily 
high accuracy to be obtained. As a rule, when the required precision is relatively 
low, and the particles are distributed more or less uniformly in a rectangular region, 
P3M methods perform satisfactorily. However, when the required precision is high 
(as, for example, in the modeling of highly correlated systems), the CPU time 
requirements of such algorithms tend to become excessive. 

Appel [2] introduced a “gridless” method for many-body simulation with a com- 
putational complexity estimated to be of the order O(N log N). It relies on using a 
monopole (center-of-mass) approximation for computing forces over large distances 
and sophisticated data structures to keep track of which particles are sufficiently 
clustered to make the approximation valid. For certain types of problems, the 
method achieves a dramatic speed-up compared to the naive O(W’) approach. It IS 
less efficient when the distribution of particles is relatively uniform and the required 
precision is high. 

The algorithm we present uses multipole expansions to compute potentials or 
forces to whatever precision is required, and the CPU time expended is propor- 
tional to Iv! The approach we use is similar to the one introduced in [7] for the 
solution of boundary value problems for the Laplace equation In the following 
section, we describe the necessary analytical tools, while Section 3 is devoted. to a 
detailed description of the method. 

2. PHYSICAL .~ND MATHEMATICAL PRELIMINARIES 

In this paper, we consider a two-dimensional physical model which consists of a 
set of N charged particles with the potential and force obtained as the sum of 
pairwise interactions from Coulomb’s law. Suppose that a point charge of unit 
strength is located at the point (x,, yO) = x0 E 1w”. Then, for any x = (x, 4’) E 1w’ with 
x #x0, the potential and electrostatic field due to this charge are described by the 
expressions 

and 

c&&f, yi = -bid I/x - X”// 1 

E,,(x. y) = 
(x--cl) 
jlx-xxoJjZ’ 

respectively. 
It is well known that dX, is harmonic in any region not containing the point x0. 

Moreover, for every harmonic function u, there exists an analytic function 14’: @ 3 C 
such that u(s, ?I) = Re(w(x, ~2)) and IV is unique except for an additive constant. In 
the remainder of the paper we will work with analytic functions, making no 
distinction between a point (x, ~1) E R’ and a point x + iy = z E @. We note that 

qS,,(x) = Re( -log(z - zO)), 
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and, following standard practice, we will refer to the analytic function log(z) as the 
potential due to a charge. As we develop expressions for the potential due to more 
complicated charge distributions, we will continue to use complex notation and will 
refer to the corresponding analytic functions themselves as the potentials. The 
following lemma is an immediate consequence of the Cauchy-Riemann equations. 

LEMMA 2.1. If u(x, 1’) = Re(u(x, y)) describes the potenrial JieZd at (x, y), then 
the corresponding force field is given by 

vu = (u,, u,) = (Re(w’), -Im(iv’)), 

where IV’ is the derivative of w. 

The following lemma is used in obtaining the multipole expansion for the field 
due to nz charges. 

LEMMA 2.2. Let a point charge of ktensity q be located at z,,. Then for any z such 
that IzI > /zJ, 

ProoJ Note first that log(z - zO) - log(r) = log( 1 - z,,/zj and that lzO/zI < 1. The 
lemma now follows from the expansion 

log(l-w)=(-1) f ;, 
k=l 

which is valid for any w such that 1~ < 1. m 

THEOREM 2.1 (multipole expansion). Suppose that m charges of strengths 
(qi, i= 1, . . . . m) are located at points {zi, i= 1, . . . . m}, with Izi( cr. Then for any 
7 E @ with IzI > r, the potential d(z) is given by L 

(2.2) 

Furthermore, for any p 3 1, 

(2.3) 

(2.4) 
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z 
cz -, 

I I I 
A= f, kil, and 

‘4 

i=l 
a=c-jqq. 

(2.5) 

Proof. The form of the multipole expansion (2.2) is an immediate consequence 
of the preceding lemma and the fact that d(z) = Cy? 1 d-!(z). To obtain the error 
bound (2.4), observe that 

Substituting for ak the expression in (2.3): we have 

In particular, if c >, 2, then 

Finally, we demonstrate, with a simple example, how multipole expansions can 
be used to speed up calculations with potential fields. Suppose that charges of 
strengths ql, q2, . . . . qm are located at the points x,, x?, . . . . .Y,~, E C and that 
I . (I I, ?:2, I..> J,~) is another set of points in @ (Fig. 1). We say that the sets {*vi> and 
( y[> are ~41 separated if there exist points sO, y0 E @ and a real r > 0 such that 

IXilX,l <r for all i = 1, . . . . m, 

ll;- Yol <r for all j= I, . . . . n, 

Ix0 - Jo/ > 3r. 

R 

FIG. 1. Well-separated sets in the plane. 
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In order to obtain the potential (or force) at the points (J)} due to the charges at 
the points {-xi> directly, we could compute 

for all j= 1, . . . . n. (2.7) 
i=l 

This clearly requires order nrn work (evaluating rn fields at n points). Now 
suppose that we first compute the coefftcients of a p-term multipole expansion of 
the potential due to the charges qr, q2, . . . . qm about x,,, using Theorem 2.1. This 
requires a number of operations proportional to nzp. Evaluating the resulting 
multipole expansion at all points yj requires order np work, and the total amount of 
computation is of the order O(fnp + np). Moreover, by (2.6) 

and in order to obtain a relative precision E (with respect to the total charge), p 
must be of the order -log,(s). Once the precision is specified, the amount of 
computation has been reduced to 

which is significantly smaller than rzm for large n and ~7. 

2.1. Translation Operators and Error Bounds 

The following three lemmas constitute the principal analytical tool of this paper, 
allowing us to manipulate multipole expansions in the manner required by the fast 
algorithm. Lemma 2.3 provides a formula for shifting the center of a multipole 
expansion, Lemma 2.4 describes how to convert such an expansion into a local 
(Taylor) expansion in a circular region of anaiyticity, and Lemma 2.5 furnishes a 
mechanism for shifting the center of a Taylor expansion within a region of 
analyticity. We also derive error bounds associated with these translation operators 
which allow us to carry out numerical computations to any specified accuracy. 

LEMMA 2.3. Suppose that 

(2.8) 

is a multipole expansion of the potential due to a set of m charges of strengths ql, 
q2> ‘..Y 4 ,,I? all of which are located inside the circle D of radius R with center at zO. 
Then for I outside the circle D, of radius (R + /zO/ ) and center at the origin, 

&) = a, log(z) + t ; > 
I=1 L 

(2.9) 
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where 

33: 

(2.10) 

with (:) the binomial coeJficients. Furthermore, for an), p 3 1, 

lzlirh A defined in (2.5 ). 

Proof The coefficients of the shifted expansion (2.9) are obtained by expanding 
the expression (2.8) into a Taylor series with respect to zO. For the error bound 
(2.1 l), observe that the terms {b,} are the coefficients of the (unique) muitipoie 
expansion about the origin of those charges contained in the circle D, and 
Theorem 2.1 applies immediately with r replaced by lzO/ + R. 

Remark. Once the values { aO, a,, ._., a,,) in the expansion (2.8) about r0 are 
computed, we can obtain {b,, ,.., b,) exactly by (2.10). In other words, we may shift 
the center of a truncated multipole expansion without any loss of precision. 

LEMMA 2.4. Suppose that rn charges of strengths ql, q17 . . . . q,,, are located imlde 
the circle D, with radius R and center at zo, and that /zO1 > (c+ 1)R \\,ith c > 1 
(,Fig. 2 j. Then the corresponding multipole expansion (2.8) converges inside the circie 
Dz of radius R centered about the origin. Inside D,, the potentiui due to the charger is 
described 6.1s a power series; 

b(z)= f b,.z’, 
I=0 

i2.12) 

k=lLO 
12.13) 

and 

Furthermore, for anJ1 p 3 max(2, 2c/(c - 1 )), an error boundfor the truncated series is 
giveu b?p 

d(z)- fI: 6t.z’ < 
A(4e(p+c)(c+1)+c2) 

/=O c(c - 1) 
i2.n5j 

where A is defined in (2.5) and e is the base of natural logarithms. 
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FIG. 2. Source charges q,, yz, . . . . q, are contained in the circle D,. The corresponding multipole 
expansion about z0 converges inside D2. C is a circle of radius s, with s> R. 

ProoJ: We obtain the coefficients of the local expansion (2.12) from Maclaurin’s 
theorem applied to the multipole expansion (2.8). To derive the error bound (2.15), 
we let y,, = a, log( -z,), yI = -(a,//. zk) for I> 1, and p, = bl - yI for 1 B 0. Then 

with 

A bound for S1 is easily found by observing that 

(2.16) 
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To obtain a bound for S,, let C be a circle of radius s, where s = cR((i; - ‘i )/cpj 
(Fig. 2). Note first that for any p > 2c/(c - 1 ), 

cR+R 
R<----- 

2 
<S<CR. 

Defining the function dl: @\D, + @ by the expression 

~l(Z)=~(Z)-ua,.log(z-z,j, 

and using Taylor’s theorem for complex analytic functions (see [6, p. 190]), we 
obtain 

where 

Obviously, for any I lying on C, 

and it is easy to see that 

jukl <AR” and It-z,\ >R+cR-s=R+cR,!p. 

After some algebraic manipulation, we have 

M<A and l-)=I>~R-R 
s ‘rR. 

Observing that for any positive integer n and any integer p 3 2, 

1 
‘lf- I 

2 
and 

‘\ P- 11 
< 4, 

we obtain 

Adding the last expression to the error bound for S, completes the proof. 
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The following lemma is an immediate consequence o? Maclaurin’s theorem. It 
describes an exact translation operation with a finite number of terms, and no error 
bound is needed. 

LEMMA 2.5. For any complex zO, z, and { ak }, k = 0, 1, 2, . . . . n, 

kIfoakiz-z,)k= 1 C ,_“, (,:,Qk (7) (M-q zf. (2.17) 

3. THE FAST MULTIPOLE ALGORITHMS 

In this section, we present an algorithm for the rapid evaluation of the potentials 
and/or electrostatic fields due to distributions of charges. The central strategy used 
is that of clustering particles at various spatial lengths and computing interactions 
with other clusters which are sufficiently far away by means of multipole expan- 
sions. Interactions with particles which are nearby are handled directly. 

To be more specific, let us consider the geometry of the computational box, 
depicted in Fig. 3. It is a square with sides of length one, centered about the origin 
of the coordinate system, and is assumed to contain all N particles of the system 
under consideration. The eight nearest neighbor boxes are also shown and will be 
needed in the next section when considering various boundary conditions. First, we 
will describe the method for free-space problems, where the boundary can be 
ignored and the only interactions to be accounted for involve particles within the 
computational box itself. 

Fixing a precision F, we choose p zlogJe) and specify that no interactions be 
computed for clusters of particles which are not well separated. This is precisely the 
condition needed for the error bounds (2.4), (2.11), and (2.15) to apply with c = 2, 

FIG. 3. The computational box (shaded) and its nearest periodic images. The box is centered at the 
origin “0” and has area one. 
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the truncation error to be bounded by 2 Pp, and the desired precision to be 
achieved. In order to impose such a condition, we introduce a hierarchy of meshes 
which reline the computational box into smaller and smaller regions (Fig. 4). Mesh 
level 0 is equivalent to the entire box, while mesh level I+ 1 is obtained from level i 
by subdivision of each region into four equal parts. The number of distinct boxes at 
mesh level I is equal to 4’. A tree structure is imposed on this mesh hierarchy, so 
that if ibox is a fixed box at level I, the four boxes at level I + 1 obtained by 
subdivision of ibox are considered its children. 

Other notation used in the description of the algorithm includes 

the p-term multipole expansion (about the box center) of the 
potential field created by the particles contained inside box .r 
at level I, 

the p-term local expansion about the center of box i at level i, 
describing the potential field due to all particles outside the 
box and its nearest neighbors, 

the p-term local expansion about the center of box i at level i, 
describing the potential field due to all particles outside I’s 
parent box and the parent box’s nearest neighbors. 

Leo21 0 Level 1 

Level 2 Level 3 

FIG. 4. The computational box and three levels of refinement. 
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FIG. 5. Interaction list for box i. Thick lines correspond to mesh level 2 and thin lines to level 3. 
Boxes marked with an “x” are tile// separnted from box i and contained within the nearest neighbors of 
box i’s parent. 

Interaction list for box i at level 1, it is the set of boxes which are children of 
the nearest neighbors of i’s parent and which are well 
separated from box i (Fig. 5). 

Suppose now that at level I- 1, the local expansion Y,- I,i has been obtained for 
all boxes. Then, by using Lemma 2.5 to shift (for all i) the expansion !P- I,i to each 
of box i’s children, we have, for each box j at level Z, a local representation of the 
potential due to all particles outside of j’s parent’s neighbors, namely pl,j. The 
interaction list is, therefore, precisely that set of boxes whose contribution to the 
potential must be added to pj,j in order to create !PIVj. This is done by using 
Lemma 2.4 to convert the multipole expansions of these interaction boxes to local 
expansions about the current box center and adding them to the expansion 
obtained from the parent. Note also that with free-space boundary conditions, Y’O,j 
and !PI,i are equal to zero since there are no well-separated boxes to consider, and 
we can begin forming local expansions at level 2. 

The following is a formal description of the algorithm. 

ALGORITHM. 

Initialization 
Choose a level of refinement n z log, N, a precision E, and set p z log,(a). 

Upward Pass 
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Step 1 

Comment [Form multipole expansions of potential field due to particles in each 
box about the box center at the finest mesh level.] 

0 ibox = 1, . . . . 4” 
Form a p-term multipole expansion @,z,ibor? by using Theorem 2.1. 

enddo 

Step 2 

Comment [Form multipole expansions about the centers of all boxes at all 
coarser mesh levels, each expansion representing the potemial field 
due to all particles contained in one box.] 

do I= n - 1. . ..) 0 
do ihox = 1, . . . . 4’ 

Form a p-term multipole expansion @l,ibo.Y, by using Lemma 2.3 to shift 
the center of each child box’s expansion to the current box center and 
adding them together. 

endds 
enddo 

Downward Pass 
Comment [In the downward pass, interactions are consistently computed at the 

coarsest possible level. For a given box, this is accomplished by 
including interactions with those boxes which are well separated and 
whose interactions have not been accounted for at the parent’s level.] 

Step 3 

Comment [Form a local expansion about the center of each box at each mesh 
level I < n - 1. This local expansion describes the field due to all par- 
ticles in the system that are not contained in the current box or its 
nearest neighbors. Once the local expansion is obtained for a given 
box, it is shifted, in the second inner loop to the centers of the box’s 
children, forming the initial expansion for the boxes at the next 
level. 1 

Set !P,,l = Pl,2 = P,,, = Pl.4 = (0, 0, . . . . 0) 
do I = 1, . . . . n - I 

do ibox = I, . . . . 4’ 

Form K,ibo.r by using Lemma 2.4 to convert the multipole expansion ~0,~ 
of each box j in interaction list of box ibox to a local expansion about the 
center of box ibox, adding these local expansions together, and adding the 
result to !Pl,ibox. 

enddo 
ibox = 1, . . . . 4’ 
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Form the expansion PI+ r j for ibox’s children by using Lemma 2.5 to 
expand yll.iimx about the children’s box centers. 

enddo 
enddo 

Step 4 

Comment [Compute interactions at finest mesh level.] 
do ibox = 1, . . . . 4” 

Form yll,ibOl by using Lemma 2.4 to convert the multipole expansion @r.j of 
each box j in interaction list of box ibox to a local expansion about the 
center of box ibox, adding these local expansions together, and adding the 
result to !P,,ibO,Y. 

enddo 
Comment [Local expansions at finest mesh level are now available. They can be 

used to generate the potential or force due to all particles outside the 
nearest neighbor boxes at finest mesh level.] 

Step 5 

Comment [E,valuate local expansions at particle positions.] 
do ibox = 1, . . . . 4” 

For every particle p.i located at the point zj in box ibo.v, evaluate @n,ibox(zjj. 
enddo 

Step 6 

Comment [Compute potential (or force) due to nearest neighbors directly.] 
do ibox = 1, . . . . 4” 

For every particle pi in box ibox, compute interactions with all other par- 
ticles within the box and its nearest neighbors. 

enddo 

do ibox = 1, . . . . 4” 
Step 7 

For every particle in box ibox, add direct and far-field terms together. 
enddo 

Remark. Each local expansion is described by the coefficients of a p-term 
polynomial. Direct evaluation of this polynomial at a point yields the potential. 
But, by Lemma 2.1, the force is immediately obtained from the derivative which is 
available analytically. There is no need for numerical differentiation. Furthermore, 
due to the analyticity of @‘, there exist error bounds for the force of exactly the 
same form as (2.4), (2.11), and (2.15). 
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A brief analysis of the algorithmic complexity is given below. 

Step Operation count Explanation 

1 order Np 

2 order Np’ 

3 order d 28Np” 

4 order 6 2lNp’ 

5 order < 27Np’ 

6 order PNk, 

7 order N 

Each particle contributes to one expansion at rhc 
finest level. 

At the Ith level, 4’ shifts involving order pz work 
per shift must be performed.. 

There are at most 27 entries in the interaction hst 
for each box at each level. An extra order *VP’ 
work is required for the second loop. 

Again, there are at most 27 entries in the Interac- 
tion list for each box and zz N boxes. 

One p-term expansion is evaluated for each par- 
ticle. 

Let k, be a bound on the number of particles per 
box at the finest mesh level. Interactions must be 
computed within the box and its eight nearest 
neighbors, but using Newton’s third law, we need 
only compute half of the pairwise interactions. 

Adding two terms for each particle. 

The estimate for the running time is therefore 

N( -2a 1ogJe) + %h(log,(e))’ + 4Sdk,, + e), 

with the constants a, b, c, d. and e determined by the computer system, language, 
implementation, etc. 

In addition to the asymptotic time complexity, asymptotic storage requirements 
are an important characteristic of a numerical procedure. The algorithm requires 
that @r,i and Yl,i be stored, as well as the locations of the particles, their charges, 
and the results of the calculations (the potentials and/or electric fields). Since every 
box at every level has a pair of p-term expansions, @ and Y, associated with it, and 
the lengths of ail other storage arrays are proportional to IV, it is easy to see that 
the asymptotic storage requirements of the algorithm are of the form 

or 

(@+PP).N 

(ct - /I log,(&)). ‘V, 
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with the coefficients c( and /? determined, as above, by the computer system, 
language, implementation, etc. In our numerical experiments, the actual storage 
requirements were of the order 

(25 -log,(c)) . N 

single precision words. 

Remark. It is clear that the operation count for Step 6 assumes a reasonably 
homogeneous distribution of particles. If the distribution were highly non- 
homogeneous, then we would need to reline only those portions of space where the 
number of particles is large. Although its description is more involved, an adaptive 
version retains both the accuracy and the computational speed of the algorithm 
(see [3]). 

4. BOUNDARY CONDITIONS 

A variety of boundary conditions are used in particle simulations, including 
periodic boundary conditions, homogeneous Dirichlet or Neumann conditions, and 
several types of mixed conditions. The periodic case will be treated first in some 
detail. We then turn to the imposition of Dirichlet conditions and end with a brief 
discussion of the other cases. 

4.1. Periodic Boundary Conditions 

We begin by reconsidering the computational domain depicted in Fig. 5. At the 
end of the upward pass of the algorithm, we have a net multipole expansion 

@0,1(z)= i 5 
k=l 

(4.1) 

for the entire computational box. This is then the expansion for each of the periodic 
images of the box with respect to its own center. All of these images except for the 
ones depicted in Fig. 3 are l&Z separated from the computational box itself, and 
their induced fields are accurately representable by a p-term local expansion where, 
as before, p z -log,(s) is the number of terms needed to achieve a relative precision 
E. We assume that the periodic particle model has no net charge and, therefore, that 
the local representation given by Lemma 2.4 can be written as 

with 

Y,,, = i 6, . z”’ 
f??=l 

(4.2) 

b~=~~~~(m~~~l)(-l)*, with m=O,l,...,p, (4.3) 

with z,, the center of the image box under consideration. 
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Remark. In certain problems (e.g., cosmology), the computational box 
obviously cannot satisfy the condition of no net charge (mass). This condition is 
necessary for the potential to be well defined, since the logarithmic term becomes 
unbounded as zO + SJ. Force calculations, however, may still be carried out. 
Indeed, using the notation of the algorithm, @,i, Y,,;, pI,i are expansions of analytic 
functions representing the potential, so that their derivatives are also analytic 
functions (with the same regions of analyticity). Moreover, it is clear from 
Theorem 2.1 that the derivatives @& are described by pure inverse power series. 
Therefore, the identical formal structure of the algorithm can, due to Lemma 2.1, be 
used to evaluate force fields everywhere, bypassing the difficulty introduced by the 
logarithmic term. The only change required is that the initial expansions computed 
be the derivatives of the multipole expansions and not the multipole expansions 
themselves. 

Note now that well-separated images of the computational cell are boxes whose 
centers zO have integer real and imaginary parts, with Rejz,) > 2 or Im(z,) >, 2. Let 
S be the set of such centers. To account for the field due to all well-separated 
images, we form the coefficients for the local representation by adding the local 
shifted expansions of the form (4.3) for all rO E S to obtain 

nz+k-1 

k-l 
14.4 ) 

The summation over S for each inverse power of zO can be precomputed and 
stored. For (PH + k) > 2, the series is absolutely convergent. However, for 
(tn + k) 6 2, the series is not absolutely convergent, and the computed value 
depends on the order of addition. Choosing a reasonable value for the sum of the 
series requires careful consideration of the physical model. 

Suppose first that the only particle in the simulation is a charge of unit strength 
located at the origin. Then the periodic model corresponds to a uniform lattice of 
charges, and Newton’s third law requires that the net force on each particle be zero. 
But the net force on the particle at the origin corresponds to the summation over S 
of l/z,, so that we set 

To determine a value for the second term, 

suppose that the only particle in the simulation is a dipole of strength one, oriented 
along the -u-axis and located at the origin. Then the periodic model is again a 
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uniform lattice and the difference in potential between the equivalent sites (-I, 0) 
and (t, 0) must be zero; i.e., 

(D (l/%0) -@ (- lQ0) = m = 0. (4.5) 

The contribution to the potential difference, &D, of a single dipole located at z. is 

1 1 1 -----=--- 
zo - l/2 to + l/2 Z; - 114. 

Thus, we find that the potential difference due to the original dipole located at the 
origin is -4. For an image dipole located at zo, with 1~~1 3 1, we can expand the 
contribution to 6@ as follows: 

1 1 1 
--=z+4i;:-Z;. z; - 114 

Now let S’ be the set of the centers of all image boxes. That is, S’ is the set of all 
points z. with integer real and imaginary parts, excluding the origin. Then 

A somewhat involved calculation shows that 

c l -=4-71. 
s. 4Z; -z; 

Therefore, to satisfy (4.5). we set 

Now 

;i=&+ c 4 s’\.s zo 
and the sum Css,,s (l/z:) is easily evaluated and found to be equal to zero. 
Therefore. we have 

and the summation over S for every inverse power of z. is defined. 
The procedure of converting the multipole expansion of the whole computational 
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cd %,l into a local expansion YO,l which describes the potential field due to all 
well-separated images can be written, in the notation of the algorithm, as 

where T is a constant p by p matrix whose entries are defined by the formula 

This can be viewed as the first step in the downward pass of the algorithm for 
periodic boundary conditions. At this point, we have accounted for all interactions 
excluding the ones within the immediate neighbors of the computational box as 
depicted in Fig. 3. But the expansions cP,,~ for boxes inside the computational cell 
are also the expansions of the corresponding boxes inside the nearest neighbor 
images of the computational cell. By adding to the interaction list the appropriate 
boxes, we maintain the formal structure of the algorithm and the associated 
computational complexity. 

4.2. Dirichlet Bowdavy Conditions 

We turn now to the imposition of homogeneous Dirichlet boundary conditions, 
namely 

@(x, y) = 0 for (x, .I>) E 2D. 

where dD is the boundary of the computational domain. Analytically speaking, this 
can be accomplished by the method of images, described in detail below. In general 
terms, we consider the potential field to be composed of two parts; that is, 

where @souTccj is the field due to the particles inside the computational cell and 
@images is the field due to selected image charges located outside the computational 
cell. The image charge positions and strengths are chosen so that 

CD sources(-& d = m-@images(X, 1,) for (s, J,) E 8D. 

For the computational domain we are considering, appropriate locations for the 
image charges can be determined by an iterative process, illustrated in Fig. 6. We 
first reflect each particle pi of charge strength 6, in the computational cell across the 
top boundary line and place an image charge of strength -CJ~ at that locationl 
generating an image box which we denote c (Fig. 6(b)). The set of image charges is 
denoted by V,, and the field they induce is called @[.,,. Adding QcC, to @SOUTCrS 
clearly enforces the desired condition along the top boundary. To impose the boun- 
dary condition along the bottom of the computational cell, we must reflect all 
charges (source and image) currently in the model across the bottom boundary, 
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FIG. 6. The computational cell centered at the origin is represented by C. The cell c is the image of 
cell C reflected across the top boundary, with corresponding particles assigned charges of opposite sign. 
The cell i; is the image of cell C reflected across the left boundary, again with corresponding particles 
assigned charges of opposite sign. The cell c is the image of cell C reflected through the origin, with 
corresponding particles assigned charges of the same sign. Successive reflections across the four boun- 
daries of the computational cell yield an infinite expansion of image boxes as indicated in (d). 

generating two more image boxes (which are copies of C and C). The set of all 
image charges after this second reflection step is denoted by V,. Now, while 
CD *o”rccs + @ 6’2 is equal to zero along the bottom boundary, the resulting field 
violates the top boundary condition. We therefore reflect again across the top 
boundary, creating two new image boxes and a new set of image charges V,, such 

that @sources + QrX3 satisfies the top condition but violates the bottom one. By 
iterating in this manner, we generate a sequence of sets of image charges ( Vi} with 

where V= u,?= I V, is the set of charges contained in the infinite array of image 
boxes depicted in Fig. 6(c). It is easy to see that the corresponding sequence of 
image fields {QV,} converges inside the computational cell and that the potential 
field @sources + aF., does satisfy both the top and bottom boundary conditions. 

In order to enforce the Dirichlet condition on the remaining two sides, we 
proceed analogously. First, we reflect all the charges currently in the model (the 
original sources plus the images in V) across the left boundary. This obviously does 
not affect the top and bottom conditions and enforces the homogeneous boundary 
condition along the left side of the computational cell. The current set of (all) image 
charges is now denoted H,. Reflecting across the right boundary creates a new set 
Hz, with the field QSOLIccIS + QH2 satisfying the Dirichlet condition along the right 
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(but not the left) boundary. Repeated reflection across the left and right boundaries 
of the computational cell yields a sequence (Hi} of infinite sets of image charges, 

H,cH2cH3c ... cH, 

where H = U,?= I Hi is the set of charges contained in the two-dimensional family of 
image boxes depicted in Fig. 6(d). It is easy to see that the sequence (G19,) 
converges inside the computational cell, and we denote its limit by QH. Finally, we 
observe that QSourceS + GH = 0 on the entire boundary SD. 

From a computational point of view, the rate of convergence of the method of 
images is quite unsatisfactory. In conjunction with our algorithm, however, this 
method can be turned into an extremely efficient numerical tool. In the terminology 
previously introduced, all of the image boxes except the nearest neighbors of the 
computational. cell are well separated and their induced fields can be represented by 
a single local expansion, denoted Yv,,,. Once the coefficients of this local expansion 
have been computed, we need only account for interactions within the nearest 
neighbors of the computational cell itself. To do this, as in the periodic case, we 
simply add the appropriate image boxes to the interaction lists of the boxes insrde 
the computational cell. 

Thus, it remains only to calculate !PO,l. We first observe that the plane of images 
has a periodic structure with unit “supercell” centered at (f, i). indicated by thick 
lines rn Fig. 6(d). But then, by the method developed above for periodic problems, 
we can obtain an expansion about the point (i, 4) which accounts for all interac- 
tions beyond the nearest neighbors of the supercell. This expansion can be conver- 
ted, by using Lemma 2.5, into an expansion about the origin (the center of the 
computational cell), which we call p,, It remains to account for the well-separated 
boxes which are contained inside the supercell’s nearest neighbors. There are 
exactly 27 of these boxes, and their multipole expansions can be shifted (by using 
Lemma 2.4) to local expansions about the origin which are then added to PO.! to 
finally form @P”o.i 

4.3. Other Boundary Conditions 

While in certain applications, periodic or Dirichlet boundary conditions are 
called for, in others, Neumann or mixed conditions have to be imposed on the 
boundary of the computational domain. A typical example of a problem with mixed 
conditions is the computational cell with Neumann conditions on two opposing 
sides and Dirichlet conditions on the two others. Other models require periodic 
boundary conditions on the left and right sides of the computational cell and 
Dirichlet or Neumann conditions on the top and bottom. The imposition of these 
conditions is achieved by a procedure essentially identical to the one described 
above. By reflection and/or periodic extension, one first generates an entire plane of 
images. The local expansion ul,,, is then computed by an appropriate summation 
over ail1 well-separated image boxes, and the remaining image interactions are 
handled as above. 
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5. NUMERICAL RESULTS 

A computer program has been implemented utilizing the algorithm of this paper 
and capable of handling free-space problems and problems with periodic, 
homogeneous Dirichlet or homogeneous Neumann boundary conditions. 

For testing purposes, we randomly assigned charged particles to positions in the 
computational cell (Fig. 7), with charge strengths between 0 and 1, and with the 
numbers of particles varying from 100 to 12,800. The calculations were performed 
on a VAX-8600, and the number of terms in the expansions !YL;i, s’li, @‘r,i was set to 
20, guaranteeing roughly 5-digit accuracy of the result. In each case, we performed 
the calculation in three ways: (1) via the algorithm of the present paper in single 
precision arithmetic; (2) directly (via formula (2.7)) in single precision arithmetic; 
and (3) via formula (2.7) in double precision arithmetic. The First two calculations 
were used to compare the speed and accuracy of our algorithm to those of the 
direct method. The direct evaluation of the field in double precision was used as a 
standard for comparing the relative accuracies of the first two computations. In all 
cases, the calculation was performed for a periodic model, the periodic boundary 
condition being imposed by means of the algorithm described in Section 4 of this 
paper. 

The results of these numerical experiments are summarized in Table I. The first 
column of the table contains the numbers N of particles for which calculations have 
been performed. The second and third columns contain the CPU times T,,, that 
were required by the algorithm of the present paper to obtain the fields at all N 
particles, and the greatest relative error dalg obtained at any of the particles, respec- 
tively. Columns 4 and 5 contain the CPU times Tdir that were required by the direct 
algorithm (2.7) to obtain the fields at all N particles, and the greatest relative error 
Sdir obtained at any one particle, respectively. 

FIG. 7. 1600 randomly located charges in the computational cell. 
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TABLE I 

Computational Results 

too 0.6 1.1 x 1o-5 1.1 1.9 x IO-’ 
200 1.3 4.1 x 10-j 4.5 _.- ? 1 x 10-j 

400 2.0 3.6 x lo-’ 18 4.6 x 10-j 
800 3.8 4.6 x 10-j 69 7.3 x lo-’ 
1.600 6.6 1.4x lo-’ -,- 171 7.0 x 10-j 
3.100 16.5 0.9 x 10-j 1088 3.1 x LO-’ 
6.400 31.7 7.3 x 10-j 4480 6.8 X i0 -’ 

17.800 60.9 3.0x 10-s 17910 (est. I 1.8 x IO--’ 

Remark. For the esample involving 12.800 particles, the algorithm of the 
present paper required about one minute of CPU time (see Table I). However, it 
was not considered practical to use the direct algorithm to evaluate the field at all 
12,500 points, since it would take about 5 h of CPU time, without producing much 
useful information. Therefore, we used the direct algorithm to evaluate the field at 
only 100 of the 12,800 particles, both in single and double precision, and used the 
resulting data to estimate a,,, and hdlr. The value for rdi, in this case was .estimatsd 
by scaling. 

The following observations can be made from Table I: 

1. The accuracy of the results produced by the algorithm is about the same as 
that predicted by the estimates (2.4) (2.1 l), and (2.15) for the number of terms we 
are using in the expansions @,.i, ‘?/,,. Y,.i. There is no evidence of accuracy 
problems due to truncation errors. 

FIG. 8. The equipotential lines for the electrostatic field due !o 13 randomly located charges in the 
computational cell. blith homogeneous Dirichlet boundary conditions. 
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2. The calculation time grows linearly with the number of charges in the 
model, even though its behavior is somewhat erratic. 

3. For as few as 1600 particles in the model, the computational effort 
required by the direct algorithm is roughly 40 times greater than that required by 
the algorithm of the present paper. For 12,800 particles, the effort is nearly 300 
times greater. 

Similar calculations have been performed for homogeneous Dirichlet and 
Neumann boundary conditions, and the observations made above for the periodic 
model are equally applicable in these cases. 

For illustration, the equipotential lines for a box with 10 randomly distributed 
particles and Dirichlet boundary conditions are shown in Fig. 8. The entire 
calculation required 15 s of CPU time; about half the time was spent evaluating the 
field at more than 10,000 points, while the rest was used up by the plotting routine. 

6. CONCLUSIONS 

An algorithm has been constructed for the rapid evaluation of potential lields 
generated by ensembles of particles of the type encountered in plasma physics, 
molecular dynamics, fluid dynamics (the vortex method), and celestial mechanics. 
The algorithm is applicable both in the context of dynamical simulations and 
Monte Carlo simulations, provided that the fields to be evaluated are Coulombic in 
nature. The asymptotic CPU time estimate for the algorithm of the present paper is 
of the order O(N), where N is the number of particles in the simulation, and the 
numerical examples presented in Section 5 indicate that even very large-scale 
problems result in acceptable CPU time requirements. In the present paper, a two- 
dimensional version of the algorithm is described. Generalizing this result to three 
dimensions is fairly straightforward and will be reported at a later date. 
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