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Algorithms for Computing the Sample Variance: Analysis
and Recommendations

TONY F. CHAN, GENE H. GOLUB, and RANDALL J. LEVEQUE*

1. INTRODUCTION

KEY WORDS: Variance; Standard deviation; Shifted
data; Round-off errors; Computer algorithms.

The problem of computing the variance of a sample
of N data points {Xi} is one that seems, at first glance,
to be almost trivial but can in fact be quite difficult,
particularly when N is large and the variance is small.
The fundamental calculation consists of computing the
sum of squares of the deviations from the mean,

(1.2)N (N)2
S =~ X; -~ ~ Xi •

variance is to be calculated dynamically as the data is
collected.

To avoid the two-pass nature of (1.1), it is standard
practice to manipulate the definition of S into the form

This form is frequently suggested in statistical textbooks
and will be called the textbook one-pass algorithm. Un­
fortunately, although (1.2) is mathematically equivalent
to (1.1), numerically it can be disastrous. The quantities
Ixi

2 and (liN) (I Xi Ymay be very large in practice and
will generally be computed with some rounding error. If
the variance is small, these numbers should cancel out
almost completely in the subtraction of (1.2). Many (or
all) of the correctly computed digits will cancel, leaving
a computed S with a possibly unacceptable relative er­
ror. The computed S can even be negative, a blessing in
disguise since this at least alerts the programmer that
disastrous cancellation has occurred.

To avoid these difficulties, several alternative one­
pass algorithms have been introduced. These include
the updating algorithms of Youngs and Cramer (1971),
Welford (1962), West (1979), Hanson (1975), and Cot­
ton (1975), and the pairwise algorithm of the present
authors (Chan, Golub, and LeVeque 1979). In de­
scribing these algorithms we use the notation Tij and M ij
to denote the sum and the mean of the data points Xi

through Xi, respectively,(LIb)

(1.1a)
N

S = L (Xi - X)2,
i~l

where

The problem of computing the variance of a sample of
N data points {Xi} may be difficult for certain data sets,
particularly when N is large and the variance is small.
We present a survey of possible algorithms and their
round-off error bounds, including some new analysis for
computations with shifted data. Experimental results
confirm these bounds and illustrate the dangers of some
algorithms. Specific recommendations are made as to
which algorithm should be used in various contexts.

and Sij to denote the sum of squares

j

Sij = L (XCMij )2.
k~i

For computing an unweighted sum of squares, as we
consider here, the algorithms of Welford, West, and
Hanson are virtually identical and are based on the
updating formulas

(1.3a)

(1.3b)

1
j

r, = LXk,
k=i

The sample variance is then SIN or S/(N - 1) de­
pending on the application. The formulas (1.1) define a
straightforward algorithm for computing S. This will be
called the standard two-pass algorithm, since it requires
passing through the data twice: once to compute xand
then again to compute S. This may be undesirable in
many applications, for example when the data sample is
too large to be stored in main memory or when the
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When m = n this reduces to

Then, if we combine all of the data into a sample of size
m +n, we have

(1.7)
N (N)2

S = 2: (Xi - XY- 1. 2: (X; - x) .
;=1 N ;=1

pected to have the same advantage, as is confirmed
numerically.

Incidentally, pairwise summation can be used in im­
plementing (1.1) (both in computing xand in forming
S) or (1.2) with similar benefits.

Other devices can also be used to increase the accu­
racy of the computed S. For data with a large mean
value x, experience has shown that substantial gains in
accuracy can be achieved by shifting all of the data by
some approximation to xbefore attempting to compute
S. Even a crude estimate of xcan yield dramatic im­
provements in accuracy, so we need not resort to a
two-pass algorithm in order to first estimate X. This is
discussed in detail in Section 3. However, when the shift
is the computed mean and the textbook algorithm (1.2)
is then applied to the shifted data, one obtains the cor­
rected two-pass algorithm

2. CONDITION NUMBERS AND ERROR
ANALYSIS

Here the first term is simply the two-pass algorithm
(1.1a). The second term would be zero in exact com­
putation but in practice is a good approximation to the
error in the first term. Note that in this case use of the
textbook algorithm does not lead to catastrophic can­
cellation, since the correction is generally much smaller
than the first term. This algorithm was first pointed out
to the authors by Professor A. Bjorck (1978) who sug­
gested this correction term based solely on the error
analysis of the two-pass algorithm (Chan, Golub, and
LeVeque 1979). An alternative (and improved) error
analysis is given in Section 3.

Initially algorithms for computing the variance were
judged solely on the basis of empirical studies (Hanson
1975, West 1979, and Youngs and Cramer 1971). More
recently rigorous error bounds have been obtained for
many algorithms (Chan, Golub, and LeVeque 1979;
Chan and Lewis 1978,1979). Our aim here is to present
a unified survey of error analyses for the previously
mentioned algorithms and techniques. Some of this ma­
terial is believed to be new.. particularly the in­
vestigation into the effects of shifting the data. Based on
this survey, specific recommendations will be made as
to which algorithm should be used in various contexts.

(1.4a)

(l.4b)

(1.5a)TI,m+n = TI,m + Tm+I,m+n

SI,m+n = Sl,m + Sm+I,m+n

m+n

Tm+I,m+n = 2: X;,
;=m+1

2

+ m (!!:... T - T ) (1 5b)n (m + n) m I,m m+I,m+n' •

with TI,I = XI and SI,I = O. These two algorithms have
similar numerical behavior and are more stable than the
textbook algorithm. Note, in particular, that with both
of these algorithms S = SI,N is computed as the sum of
nonnegative quantities. Cotton's update is no more sta­
ble than the textbook algorithm and should not be used
(see Chan and Lewis 1979).

The updating formulas (1.4) can be generalized to
allow us to combine two samples of arbitrary size. Sup­
pose we have two samples {Xi};:I,{X;};:::'+1 and we
know

with MI,I = XI and SI,I = O. The desired value of S is
ultimately obtained as SI,N' The updating formulas of
Youngs and Cramer are similar:

m+n 1
Sm+I,m+n = 2: (z, - Ii T m+I,m+n)2.

;=m+1

m

TI,m = 2:x;,
i=1

SI,2m = Sl,m + Sm+I,2m + 2~ (TI,m - T m+I,2mY · (1.6)

This formula forms the basis of the pairwise algorithm.
The pairwise summation algorithm for computing the
sum of N numbers is well known and can be described
recursively by stating that T I ,2m shall be computed as

with each of the sums on the right side computed in a
similar manner. Formula (1.6) defines the analogous
pairwise algorithm for computing the variance. This can
be implemented in a one-pass manner using only 0 (log
N) internal storage locations as discussed in Chan,
Golub, and LeVeque (1979) and also by Nash (1981).
All logarithms in this article are base 2. It can easily be
shown that the use of the pairwise summation algorithm
reduces relative errors in TI,N from 0 (N) to 0 (log N)
as N - 00. The pairwise variance algorithm can be ex-

Chan and Lewis (1978) first derived the condition
number, K, of a sample {Xi} (with respect to computing
the variance). This condition number measures the sen­
sitivity of S for the given data set. If relative errors of
size oy are introduced into the X;, then the relative
change in S is bounded by KOY. Chan and Lewis showed
this to be true up to 0 ( oy2). In fact it is strictly true as
noted by van Nes (1979). Physical data almost always
has some uncertainty in it, and this uncertainty will be
magnified by the factor Kin S. If nothing else, errors are
introduced in representing the data on the computer,
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then the condition number for this problem is given by

(3.3)

(3.2)

(3.1)

For example, if d is within one standard deviation of the

The numerical experiments were performed on an IBM
3081 computer at the Stanford Linear Accelerator Cen­
ter. The data used were provided by a normal random
number generator with mean 1 and a variety of different
variances 1 ;::= (12 ;::= 10-13• For this choice of the mean,
K = 1/(1 (see (2.2». In each case the results have been
averaged over 20 runs. Single precision was used in all
of the tests, with machine accuracy U = 5 X 10-7

• The
"correct" answer for use in computing the error was
calculated in double precision. The resulting errors are
denoted in the figures by the symbols + (for N = 64)
and x (for N = 4096).

The experimental results confirm the general form of
the error bounds given in Table 1. In particular the
graphs for the two-pass algorithms show how the
higher-order terms (such as N 2

K
2
U

2
) begin to dominate

the error at fairly modest values of K •.

3. COMPUTATIONS WITH SHIFTED DATA

Comparing this with (2.1) we see that K< K whenever
Id - x I < Ix I, that is, whenever d lies between 0 and
2X. Taking d = x gives perfectly conditioned data,
K = 1. In practice we cannot compute x exactly and
usually will not even attempt to compute it (except
when using a two-pass algorithm). Instead, we use some
rough estimate that is easily computed without a sepa­
rate pass through all of the data.

Frequently a shift d is obtained by simply "eye­
balling" the data. Such a technique might be expected
to yield an approximation d that is within a few standard
deviations of the mean. This is sufficient to give com­
pletely satisfactory bounds on K. Recall that the stan-

1

dard deviation ls (51N)z and suppose that
Ix - d I < p (5IN)2 for some small p. Then (3.2) gives

for some fixed shift d, then the new data has mean x - d
and 5 remains unchanged (assuming the Xi are com­
puted exactly). In practice, data with a nonzero mean is
frequently shifted by some a priori estimate of the mean
before attempting to compute 5. This will generally
increase the accuracy of the computed 5. We analyze
this improvement by investigating the dependence of
the condition number on the shift. Bounds on K, the
condition number of the shifted data, are derived for
various choices of the shift d. These can then be in­
serted in place of K in the bounds of Table 1 to obtain
error bounds for each of the algorithms with shifted
data.

.From the definition of the condition number we have

If we replace the original data {Xi} by shifted data
{Xi} defined by

Error Bound

NK
2U

K
2
U 10gN

Nu + N 2
K

2
U

2

u 10gN + (KU logN)2
Nu + N 3

K
2
U

3

U 10gN + K
2U 3 10g3 N

NKU
KU log N (conjectured)

Algorithm

1. textbook
2. textbook with pairwise summation
3. two-pass
4. two-pass with pairwise summation
5. corrected two-pass
6. corrected two-pass with

pairwise summation
7. updating
8. pairwise

N

IIx 11;= ~Xi2,
i=1

When 5 is small and x is not close to zero we obtain the
useful approximation

K = x YNI5 (for 5 small, x nonzero), (2.2)

which is the mean divided by the standard deviation.
We always have K ;::= 1, and in many situations K is very
large.

Table 1 shows the asymptotic error bounds for the
algorithms discussed. These are bounds on the relative
error 1(5 - S )15 I in the computed value S. Small con­
stant multipliers have been dropped, for clarity.
Higher-order terms have also been dropped, but the
terms shown dominate the error bounds whenever the
relative error is less than 1. The bounds for the textbook
algorithm and West's updating are derived by Chan and
Lewis (1978). The two-pass error bound including the
N 2K2U

2 term (which can dominate in practice) is derived
in Chan, Golub, and LeVeque (1979). Bounds for these
algorithms using pairwise summation can be found sim­
ilarly. The pairwise variance algorithm bound is a con­
jecture based on the form of the error bound for Youngs
and Cramer updating and experimental results. The
error analysis for the corrected two-pass algorithm is
given in Section 3.

Graphs of these bounds are shown in Figures 1
through 8 along with some experimental results. Each
plot has K on the abscissa and the relative error in 5 on
the 0ldinate. The lower curve in each figure shows the
error bound for N = 64, the upper curve for N = 4096.

Table 1. Error Bounds for the Relative Error
I(S - 8)IS I in the Computed Value 8. Only the

Dominant Terms are Shown, and Small Constant
Factors Have Been Suppressed for Clarity

and so a value of 5 computed on a computer with ma­
chine accuracy U may have relative errors as large as KU

regardless of what algorithm is used. This value KU can
be used as a yardstick by which to judge the accuracy of
the various algorithms, especially since error bounds
that are functions solely of K, u, and N can often be
derived.

If we define the 2-norm of the data by
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Figure 1. Textbook Algorithm

Figure 3. Two-Pass Algorithm

Figure 5. Corrected Two-Pass Algorithm
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Figure 4. Two-Pass Algorithm With Pairwise Summation
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mean then j(< v'2. This result is completely indepen­
dent of Sand N.

It is not always possible to obtain an approximation in
this manner, nor is it always valid to make such an
assumption on its accuracy. Another bound on j(can be
easily obtained by assuming only that

min r, :5 d :5 max Xi'
i i

This is easly guaranteed, for example by choosing one
of the data points as the shift. When min Xi :5 d :5 max
X;, we have (x - d)2:5 ~i(X - Xi)2 = S and so from
(3.2),

j(2< 1 + N. (3.4)
This bound is not as satisfactory as (3.3), but for mod­
erate values of N it may be sufficient to guarantee ac­
ceptable errors in S.

For the case in which we shift by a single data point,
d = xi for some j , we can obtain some interesting proba­
bilistic refinements of (3.4). Equality in (3.4) is un­
attainable and approximate equality holds only when

(x - xi )2 =L (x - X;}2,

that is, only when xi lies considerably farther from x
than do any of the other Xi' If Xi is picked at random
from the sample {Xi}, then the expected value of j(2 will
be much smaller than 1 + N. In fact, since
E[(x - Xi)2] = SIN, (the definition of the sample vari­
ance), we have from (3.2) that

E[j(2]=2 (3.5)

independent of Nand S. Note that this is also indepen­
dent of the underlying distribution of the {xi}. We as­
sumed only that Xi was chosen from {Xi} with a uniform
distribution. Alternatively we could choose the data
value with a fixed index, say Xl> and assume that the
data is ordered randomly. This may not be a valid as­
sumption if, for example, initial transients are present
in the data.

Improved upper bounds of the form (3.4) that hold
with probability close to 1 can also be obtained proba­
bilistically. For fixed k, 1:5 k :5 N, the inequality

(x - Xi )2 ;:=: kS IN

can hold for at most Nlk values of i. Otherwise we
would have I(x - X;}2 > (Nlk)( kSIN) = S. Thus if Xi
is chosen at random, there is a probability of at least
(N-Nlk)IN=l-lIk that (x-xi)2<kSIN. It fol­
lows that

j(2< 1 + k
with probability at least 1 - 11k for 1:5 k :5 N. (3.6)

If N ;:=: 100 we have, for example, j(2 < 101 with proba­
bility.99. This is again independent of Nand S when
the shift Xi is chosen at random from the sample.

We can generalize this choice of d by using the aver­
age of some p data points, p ~ N. This average will be
denoted by xp = ~ilp, the sum being over the chosen p
data points. We assume that p is sufficiently small that
rounding errors in computing xp can be ignored. Specif­
ically this requires KpU < 1. The condition number cor-

responding to this shift is bounded by using Cauchy's
inequality,

2 N - - 2j( =l+ S(x-xp )

= 1 + N (!±(x _ Xi »)2
S P;=1

N p

:5 1 +S L (x - Xi)2
P ;=1

N:51+-. (3.7)
p

For p = 1 this reduces to (3.4). We note that the re­
sulting algorithm can be very easily implemented on a
scientific pocket calculator, with great potential for ac­
curacy improvement.

We now consider the case in which the computed
mean is used as the shift. In general we cannot ignore
rounding errors in computing X. Instead we compute
some approximate floating point value ft(x), given by

1 N
ft(x)= NLx;(l+~), (3.8)

i=1

where the ~; are bounded by

1~I:5Nu (3.9)
when the usual (forward) summation is used. Ifpairwise
summation is used, the N can be replaced by log N.
Now we can bound j(2 by

2 N - - 2j( = 1+ S (x - ft( X»

~ 1 +~s(~x,~)'" 1+ ~S IIx I1llltlll

= 1 + ~ K
211~ II ~ :51 + K

21!~ II:. (3.10)

Here we have used (2.1) and the general inequality
1I~1I~:5NII~II:, where 11~1I",=maxil~l. Using (3.9)
we can rewrite (3.10) as.

j(2:51 + N 2 K2u 2
• (3.11)

Note that owing to the dependence on K, the bound
(3.11) may be worse than the bounds obtained for more
primitive estimates of d . This reflects situations that can
actually occur in practice. One can easily construct ex­
amples where the computed mean does not even lie

- - 2between min Xi and max Xi and hence (x - ft( X » is
larger than max, (x - Xi )2. 1n this case one is better off
shifting by any single data point than by the computed
mean.

Of course shifting by the computed mean may also be
an undesirable choice from the standpoint of efficiency,
since it requires a separate pass through the data to
compute ft(x). Nonetheless, when a two-pass algorithm
is acceptable and N 2

K
2

U
2 is small « 1, say), this shift

followed by a one-pass algorithm provides a very de­
pendable method for computing S. The corrected two­
pass algorithm (1.7) is of this form; it consists of the
textbook algorithm on data shifted by ft(x). Its error
bound NU(1+N2

K
2u 2

) is easily derived from (3.11)
and the textbook algorithm bounds of Table 1.

Other one-pass algorithms could also be used in con-
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junction with a shift by the computed mean. However,
if a good shift has been chosen so that K= 1, all one-pass
algorithms are essentially equivalent with a bound Nu
(or u log N for algorithms using pairwise summations).
Since the textbook algorithm is the most efficient one­
pass algorithm (requiring only N multiplications and 2N
additions as opposed to 4N multiplications and 3N addi­
tions for the updating algorithms, for example), it is the
method of choice except in rare instances.

yes

no

shift as well as possible
and estimate i:

no

yes

Figure 9. Decision Procedure for Choosing an Algorithm to
Compute the Variance. For Details see the Recommendations
section

The decision procedure just described is shown
graphically in Figure 9.

[Received April 1982. Revised June 1982.]
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4. RECOMMENDATIONS

The results of the previous sections provide a basis for
making an intelligent choice of algorithm for accurately
computing the sample variance. First we note that if a
parallel processor is available, the data can be split up
into smaller samples and the sum of squares computed
for each sample individually. These can then be com­
bined, and the global sum of squares computed, by
using the updating formulas (1.5). In that case the con­
siderations that follow apply for each processor.

There is one situation in which the textbook algo­
rithm (1.2) can be recommended as it stands. If the data
consist only of integers, small enough that no overflows
occur, then (1.2) should be used with the sums com­
puted in integer arithmetic. In this case no roundoff
errors occur until the final step of combining the two
sums, in which a division by N occurs.

For nonintegral data we must first decide whether to
use a one-pass or a two-pass algorithm. If all of the data
fit in high-speed memory and we are not interested in
dynamically updating the variance as new data are col­
lected, then a two-pass algorithm is probably acceptable
and the corrected two-pass algorithm (1.7) is recom­
mended. If N is large and high accuracy is needed, it
may be worthwhile to use pairwise summation in imple­
menting this algorithm.

If a one-pass algorithm is to be used, the first step is
to shift the data as well as possible, perhaps by some xp

as discussed in Section 3. (The probabilistic estimates
may be subsequently verified using much tighter a pos­
teriori bounds provided as a by-product of the com­
putation.) Now an appropriate one-pass algorithm must
be chosen. We should first estimate K, the condition
number of the shifted data, perhaps by one of the
bounds of Section 3. If N K2U , the error bound for the
textbook algorithm, is at least as small as the desired
relative accuracy, then the textbook algorithm can be
used on the shifted data. If this bound is too large, we
should resort to a less efficient algorithm for safety. The
dependence on N can be reduced by the use of pairwise
summation. The dependence on K can be reduced by
using an updating algorithm. The use of the pairwise
algorithm should reduce both of these factors. When N
is a power of 2 the pairwise algorithm is fairly easy to
implement and requires only 2N multiplications and 4N
additions, which is better than the updating algorithms.
For general N slightly more work (particularly human
work) is required, making it less attractive.
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