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1. Introduction

Let P(x) = 0 be a system of n polynomial equations in n unknowns. De-
noting P = (pi,... ,pn), we want to find all isolated solutions of

pi(xi,...,xn) = 0,

pn(xi,...,xn) = 0

for x = (x\,... ,xn). This problem is very common in many fields of sci-
ence and engineering, such as formula construction, geometric intersection
problems, inverse kinematics, power flow problems with PQ-specified bases,
computation of equilibrium states, etc. Elimination theory-based methods,
most notably the Buchberger algorithm (Buchberger 1985) for constructing
Grobner bases, are the classical approach to solving (1.1), but their reliance
on symbolic manipulation makes those methods seem somewhat unsuitable
for all but small problems.

* This research was supported in part by the NSF under Grant DMS-9504953 and a
Guggenheim Fellowship.
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In 1977, Garcia and Zangwill (1979) and Drexler (1977) independently
presented theorems suggesting that homotopy continuation could be used
to find numerically the full set of isolated solutions of (1.1). During the
last two decades, this method has been developed into a reliable and effi-
cient numerical algorithm for approximating all isolated zeros of polynomial
systems. Modern scientific computing is marked by the advent of vector
and parallel computers and the search for algorithms that are to a large
extent naturally parallel. A great advantage of the homotopy continuation
algorithm for solving polynomial systems is that it is to a large degree paral-
lel, in the sense that each isolated zero can be computed independently. This
natural parallelism makes the method an excellent candidate for a variety
of architectures. In this respect, it stands in contrast to the highly serial
Grobner bases method.

The homotopy continuation method for solving (1.1) is to define a trivial
system Q(x) = (q\(x),..., qn{x)) = 0 and then follow the curves in the real
variable t which make up the solution set of

0 = H(x,t) = (l-t)Q(x) + tP(x). (1.2)

More precisely, if Q(x) = 0 is chosen correctly, the following three properties
hold:

Property 0 {Triviality). The solutions of Q(x) = 0 are known.

Property 1 (Smoothness). The solution set of H(x,t) = 0 for 0 < t < 1
consists of a finite number of smooth paths, each parametrized by t in
[0,1).

Property 2 (Accessibility). Every isolated solution of H(x, 1) = P(x) = 0
can be reached by some path originating at t = 0. It follows that this
path starts at a solution of H(x, 0) = Q(x) = 0.

When the three properties hold, the solution paths can be followed from the
initial points (known because of Property 0) at t = 0 to all solutions of the
original problem P(x) = 0 at t = 1 using standard numerical techniques;
see Allgower and Georg (1990, 1993).

Several authors have suggested choices of Q that satisfy the three prop-
erties: cf. Chow, Mallet-Paret and Yorke (1979), Li (1983), Morgan (1986),
Wright (1985) and Zulener (1988) for a partial list. A typical suggestion is

qi(x) = aixd
x
l -b\,

(1.3)
qn(x) = anxin - bn,

where d\,..., dn are the degrees of pi(x),... ,pn(x) respectively, and a,, bi
are random complex numbers (and therefore nonzero, with probability one).
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So in one sense, the original problem posed is solved. All solutions of P{x) —
0 are found at the end of the d\- • • dn paths that make up the solution set
olH(x,t) = 0 , 0 < t < 1.

In this article, we report on some recent developments that make this
method more convenient to apply.

The reason the problem is not satisfactorily solved by the above consid-
erations is the existence of extraneous paths. Although the above method
produces d = d\ • • • dn paths, the system P(x) = 0 may have fewer than d
solutions. We call such a system deficient. In this case, some of the paths
produced by the above method will be extraneous paths.

More precisely, even though Properties 0-2 imply that each solution of
P(x) = 0 will lie at the end of a solution path, it is also consistent with these
properties that some of the paths may diverge to infinity as the parameter
t approaches 1 (the smoothness property rules this out for t —> to < !)• In
other words, it is quite possible for Q(x) = 0 to have more solutions than
P(x) = 0. In this case, some of the paths leading from roots of Q{x) = 0
are extraneous, and diverge to infinity when t —• 1 (see Figure 1).

Solutions to
start system
Q(x)=0

Solutions to
P(x)=0

infinity

t=l

Fig. 1.

Empirically, we find that most systems arising in applications are deficient.
A great majority of the systems have fewer than, and in some cases only a
small fraction of, the 'expected number' of solutions. For a typical example
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of this sort, let us look at the following Cassou-Nogues system

Pi = 1564cd2 + 664c3 + 21b4c2d - U4b2c - 8b2c2e
-28b2cde - 648b2d + 36b2d2e + 9b4d3 - 120,

p2 = 30b4c3d - 32cde2 - 720b2cd - 2462c3e - 43262c2 + 576ce
-576de + 16b2cd2e + \U2e2 + 16c2e2 + %4c4 + 3964c2d2

+1864cd3 - 432b2d2 + 24b2d3e - 16b2c2de - 240c + 5184, (1.4)

p3 = 216b2cd - 162b2d2 - 81b2c2 + 1008ce - 1008de + 15b2c2de
-15b2c3e - 80cde2 + 40d2e2 + 40c2e2 + 5184,

Pi = Ab2cd-3b2d2 -Ab2c2 + 22ce-22de + 261.

Since di = 7, d2 = 8, cfa = 6 and d± = 4 for this system, the system Q(x)
in (1.3) will produce d\ x d 2

x ^3 x c?4 = 7 x 8 x 6 x 4 = 1344 paths for the
homotopy in (1.2). However, the system (1.4) has only 16 isolated zeros.
Consequently, most of the paths are extraneous. Sending out 1344 paths in
search of 16 solutions is a highly wasteful computation.

The choice of Q(x) in (1.3) to solve the system P(x) = 0 requires an
amount of computational effort proportional to d\ • • • dn and, roughly, pro-
portional to the size of the system. We would like to derive methods for
solving deficient systems for which the computational effort is instead pro-
portional to the actual number of solutions.

To organize our discussion, we will at times use a notation that makes the
coefficients and variables in P(x) = 0 explicit. Thus, when the dependence
on coefficients is important, we will consider the system P(c,x) = 0 of n
polynomial equations in n unknowns, where c = (c\,..., CM) are coefficients
and x = ( x i , . . . , xn) are unknowns. Two different problems can be posed:

Problem A Solve the system of equations P(x) = 0.
Problem B For each of several different choices of coefficients c, solve the

system of equations P(c, x) = 0.

We divide our discussion on dealing with and eliminating extraneous paths
for Problem A in Section 2, and for Problem B in Section 3. In Section 4, an
algorithm is presented which, in some sense, uses the method for Problem
B to treat Problem A. Some numerical considerations, the use of projective
coordinates and real homotopies, are given in Section 5.

2. Methods for Problem A

Progress on Problem A has been the least satisfactory among the areas
we discuss. For deficient systems, there are some partial results that use
algebraic geometry to reduce the number of extraneous paths, with various
degrees of success.
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2.1. Random product homotopy

For a specific example that is quite simple, consider the system

pi(x) = xi(anxi-\ \-alnxn) + bnxi-\ \- binxn + c\ = 0,

i (2.1)
Pn{x) = x\ {an\X\ + 1- annxn) + bn\X\ H h bnnxn + cn = 0.

This system has total degree d = d\ • • • dn = 2". Thus the 'expected number'
of solutions is 2", and the classical homotopy continuation method using the
start system Q(x) = 0 in (1.3) sends out 2n paths from 2n trivial starting
points. However, the system P(x) = 0 has only n+1 isolated solutions (even
fewer for special choices of coefficients). This is a deficient system; at least
2" — n — 1 paths will be extraneous. It is never known from the start which
of the paths will end up being extraneous, so they must all be followed to
the end: wasteful computation.

The random product homotopy was developed in Li, Sauer and Yorke
(1987a, 19876) to alleviate this problem. According to that technique, a
more efficient choice for the trivial system Q(x) = 0 is

qi(x) = (xi + en)(xi + x2-\
q2(x) = (xi

qn(x) = (xi + eni){xn + en2). (2.2)

Set
H(x, t) = (l- t)cQ[x) + tP{x).

It is clear by inspection that for a generic choice of the complex numbers
ey, Q(x) = 0 has exactly n + 1 roots. Thus there are only n + 1 paths
starting from n + 1 starting points for this choice of homotopy. It is proved
in Li, Sauer and Yorke (19876) that Properties 0 2 hold for this choice of
H(x, t) for almost all complex numbers e^ and c. Thus all solutions of
P(x) = 0 are found at the end of the n + 1 paths. The result of Li et al.
(19876) is then both a mathematical result (that there can be at most n + 1
solutions to (2.1)) and the basis of a numerical procedure for approximating
the solutions.

The reason this works is quite simple. The solution paths of (1.2) which
do not proceed to a solution of P(x) = 0 in Cn diverge to infinity. If the
system (1.2) is viewed in projective space

where the equivalent relation '~' is given by x ~ y if x = cy for some nonzero
c G C, the diverging paths simply proceed to a 'point at infinity' in Pn.
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For a polynomial f(x\,..., xn) of degree d, denote the associated homo-
geneous polynomial by

f ( X 0 , X l , . . . , X n ) = X 0 / ( — , . . . , ) .
XQ XO

The solutions of f(x) = 0 at infinity are those zeros of / in P" with Xo = 0,
and the remaining zeros of / with XQ ^ 0 are the solutions of f(x) = 0 in
Cn when xo is set to be 1.

Viewed in projective space P™ the system P(x) = 0 in (2.1) has some roots
at infinity. The roots at infinity make up a nonsingular variety, specifically
the linear space p n ~ 2 denned by XQ = x\ = 0. A Chern class formula from
intersection theory (Fulton 1984, 9.1.1, 9.1.2) shows that the contribution of
a linear variety of solutions of dimension e to the 'total degree' {d\ x • • • x dn),
or the total expected number of solutions, of the system is at least s, where
s is the coefficient of te in the Maclaurin series expansion of

In our case, d\ = • • • = dn = 2, and e = n — 2, hence,

(1 + 2*)" _ ^"=o(1 + ^ " ^ ( " ) _ " t (n

and s = J2?=o I • ) > meaning there are at least J27=o ( • ) solutions of

P{x) = 0 at infinity. Thus there are at most

solutions of P(x) = 0 in Cn. The system Q(x) = 0 is chosen to have the
same nonsingular variety at infinity, and this variety stays at infinity as the
homotopy progresses from £ = 0 to £ = 1. As a result, the infinity solutions
stay infinite, the finite solution paths stay finite, and no extraneous paths
exist.

This turns out to be a fairly typical situation. Even though the system
P(x) = 0 to be solved has isolated solutions, when viewed in projective
space there may be large number of roots at infinity, and quite often high-
dimensional manifolds of roots at infinity. Extraneous paths are those that
are drawn to the manifolds lying at infinity. If Q(x) = 0 can be chosen
correctly, extraneous paths can be eliminated.

As another example, consider the algebraic eigenvalue problem

Ax = Xx,
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where
on • • • a\n

is an n x n matrix. This problem is actually one of n polynomial equations
in the n + 1 variables A, x\,..., xn:

\x\ — (anxi + h a\nxn) = 0,

Xxn — (an\x\ + • • • + annxn) = 0.

Augmenting the system with a linear equation

C\X\ ~\ h CnXn + Cn+X = 0,

where c\,... ,cn+i are chosen at random, we have a polynomial system of
n+1 equations in n+1 variables. This system has total degree 2n. However,
it can have at most n isolated solutions. So, the system is deficient. But the
system Q(x) in random product form:

<72 =

Qn = (A
qn+l = C\X\ -\ h CnXn

has n isolated zeros for randomly chosen e^s. This Q(x) will produce n
curves for the homotopy in (1.3) that proceed to all solutions of the ei-
genvalue problem. Implicit in this is the fact that the algebraic eigenvalue
problem has at most n solutions. Moreover, the generic eigenvalue problem
has exactly n solutions.

To be more precise, we state the main random product homotopy result,
Theorem 2.2 of Li et al. (19876). Let V^Q) and V^P) denote the variety
of roots at infinity of Q{x) = 0 and P(x) = 0 respectively.

Theorem 2.1 If Voo(Q) is nonsingular and contained in Voo(P), then
Properties 1 and 2 hold.

Of course, Properties 1 and 2 are not enough. Without starting points, the
path-following method cannot begin. Thus Q(x) = 0 should also be chosen
to be of random product form, as in (2.2), these being trivial to solve.

This result was superseded by the result in Li and Sauer (1989). The
complex numbers e^ are chosen at random in Li et al. (19876) to ensure
Properties 1 and 2. In Li and Sauer (1989), it was proved that eij can be
any fixed numbers; as long as the complex number c is chosen at random,
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Properties 1 and 2 still hold. In fact, the result in Li and Sauer (1989) implies
that the start system Q(x) = 0 in Theorem 2.1 need not be in product form.
It can be any chosen polynomial system as long as its zeros in C" are known
or easy to obtain and its variety of roots at infinity Voo(Q) is nonsingular
and contained in V^P).

Theorem 2.1 in Li and Wang (1991) goes one step further. Even when
the set Voo(Q) of roots at infinity of Q(x) = 0 has singularities, if the set is
contained in Voo(P) counting multiplicities, that is, containment in the sense
of scheme theory of algebraic geometry, then Properties 1 and 2 still hold.
To be more precise, let / = < q\,...,qn > and J = < p\,... ,pn > be the
homogeneous ideals spanned by homogenizations of qiS and p,s respectively.
For a point p at infinity, if the local rings Ip and Jp satisfy

ip a jp,

then Properties 1 and 2 hold. However, this hypothesis can be much more
difficult to verify than the singularity of the set. This limits the usefulness
of this approach for practical examples.

2.2. m-homogeneous structure

In Morgan and Sommese (1987&), another interesting approach to Problem
A is developed, using the concept of m-homogeneous structure.

The complex n-space C" can be naturally embedded in Pn. Similarly, the
space Cfcl x • • • x Ckm can be naturally embedded in Pfcl x • • • x Pfcm. A
point ( j / i , . . . , ym) in Cfcl x • • • x Cfcm with y; = (y[% \ ..., y{£), i = l,...,m,
corresponds to a point (z\,..., zm) in Pfcl x • • • x Fkm with z\ = (ZQ , . . . , z%})

and ZQ = 1, i = 1,... ,m. The set of such points in Pfcl x • • • x Pfcm is usually
called the affine space in this setting. The points in Pkl x • • • x Pfcm with at
least one ZQ = 0 are called the points at infinity.

Let / be a polynomial in the n variables x i , . . . ,xn. If we partition the
v a r i a b l e s i n t o m g r o u p s yx = ( x ^ \ ..., x ^ ) , y 2 = (xf\ ..., x ^ ) , . . . , y m =

(x^m , . . . , Xf^') with ki + • • • + km = n and let di be the degree of / with
respect to yi (more precisely, to the variables in yi), then we can define its
m-homogenization as

f ( z u . . . , z m ) = (41*)* x • • • x ( z t

This polynomial is homogeneous with respect to each Z{ = (ZQ ,... ,z^;),

i = 1 , . . . , m. Here Zj = x,l , for j ^ 0. Such a polynomial is said to be
m-homogeneous, and (d\,... ,dm) is the m-homogeneous degree of / . To
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illustrate this definition, let us consider the polynomial Pi(x) in (2.1):

Pi(x) = xi(anXi-\ \-ainxn) + buxi-\ \-binxn + Ci
= a,i\x\ + X\(ai2x2 H 1- ainxn + bn) + bi2x2 ^ h binxn + Cj.

It is sufficient to set y\ = {x\),y2 — (x2, • • • ,xn) and z\ = (x0 , Xi), z2 =

(x0 ,x2,... ,xn). The degree of Pi(x) is two with respect to y\ and is one
with respect to y2. Hence, its 2-homogenization is

Pi{z\,z2) = <H\X\XQ + xix^\ai2x2 ^ h ainxn + f

Q ••• + binxn + C J 4 2 ) ) -

which is homogeneous with respect to both z\ and z2. When the system
(2.1) is viewed in Pn = {(XQ, X\, ..., xn)} with the homogenization

p i ( x o , x i , . . . , x n ) =

+(6nxi H h binxn)x0 + CIXQ = 0,

p n (xo ,x i , . . . , x n ) = Xi(o n ixH \-annxn)

+(bnixi H h bnnxn)x0 + Cnxl = 0,

its total degree, or Bezout number, is d = di • • • dn = 2n. However, when
(2.1) is viewed in P1 x P " - 1 = {(zi,z2) = ( ( x ^ . x i ) , (x o

2 ) ,x 2 , . . . ,xn))} with
the 2-homogenization

Pi(zi,z2) = auxfx^' +xixo
1)(ai2X2H h ainxn + bnxfr>)

+(x o
1 ) ) 2 (6 i 2 x 2 H h blnxn + cix^>),

'• • ( 2 -3 )

Pn(zi,z2) = anix\x^' + ZIZQ (an 2x2 -\ h annxn + bnix^')

+ {x^')2(bn2X2 -\ 1- bnnXn ^'

the Bezout number d is different, and equals the coefficient of a\a^~l in
the product (2ai + a2)" . Thus, d = In. In general, for an m-homogeneous
system

pi(zi,...,zm) = 0,

pn{zi,...,zm) = 0, (2.4)

in Pkl x ••• x Pkm with pi having m-homogeneous degree (d\ , ...,dm),
i = 1 , . . . , n, with respect to (z\,..., zm), then the m-homogeneous Bezout
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number d of the system with respect to (z\,..., zm) is the coefficient of
a^1 x • • • x a%? in the product

(Shafarevich 1977). The classical Bezout Theorem says the system (2.4) has
no more than d isolated solutions, counting multiplicities, in Pfcl x • • • x Pfcm.
Applying this to our example in (2.3), the upper bound on the number of
isolated solutions of (2.3), in affine space and at infinity, is 2n. When solving
the original system in (2.1), we may choose the start system Q(x) = 0 in
the homotopy

H(x, t) = (1 - t)cQ(x) + tP(x)

in random product form to respect the 2-homogeneous structure of P(x).
For instance, we may choose Q(x) = 0 to be

qi(x) = (xi +en)(xi + e12)(x2 H

q2{x) = (xi

qn(x) = (xi + eni)(xi + en2)(xn + en3), (2.5)

which has the same 2-homogeneous structure as P(x) with y\ = (x\) and
V2 = (x2, • • •, xn). Namely, each qt(x) has degree two with respect to y\ and
degree one with respect to y2. It is easy to see that for randomly chosen
complex numbers e^, Q{x) = 0 has 2n solutions in Cn(= C1 x C n - 1 ) (thus,
no solutions at infinity when viewed in P1 x Pn~1). Hence there are 2n paths
starting from 2n starting points for this choice of homotopy. It is shown in
Morgan and Sommese (19876) that Properties 1 and 2 hold for all complex
numbers c, except those lying on a finite number of rays starting at the
origin. Thus, all solutions of P{x) = 0 are found at the end of n + 1 paths.
The number of extraneous paths, 2n — (n + 1) = n — 1, is far less than the
corresponding number, namely 2n — n — 1, arising via classical homotopy
with Q(x) = 0 in (1.3).

More precisely, we state the main theorem in Morgan and Sommese
(19876).

Theorem 2.2 Let Q(x) be a system of equations chosen to have the same
m-homogeneous form as P(x) with respect to a certain partition of the
variables (x\,..., xn). Assume that Q(x) = 0 has exactly the Bezout number
of nonsingular solutions with respect to this partition, and define

H(x, t) = (1 - t)cQ(x) + tP{x),

where t G [0,1] and c G C. If c = rel° for some positive r, then, for all but
finitely many 0, Properties 1 and 2 hold.
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In general, if x = (x\,..., xn) is partitioned into x — (yi, . . . , ym) where

I (!) W\ ( (2) (2)\ / (m) (m)N

with ki + • • • + km — n, and Pi(x) has degree (dj1 , ..., dm) with respect
to (yi,. . . , ym), i = 1,. . . , n, then we may choose the start system Q(x) =

j=ie=i

Clearly, qi{x) has degree (<4 , . . . , dm) with respect to (yi, . . . , ym), the same
degree structure of Pi(x). Further, it is not hard to see that, for random
coefficients, Q(x) has exactly an m-homogeneous Bezout number, with re-
spect to this particular partition x = {y\,..., ym), of nonsingular isolated
solutions in Cn. Those solutions are easy to obtain: the system Q(x) in (2.5)
is constructed according to this principle. In Wampler (1994), the product
in (2.6) is modified along the same principle to be more efficient to evaluate.

In the example above, there are still n — 1 extraneous paths. This is
because, even when it is viewed in P1 x P""1, P(x) has zeros at infinity. One
can see in (2.3) that

S = {{(x£\Xl), (xg\x2,... ,xn)) G P1 x P""1 : 41 } = 0,42) = 0}

is a set of zeros of P(x) at infinity. So, to lower the number of those ex-
traneous paths further, we may choose the start system to have the same
nonsingular variety of roots as P(x) = 0 at infinity, in addition to shar-
ing the same 2-homogeneous structure of P{x). For instance, the system
Q(x) = (qi(x),...,qn(x)) where

qx{x) = (xi + en)(xi + x2-\
q2(x) = (xi

qn(x) = {xi + eni)(xi + xn + en2)

shares the same 2-homogeneous structure of P(x) with yi = (xi) and y2 =
(x2,... ,xn), namely, each qi{x) has degree two with respect to y\ and degree
one with respect to y2. On the other hand, when viewed in (z\, z2) E P1 x
P""1 with z\ = (XQ ,X\) and z2 = (XQ ,X2, ... ,xn), this system has the
same nonsingular variety S at infinity as P(x). The system Q(x) = 0 also
has n+ 1 solutions in Cn for generic e^s, and there are no extraneous paths.
It can be shown (Li and Wang 1991, Morgan and Sommese 1987a) that if
Q(x) = 0 in

H(x, t) = (l- t)cQ(x) + tP(x)
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is chosen to have the same m-homogeneous form as -P(x), and the set of
zeros V00(Q) of Q(x) at infinity is nonsingular and contained in Voo(P),
then Properties 1 and 2 hold for c = reld, r > 0, and for all but finitely
many 9.

The zeros of an m-homogeneous polynomial system P(z\,..., zm) at in-
finity in Fkl x • • • x Fkm may sometimes be difficult to obtain. Nevertheless,
the choice of Q(x) = 0 in Theorem 2.2, assuming no zeros at infinity re-
gardless of the structure of the zeros at infinity of P(x), can still reduce
the number of extraneous paths dramatically simply by sharing the same
m-homogeneous structure of P(x).

Let us consider the system

pi(x) = xi(ona;i-l \-ainxn) + bnxi-\ h binxn + ci = 0,

pn(x) = Xi(OnlXi-\ h annXn) + bn\X\ H \- bnnXn + Cn = 0

in (2.1) again. This time we partition the variables xi,...,xn into y\ —
(xi,x2) and 2/2 = (%3, • • •, xn). For this partition, the 2-homogeneous degree
structure of pi (x) stays the same; namely, the degree of pi (x) is two with
respect to y\ and is one with respect to 2/2 • However, the Bezout number with
respect to this partition becomes the coefficient of a\aQ~2 in the product
(2ai + 02)". This number is

which is greater than the original Bezout number 2n with respect to the
partition y\ = (xi) and j/2 = (x2,---,xn) when n > 2. Apparently, the
Bezout number is highly sensitive to the chosen partition: different ways
of partitioning the variables produce different Bezout numbers. By using
Theorem 2.2, we follow the Bezout number (with respect to the chosen
partition) of curves to obtain all the isolated zeros of P(x). To minimize
the number of extraneous paths, it is certainly desirable to find a partition
which provides the lowest Bezout number possible. In Wampler (1992), an
algorithm to this end was given. By using this algorithm, one can determine,
for example, the partition V = {(&), (c, d, e)} which gives the lowest possible
Bezout number 368 for the Cassou-Nogues system in (1.4). Consequently,
we may construct a random product start system Q(x) to respect the degree
structure of the system with respect to this partition. The start system Q(x)
will have 368 isolated zeros in Cn, and, according to Theorem 2.2, only 368
homotopy curves need to be followed to obtain all 16 isolated zeros of the
Cassou-Nogues system, in contrast to following the 1344 curves, 1344 being
the total degree of the system.

The usefulness of the methods yet developed for Problem A is restricted
to application on an ad hoc basis. The challenge is, in a specific case, to



MULTIVARIATE POLYNOMIAL SYSTEMS AND HOMOTOPY METHODS 411

find a Q(x) that is simple to solve (Property 0) and also produces minimal
extraneous paths.

3. Methods for Problem B

The situation for Problem B is different. A method called the 'cheater's
homotopy' has been developed, which is, in some sense, an optimum solution
procedure; see Li, Sauer and Yorke (1988) and Li, Sauer and Yorke (1989) (a
similar procedure can be found in Morgan and Sommese (1989)). Problem
B asks that the system P(c, x) = 0 be solved for several different values of
the coefficients c. In other words, we think of P(c, x) = 0 as a system with
the same structure or sparsity.

The idea of the method is to establish Properties 1 and 2 theoretically
by deforming a sufficiently generic system (in a precise sense to be given
later) and then to 'cheat' on Property 0 by using a preprocessing step. The
amount of computation per preprocessing step may be large, but is shared
among the several solving characteristics of Problem B.

We begin with an example. Let P(x) be the system

pi{x) = x\x\ + cxx\xi + x\ + c2xi + c3 = 0, ,g ^
\ \ — x\ X2 + X2 + C5 = 0.

This is a system of two polynomial equations in two unknowns x\ and x2. We
want to solve Problem B, that is, we want to solve the system of equations
several times, for various specific choices of c = (ci, . . . , C5).

It turns out that, for any choice of coefficients c, system (3.1) has at most
10 isolated solutions. More precisely, there is an open dense subset S of
C5 such that, for c € S, there are 10 solutions of (3.1). Moreover, 10 is an
upper bound for the number of isolated solutions for all c in C5. The total
degree of the system is 6 x 5 = 30, meaning that if we had taken a generic
system of two polynomials in two variables of degree 5 and 6, there would
be 30 solutions. Thus (3.1), with any choice of c, is a deficient system.

Classical homotopy using the start system Q(x) = 0 in (1.3) produces
d = 30 paths, beginning at 30 trivial starting points. Thus there are (at
least) 20 extraneous paths.

The cheater's homotopy continuation approach begins by solving (3.1)
with randomly chosen complex coefficients c* = (c^,..., C5); let X* be the
set of 10 solutions. No work is saved, since 30 paths need to be followed
and 20 paths are wasted. However, the 10 elements of the set X* are the
seeds for the remainder of the process. Subsequently, for each choice of
coefficients c = (ci, . . . , C5) for which the system (3.1) needs to be solved, we
use the homotopy continuation method to follow a straight-line homotopy
from the system with coefficient c* to the system with coefficient c, and we
follow the 10 paths beginning at the 10 elements of X*. Thus Property 0,
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the existence of trivial starting points, is satisfied. The fact that Properties
1 and 2 are also satisfied is the content of Theorem 3.1 below. Thus for
each fixed c, all 10 (or fewer) isolated solutions of (3.1) lie at the end of
10 smooth homotopy paths beginning at the seeds in X*. After the initial
step of finding the seeds, the complexity of all further solvings of (3.1) is
proportional to the number of solutions 10, rather than the total degree 30.

Furthermore, this method, unlike the method for Problem A, requires no
a priori analysis of the system. The first preprocessing step of finding the
seeds establishes a sharp upper bound on the number of isolated solutions
as a by-product of the computation; further solving of the system uses the
optimal number of paths to be followed.

We earlier characterized a successful homotopy continuation method as
having three properties: triviality, smoothness, and accessibility (Properties
0, 1 and 2, respectively). Given an arbitrary system of polynomial equations,
such as (3.1), it is not too hard (through generic perturbations) to find a
family of systems with the last two properties. The problem is that one
member of the family must be trivial to solve, or the path-following cannot
begin. The idea of the cheater's homotopy is simply to 'cheat' on this part
of the problem, and run a preprocessing step (the computation of the seeds
X*) which gives us Property 0 (triviality) in a roundabout way. Hence the
name, the 'cheater's homotopy'.

A statement of the theoretical result we need follows. Let

• • ,CM,XI, ... ,xn) = 0,

Pn(ci,..-,CM,Xi,...,Xn) = 0, (3.2)

be a system of polynomial equations in the variables c\,..., CM, x\,... ,xn.
For each choice of c = (c\,... ,CM) in CM, this is a system of polynomial
equations in the variables x\,... ,xn. Let d be the total degree of the system
for a generic choice of c.

Theorem 3.1 Let c belong to CM. There exists an open, dense, full-
measure subset U of cn+M such that for (b\,..., 6*, cf,..., c*M) € U, the
following holds.

(a) The set X* of solutions x = (x\,..., xn) of

n ('y-, T \ — n (n* z 1 * T»-« <V \ _U h* C\ (*X ^l\

consists of do isolated points, for some do < d.
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(b) Properties 1 and 2 (smoothness and accessibility) hold for the homo-
topy

H ( x , t ) =

P ( ( l - t)c[ + t c i , . . . , ( 1 - t)c*M + t c M , X l , . . . , x n ) + ( 1 - t)b* ( 3 . 4 )

where b* = (6J,..., 6*). It follows that every solution of P{x) = 0 is
reached by a path beginning at a point of X*.

A proof of Theorem 3.1 can be found in Li et al. (1989). The theorem is
used as part of the following procedure. Let P(c, x) = 0 as in (3.2) denote
the system to be solved for various values of the coefficients c.

Cheater's homotopy procedure

(1) Choose complex numbers {b\,..., 6*,cJ,..., c*M) at random, and use
the classical homotopy continuation method to solve Q(x) = 0 in (3.3).
Let do denote the number of solutions found (this number is bounded
above by the total degree d). Let X* denote the set of do solutions.

(2) For each new choice of coefficients c = (ci, . . . , CM), follow the do paths
defined by H(x,t) = 0 in (3.4), beginning at the points in X*, to find
all solutions of P(c, x) = 0.

In step (1) above, for random complex numbers (cf,..., c*M), using clas-
sical homotopy continuation methods to solve Q(x) = 0 in (3.3) may itself
sometimes be computationally expensive. It is desirable that those numbers
do not have to be random. For illustration, consider the linear system

\-cinxn =b\,

H \-CnnXn = bn, (3.5)

which may be considered as a polynomial system with each equation having
degree one. For generic QjS, (3.5) has a unique solution which is not available
right away. However, if we choose Cjj = 6{j (the Kronecker delta), the
solution is obvious.

For this purpose, an alternative is suggested in Li and Wang (1992). When
a system P(c, x) = 0 with a particular parameter c° is solved, this c° may be
chosen arbitrarily instead of being chosen randomly; then for any parameter
c G CM consider the nonlinear homotopy

H(a, x, t) = P ( ( l - [ t - t ( l - t)a])c° + (t - t(l - t)a)c, x) = 0. (3.6)

It is shown in Li and Wang (1992) that for a randomly chosen complex a
the solution paths of (3.6) emanating from the solutions of P(c°, x) = 0 will
reach the isolated solutions of P(c,x) = 0 under the natural assumption
that, for generic c, P(c,x) has the same number of isolated zeros in Cn.
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The most important advantage of the homotopy in (3.6) is that the para-
meter c° of the start system P(c°, x) = 0 is arbritrary so long as P(c°, x) = 0
has the same number of solutions as P(c, x) = 0 for generic c. Therefore,
in some situations, when the solutions of P(c, x) = 0 are easily available for
certain c°, the system P(c°,x) = 0 may be used as the start system (3.6)
and the extra effort of solving P(c, x) = 0 for a randomly chosen c would be
saved.

To finish, we give a more non-trivial example of the procedure described
in this section.

Consider the indirect position problem for revolute-joint kinematic ma-
nipulators. Each joint is associated with a one-dimensional parametrization,
namely the angular position of the joint. If all angular positions are known,
then of course the position and orientation of the end of the manipulator
(the hand) are determined. The indirect position problem is the inverse
problem: given the desired position and orientation of the hand, find a set
of angular parameters for the (controllable) joints which will place the hand
in the desired state.

The indirect position problem for six joints is reduced to a system of eight
nonlinear equations in eight unknowns in Tsai and Morgan (1985). The
coefficients of the equations depend on the desired position and orientation,
and a solution of the system (an eight-vector) represents the sines and cosines
of the angular parameters. Whenever the manipulator's position is changed,
the system needs to be resolved with new coefficients. The equations are too
long to repeat here; see the appendix of Tsai and Morgan (1985). Suffice
it to say that it is a system of eight degree-two polynomial equations in
eight unknowns which is rather deficient. The total degree of the system is
28 = 256, but there are at most 32 isolated solutions.

The nonlinear homotopy of (3.6) requires only 32 paths to solve the system
with different sets of parameters (Li and Wang 1990, 1992). The system
contains 26 coefficients, and a specific set of coefficients is chosen for which
the system has 32 solutions. For subsequent solving of the system, for any
choice of the coefficients c i , . . . ,C26, all solutions can be found at the end
of exactly 32 paths, by using nonlinear homotopy in (3.6) with randomly
chosen complex a.

4. Polyhedral homotopy

In the last few years, a major computational breakthrough has occurred in
the solution of polynomial systems by the homotopy continuation method.
The new method takes great advantage of the Bernshtem theory, which
gives a much tighter bound, in general, for the number of isolated zeros
of a polynomial system in the algebraic tori (C*)n, where C* = C\{0}.
In Huber and Sturmfels (1995), this root count was used to actually find
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all the isolated zeros of the polynomial system by establishing polyhedral
homotopies. For a given polynomial system, the new method solves a new
polynomial system with the same monomials, but with randomly chosen
coefficients. The new system is then used as the start system in the cheater's
homotopy described in Section 3 to solve the original polynomial system. In
a way, the new method uses the method for Problem B to solve Problem A.
The new algorithm is very promising. In particular, for polynomial systems
without special structure, the new algorithm substantially outperformed
other methods.

We take the following example (Huber and Sturmfels 1995) as our point of
departure. Setting x = (xi,X2), consider the system P(x) = (p\(x),P2(x)),
where

Pi = C11X1X2 + C12X1 + C13X2 + C14 = 0, and

V2 = C2\X\x\ + C22x\x2 + C23 = 0. (4.1)

Here, c^ € C* = C\{0}. The monomials {1,0:10:2, xi, X2} in p\ can be
written as X1X2 = x\x2, x\ = x\x^, x2 = x\x\ and 1 = x^x®. The set of
their exponents

5i = {(0,0), (1,0), (1,1), (0,1)}

is called the support of pi, and its convex hull Q\ = conv(5i) is called the
Newton polytope of p\. Similarly, P2 has support 52 = {(0,0), (2,1), (1,2)}
with Newton polytope Q2 = conv(52)- Using multi-index notation xq =
x'px'2 where 9 = (91,92), we may rewrite (4.1) as

P\{x) = ]T cqx
q and p2{x) = ^ cqx

q.

The Minkowski sum R\ + R2 of polytopes R\ and R2 is defined as

R1 + R2 = {n + r2:ri £ Ri and r2 € R2}

(polytopes Q\, Q2 and Qi + Q2 for (4.1) are shown in Figure 2). Now, let
us consider the area of the convex polytope A1Q1 + A2Q2 with non-negative
variables Ai and A2 for the system (4.1). From elementary geometry, the
area of a triangle on the plane with vertices u, v and w equals

det u — v
w — v

(4.2)

Thus, to compute the area /(Ai, A2) of A1Q1 + X2Q2, one may partition the
polytope into a collection of triangles, A±,A2, ••-,A}Z. These triangles are
mutually disjoint, and the vertices take the form A191 + A292, with 91 € Q\
and 92 G Q2- In other words, the vertices of these triangles coincide with
the vertices of the polytope \\Q\ + X2Q2- It follows from (4.2) that the
area of each Ai is a second-degree homogeneous polynomial in Ai and A2.
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c(l,D

(0,0)

f (2,1)

e (0,0)

d + e
(0,1)

(2,3)

a + e
(0,0)

b + e
(1,0)

Fig. 2.

Therefore, /(Ai, A2), as a sum of the areas of Ai, ...,Ak, is also a second-
degree homogeneous polynomial in Ai and A2. Writing

/(Ai, A2) = aiAf + a2\\ + ai2AiA2,

the coefficient a\2 of A1A2 in / is called the mixed volume of the polytopes
Q\ and Q2. We denote it by M(Q\,Q2), or M(S\,S2) when no ambiguity
exists.

Clearly,

an = / ( l , l ) - / ( l , 0 ) - / ( 0 , l )
= area of (Qi + Q2) — area of (Qi) — area of ($2)-
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For (4.1), it is easy to see that the areas of Q\ + Q2, Qi and Q2 are 6.5, 1
and 3.5 respectively. Therefore, au = 6.5 — 1 — 1.5 = 4. On the other hand,
one can also easily see that system (4.1) has two zeros (0, 0,1) and (0,1,0)
at infinity in P2; hence it can have at most 4 isolated zeros in C2, or in (C*)2

in particular. According to the Bernshtein theory, this is not a coincidence:
the number of isolated zeros of (4.1) in (C*)2, counting multiplicities, is
bounded above by the mixed volume of its Newton polytopes. Further,
when the coefficients in (4.1) are chosen generically, then these two numbers
are exactly the same.

To state the Bernshtein theory in a more general form, we first allow
monomials x\l • • • x^"to have negative exponents; such a polynomial is called
a Laurent polynomial. With x = (x\, • •., xn), let p(x) = (pi(x),... ,pn(x))
be a system of n Laurent polynomials with supports S\, •.., Sn respectively
in Zn. The corresponding Newton polytopes are Qi, • • • ,Qn- Following
reasoning similar to that described above, the n-dimensional volume of the
polytope X1Q1 + • • • + \nQn, with non-negative variables Ai,. . . , An, is a
homogeneous polynomial in Ai,. . . , An of degree n. The coefficient of Ai x
A2 x • • • x \n in this polynomial is denned as the mixed volume of Qi,..., Qn,
denoted by M(Qi,..., Qn) or M(Si,..., Sn).

Theorem 4.1 (Bernshtein 1975) The number of isolated zeros, count-
ing multiplicities, of P(x) = (pi(x),... ,pn(x)) in (C*)n is bounded above by
the mixed volume A4(S\, ..., Sn). For generically chosen coefficients, the
system P(x) = 0 has exactly M(Si, ..., Sn) roots in (C*)n.

In Canny and Rojas (1991), this bound was nicknamed the BKK bound
after its inventors, Bernshtein (1975), Khovanskii (1978) and Kushnirenko
(1976). It turns out that this root count is very helpful in using the polyhed-
ral homotopy to solve sparse polynomial systems, sparse in the sense that
each polynomial in the system contains few terms. This sparseness is by
no means a big restriction. After all, almost all the polynomial systems we
encountered in application belong to this category.

An apparent limitation of the above theorem is that it counts only the
roots of a polynomial system in (C*)n, but not necessarily all roots in affine
space Cn. This problem was first attempted in Canny and Rojas (1991) and
Rojas (1994) by introducing the notion of the shadowed sets, and a bound
in Cn was obtained. Later, a significantly tighter bound was discovered in
the following theorem.

Theorem 4.2 (Li and Wang 1996) The number of isolated zeros in Cn,
counting multiplicities, of a polynomial system P(x) = (pi(x),... ,pn(x))
with supports Si,...,Sn is bounded above by the mixed volume
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This theorem was further extended in several ways by Huber and Stur-
mfels (1997) and Rojas and Wang (1996). When 0 € 5, for alH = 1, . . . , n,
so that each pi has a nontrivial constant term, then Theorem 4.2 implies
that the BKK bound of Theorem 4.1 gives the number of zeros of the poly-
nomial system in Cn. In fact, the proof of Theorem 4.2 uses the important
fact that generic constant perturbations of a polynomial system can only
have isolated zeros in (C*)n, and all isolated zeros become nonsingular.

Now consider the system (4.1) again. To compute the area of Q\ + Q2,
we can certainly subdivide Q\ + Q2 as we wish. The subdivision may not
consist of all triangles as before. However, the subdivision shown in Figure
3 - call it subdivision B - is of particular interest. By a cell of a subdivision
we mean any member of the subdivision. It can be easily verified that all
the cells in subdivision B have the following special properties.

Proposition 4.1

(a) Each one is a Minkowski sum of the convex hull of a subset C\ in S\
and the convex hull of a subset C2 in 52-

(b) For i = 1,2, conv(Cj) is a simplex of dimension #(C,) — 1, where #(Cj)
is the number of points in Q .

(c) Simplices conv(Ci) and conv(C2) are complementary to each other
in the sense that dim(conv(Ci)) + dim(conv(C2)) = dim(conv(Ci) +

In light of properties (a) and (b), each cell C = conv(Ci) + conv(C2)
in B can be identified as a cell of type (I1J2), where l\ = dim(conv(Ci))
and h = dim(conv(C2)). Property (c) mainly says that simplices conv(Ci)
and conv(C2) are 'linearly independent', for otherwise their Minkowski sum
would be lower dimensional.

In Rn, consider the n-dimensional volume of the Minkowski sum of sim-
plices A\,...,An with dimensions ki,...,kn, respectively, where ki > 0
for 1 < i < n and k\ + k^ + • • • + kn = n. For i = 1 , . . . , n, let Ai =
convJQo , • • •, <Zfc } and let V be the n x n matrix whose rows are q? — %
for 1 < i < n and 1 < j < k^. Notice that any O-dimensional simplex con-
sists of only one point, and therefore contributes no rows to V. It can be
shown that

Voln(Ai + - + 4 ) = , , l , , | de tF | . (4.3)
k\\ • • • kn\

Here, we use Voln to denote the n-dimensional volume; of course, Vol2(C)
represents the area of C. Applying (4.3) to cell ® = conv{a, d} + conv{e, q}
in subdivision B, we have

Vol2(cell (P = det
d — a
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Now, when Q\ and Q2 are scaled by Ai and A2, respectively, cell (I) becomes
conv{Aia, A2C?} + conv{A2e, A25} and its volume becomes

det
\\d — \\a\

)
(
V

det
d — a

x A1A2

= (volume of cell (T) before scaling) x A1A2.

From the definition of the mixed volume, it follows that the volume of the ori-
ginal cell (T) constitutes part of the mixed volume of Qi and Q2 • On the other
hand, after scaling, cell (2) in subdivision B becomes conv{Aia, \\c, \\d} +
{A25} and its volume becomes, according to (4.3),

1
det

\\d — Xaa
1

det , x A
d — a \

= (volume of cell (2) before scaling) x

Apparently, the volume of the original cell (2) has no contribution to the
mixed volume of Q\ and Q%.

In summary, only cells of type (1,1) contribute to the mixed volume
Q2) of Qi and Qi and, therefore,

) Q2) = the sum of the volumes of cells of type (1,1)

= volume of cell ® + volume of cell @ + volume of cell ©

= 1 + 2 + 1 = 4.

The type of subdivisions of Q1 + Q2 that share the same special properties
in Proposition 4.1 as subdivision B is called the fine mixed subdivision. To
state a formal definition with less notation, we omit '+ ' and 'conv', except
where absolutely necessary. For instance, {S\,... ,Sn) will replace Q\ + • • • +
Qn(= conv(Si) + • • • + conv(5n)) as the key object.

Let 5 = (Si,..., Sn) be a sequence of finite subsets of Z", whose union
affinely spans Rn. By a cell of S we mean an n-tuple C = (Cq,. . . , Cn) of
subsets Ci C S{, for i = 1 , . . . , n. Define

type(C) := (dim(conv(Ci)),..., dim(conv(Cn))),

conv(C) := conv(Ci) + • • • + conv(Cn),

and Vol(C):=Vol(conv(C)). A face of C is a subcell F = (Fx,..., Fn) of C
where Fj C C, and some linear functional a 6 (M")v attains its minimum
over d at F,, for i = 1 , . . . ,n. We call such an a an inner normal of F.
If F is a face of C then conv(Fj) is a face of the polytope conv(Ci) for
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c + f

b + f

a + e b + e

Fig. 3. Subdivision B for Qx + Q2

Definition 4.1 A fine mixed subdivision of S is a set
cells such that:

of

(a) for all j = 1 , . . . , m, dim(conv(C^^)) = n
(b) conv(C^))nconv(C^fc)) is a proper common face of conv(C^)) and

when it is nonempty for j ^ k
(c) UJli conv(C^)) = conv(S)

(d) for j = 1 , . . . , m, write C^ = (c[j),..., C{J]). Then, each conv(Cp))

is a simplex of dimension #Cj- — 1, and for each j ,

dim(conv(Cp))) + • • • + dim(conv(C^))) = n.

As we have discussed for the special system (4.1), when a polynomial
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system P(x) = (p\(x),... ,pn(x)) in C[x\,...,xn] is given with support S —
(S\,..., Sn), where Si is the support of pi, and if we can find a fine mixed
subdivision for S, then the mixed volume M(S\,..., Sn) will be the sum
of the volumes of cells of type (1, . . . ,1). Thus formula (4.3), together with
condition (d) above, makes the volume computation of this type of cell quite
easy.

A fine mixed subdivision for S = (Si,..., Sn) can be found by the fol-
lowing standard process: choose real-valued functions wW : Si —> R, for
i = 1,. . . , n; call the n-tuple ui = (co^\ ... ,LU^) a lifting function on S, and
say that to lifts Si to its graph St = {(q,u^(q)) : q € Si} C Rn+1. This
notation is extended in the obvious way: S = (Si,..., Sn), Qi =conv(Srj),
Q = Qi + • • • + Qn, etc. Let Su be the set of cells {C} of S which satisfy

(a) dim(conv((7)) = n,
(b) C is a facet (an n-dimensional face) of S whose inner normal a e

(]Rn+1)v has positive last coordinate.

In other words, conv(C) is a facet of the lower hull of Q. The fact is that
when the lifting function u is chosen generically, Sw always gives a fine mixed
subdivision for S (Gel'fand, Kapranov and Zelevinskii 1994, Lee 1991). The
subdivision B in Figure 3 for system (4.1) is, in fact, induced by the lifting
w = ((0,1,1,1), (0,0,0)), that is,

5 = ({(a, 0), (b, 1), (c, 1), (d, 1)}, {(e, 0), (/, 0), (g, 0)})

(see Figure 4). While this lifting does not seem so generic, it is sufficient to
give a fine mixed subdivision.

Let us return to our main issue: how can this Bernshtem theory help us to
solve polynomial systems by homotopy continuation methods? Actually, the
lifting function introduced above has already provided a nonlinear homotopy.
This ingenious idea is due to Huber and Sturmfels (1995).

For a given polynomial system P(x) = (pi(x),... ,pn(x)) in C[x\,..., xn],
to find all isolated zeros of P(x) in Cn instead of (C*)n, we first, according
to Theorem 4.2, augment the monomial x°(= 1) to those p,s which do not
have constant terms. We then choose the coefficients of all the monomials
in P(x) at random. For simplicity, we abuse notation and retain the name
P(x) = (pi(x),... ,pn(x)) for this system. We wish to solve this system
first, and then, by using the cheater's homotopy introduced in Section 3, it
can be used as the start system for solution of the original system by linear
homotopy.

Let Si be the support of pi, so that

Pi(x) = ^2 cqx
q, i = l,...,n,

where q = (qi,..., qn) and xq = x91 • • • x^. Let t denote a new complex
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3(0,1,1)
c (1,1,1)

Fig. 4.

variable and consider the polynomials in n + 1 variables given by

Pi(x,t) = (4.4)

where each a>j : Si —> R for i = 1 , . . . ,n is chosen generically. The support
of pi is now Si = {q = (q,Ui(q)) : q G Si] with Newton polytope Qi =
conv(Si). The function u = (u>i,..., u>n) can be viewed as a lifting function
on S = (Si,..., Sn) which lifts Si to Si. The induced subdivision S^ on S is
then a fine mixed subdivision and the mixed volume M.(S\,..., Sn) equals
the sum of the volumes of cells of type ( 1 , . . . ,1) in S&. Recall that, for each
t G (0,1], the isolated zeros of the system

P(x,t) = (pi(x,t),...,pn(x,t))
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are all nonsingular and, by the Bernshtein theory, the total number of those
zeros is equal to Ai(Si,..., Sn). We may write these zeros as x1 ( £ ) , . . . , xk(t)
where k = M(Si,... ,Sn), so P(xj(t),t) = 0 for each t G (0,1] and j =
l,...,k.

Let C = (Ci, . . . , Cn) be a cell of type (1, . . . ,1) in S^. For i = 1, . . . , n,
let d = {q\ ,q\ } C Si and Vi = q\ — ^ . Since Su is a fine mixed
subdivision, {v\,..., vn} is linearly independent; otherwise, dim(conv(Ci)) +
• • • + dim(conv(Cn)) < n. So,

det

On the other hand, C = (C\,..., Cn) is a facet of S = (5i , . . . , Sn) whose in-
ner normal a € (Mn+1)v has positive last coordinate. Let a = (a\,..., an, 1)
and a = (an,... ,an), so a = (a, 1). Let x(t) represent general solution
curves x1^),... ,xk(t) of P(x,t) — 0. Setting x(t) = (xi(t),... ,xn(t)), let

taiyi(t) =

tanyn{t) = xn(t).

Or, simply, tay(t) = x(t). Substituting this into (4.4) yields

Pi = £

- V
— /

(4.5)

Let Pi = mmqeSi(&,q)- Since C is a facet of S, Ci = {q\ ,q\ } is a face
of Si and d = (a, 1) also serves as an inner normal of Ci. It follows that

(d, q\ ') = (a, q\ ') = /3j and (a,q) > Pi for q G £>i\Ci. Hence, factoring out
t& in (4.5), we have

J1)
% 1 , . . . , 71 ,

where ĉ o = c (o), = c (i) and

Ri(y,t) =

Evidently, Ri(y,0) = 0 for each i, since {&,q) — Pi > 0 for q G Si\Ci. Now,
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consider the homotopy H(y, t) = (hi(y, i),..., hn(y, t)) = 0 where

, t) = , t), i = l,...,n.

The solutions (y(t),t) of this homotopy satisfy

(0)
3 +

(1)

n = o, j = l , . . . , r a ,

(4.6)

(4.7)

at t = 0. For t ^ 0, they agree with the zeros of (4.5) and, since tay(t) = x(t)
for y(t) in (4.5), they also agree with the zeros of (4.4) at t = 1. In other
words, y(\) of (4.6) are solutions of P(x) = 0. So, by following the solution
curves (y(t),t) of the homotopy H(y,t) = 0 defined by (4.6), we may reach
the solutions of P(x) = 0, at t = 1. Of course, we need to solve the system
(4.7) at t = 0 to begin with. It can be shown that for randomly chosen Cij,
for i = 1 , . . . , n and j = 0,1, system (4.7) has

det = the volume of C

solutions in (C*)n; recall that V{ = q\ — q\ for i = 1 , . . . , n. To see how to
solve (4.7) in (C*)n, we rewrite (4.7) as

yvi = h,

VVn = bn, (4.8)

where b\ • 62 • • • • • bn 7̂  0, and let

V =

For brevity, write yv = (yVl,..., yVn) and b = (bi,...,bn). Then (4.8)
becomes

yyv =b. (4.9)

With this notation, one can easily check that for a n n x n integer matrix U,
the following holds:
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When V is a lower nonsingular triangular integer matrix

vn

(4.8) becomes

V =

y?"

0

(4.10)

Obviously, by forward substitution, (4.10) has |i>n| x ••• x \vnn\ = | det T/|
solutions. In general, we may lower triangularize V by multiplying on the
right by an integer matrix U with | det C7| = 1, which can be found by the
following procedure. Firstly, the greatest common divisor d of two integers
a and b is

d = gcd(a,b) = ka + Ib, for certain k,l € Z.

Let

k I
b a

Then det(M) = 1 and

M
k

b
d

I
a
d

In view of this, a series of n x n matrices like M can be used to produce
zeros in matrices in a similar way to the use of Givens rotations for the QR
factorization. For instance, if a and b are the zth and jth components of an
n-dimensional vector v, that is,

v =
ith

jth,

then we set
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k I
1

1

so that det(U(i,j, a, b)) = 1 and the jth component of U(i,j, a, b)v will van-
ish. Thus, a product of a series of matrices in the form of U(i,j, a, b) can be
chosen to upper triangularize a matrix from the left. To lower triangularize
V, let U be an integer matrix with | det U\ = 1 such that UTVT is upper
triangular; hence, VU is lower triangular.

Now, let zu = y and substitute it into (4.9); we have

y = (zu) = zvu = b. (4.11)

Since VU is lower triangular, z = {z\,..., zn) in (4.11) can be solved and the
number of solutions is equal to | det(VU)\ = | det(F)| • | det(f/)| = | det(F)|.
Consequently, we have as many solutions of y = (yi,..., yn) in (4.9).

In summary, to find all the isolated zeros of a polynomial system P(x) =
(pi(x),... ,pn(x)) in C[£i,... ,xn), we augment x° to those pis without con-
stant terms first, then equip all the monomials in P{x) with generic coeffi-
cients. In the same notation, we construct P(x,t) = (pi(x,t),... ,pn(x,t)),
where

Pi{x,t) =

Here Si is the support of pi and the lifting function u = (a>i,... ,con) is
chosen at random. Then each cell C of type (1, . . . ,1) in the induced fine
mixed subdivision S^ provides a set of k starting points for the homotopy
H(y,t) = 0 defined by (4.6), where k denotes the volume of C. Following
the solution curves of this homotopy with those k starting points from 0 to
1, we reach k of the solutions of P{x) — 0. By Bernshtem's theory, the total
number of isolated zeros of P(x) equals the sum of the volumes of all cells
of this type. We are thus able to find all the isolated zeros of P(x), and this
modified system can then be used as a start system of the linear homotopy
to find all the isolated zeros of the original system.
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What seems to be missing in the process described above is a construct-
ive way of finding cells of type ( 1 , . . . ,1) in the induced fine mixed subdivi-
sion 5^ corresponding to the lifting to. This issue was discussed in Emiris
(1994), Verschelde (1996) and Verschelde, Gatermann and Cools (1996), pa-
pers which provided different ways to deal with this problem. At present,
the most efficient technique for finding those cells is still undetermined.

The algorithm has been implemented with remarkable success. Recall
that the Cassou-Nogues system in (1.4) has total degree 1344 and optimal
m-homogeneous Bezout number 368. This system has 16 isolated zeros and
its mixed volume equals 24. So, by using polyhedral nonlinear homotopies,
one need only follow 24 paths to reach all isolated zeros of the system.

Originally, a more general version of the above process was presented in
Huber and Sturmfels (1995). If some of the pis have the same supports,
then cells of the 'appropriate' types, instead of cells of type ( 1 , . . . , 1), can
serve the same purpose. The method can be made much more efficient by
taking this special structure into consideration. For simplicity, we describe
here only the special, and more common, case where the supports of the piS
are all different.

Polyhedral homotopies have been applied to solve symmetric polynomial
systems by means of constructing symmetric polyhedral homotopies (Ver-
schelde and Cools 1994, Verschelde and Gatermann 1995). On the other
hand, the Bernshtein theory is also used for constructing random product
start systems for linear homotopies with various degrees of success (Li, Wang
and Wang 1996, Li and Wang 1994).

5. Numerical considerations

5.1. Protective coordinates

As described in Section 1, solution paths of (1.2) that do not proceed to a
solution of P(x) = 0 in Cn diverge to infinity: a very poor state of affairs for
numerical methods. However, there is a simple idea from classical mathem-
atics which improves the situation. If the system (1.2) is viewed in Pn, the
diverging paths are simply proceeding to a 'point at infinity' in projective
space. Since projective space is compact, we can force all paths, including
the extraneous ones, to have finite length by using projective coordinates.

For P(x) = (pi(xi,.. .,xn),... ,pn(xi,.. .,xn)) = 0, cons ider t h e s y s t e m
of n + 1 equations in n + 1 unknowns after homogenization,

Pi(xQ,...,xn) = 0,

P:
pn(x0,...,Xn) = 0,
aoxo -\ h anxn - 1 = 0,
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where CLQ, • • • ,an are complex numbers. When a start system

Q(x) = {q\{xi,... ,xn),... ,qn(xi,... ,xn)) = 0

is chosen, we also homogenize Q(x) and consider the system

q~i(xo,... ,xn) = 0,

Q- \ :

qn(x0,...,xn) = 0,
. aoxo -\ + anxn — 1 = 0.

We then use the classical homotopy continuation procedure to follow all the
solution paths of the homotopy

H(xQ, XI, ..., x n , t) = ( 1 - t ) c Q ( x o , ...,xn) + tP(x0,..., x n ) .

For almost every choice of oo, • • •, an, the paths stay in C"+1. It only remains
to ignore solutions with XQ = 0. Of the remaining solutions with XQ ^ 0, it
is easy to see that x = (X\/XQ, ... ,xn/xo) is the corresponding solution of
P(x) = 0.

A similar technique is described in Morgan and Sommese (1987a), where
it is called a 'projective transformation'. It differs from the above in the
following way. Instead of increasing the size of the problem from n x n to
(n + 1) x (n + 1), they implicitly consider solving the last equation for z0

and substituting in the other equations, essentially retaining n equations
in n unknowns. Then the chain rule is used for the Jacobian calculations
needed for path following. In many cases, it seems that this may create
extra work. Suppose, for example, that the tenth equation in the system is
Pio(x) = xf—X1X2; its homogeneous version is pio(x) = XJ—XQXIX2. Since XO

is now considered as a function of all other variables, the partial derivative of
pio with respect to every variable is suddenly nonzero. This results in added
computation for each Jacobian evaluation, and is particularly problematic
if the original problem is large and/or sparse.

A more advanced technique, the projected Newton method, was suggested
in Shub and Smale (1993). A typical step to follow a solution curve in Cn of
homotopy H(x,t) — 0, a system of n equations in n + 1 variables, consists
of two major steps: prediction and correction. The prediction step locates
a point (x(°\to). For fixed to, H(x,to) — 0 is a system of n equations in n
unknowns. With starting points x^°\ Newton's iteration,

x(m+l) = x(m) _ [fl-x(a;(m))to)]-lfr(a;(m)) t o ^ m = 0, 1, . . .

can be applied to find the solution of H(x, to) = 0. If x^ is suitably
chosen by the prediction step, the iteration will converge to a solution of
H(x,to) — 0 close to x^°\ This is called the correction step. To follow
the solution curve in projective space Pn after homogenization, H(x,t) = 0
becomes H(x,t) = 0 and, for fixed to, H(x,to) = 0 is now a system of n



MULTIVARIATE POLYNOMIAL SYSTEMS AND HOMOTOPY METHODS 429

equations in n + 1 variables: XQ, ... ,xn. It is, therefore, unsuitable for the
classical Newton iteration at the correction step. However, for any nonzero
constant c £ C, x and ex in C"+1 are considered to be equal in Pn, whence
the magnitude of x in Cn+1 is no longer significant in P™. Therefore it is
reasonable to project every step of the Newton iteration onto the hyperplane
perpendicular to the current point in Cn+1. At x^ G Cn+1, we now have
n + 1 equations in n + 1 unknowns, namely

and one step of Newton's iteration for this system can be used to obtain
J(m+1) = ~(m) _ [ ^ ( j H

The efficiency of this strategy, known as the projected Newton iteration,
when applied to following the homotopy curve in Pn, is intuitively clear. See
Figure 5. It frequently allows a bigger step size at the prediction stage.

= 1

Fig. 5.

For practical considerations, we revise the above procedure as follows. At
t = t\, let

x(h) = (xo(ti),xi(t1),...,xn(tn)) e P "

be the corresponding point on a homotopy curve (x(t),t) of H(x(t),t) = 0.
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Let

a:i(ti)| = max(|zo(*i)|, • • •, \xn(h)\).

We then fix the variable xi in H(x, t) = 0 by the number Xi(t\), and there-
after, H(xo,..., Xi-i, Xj+i, . . . , xn, £) = 0 becomes a system of n equations
in n + 1 variables. A standard prediction-correction procedure can now be
applied to arrive at a new point (xo(t2), • • •, ajj_ 1(^2), Xi+i(t2), • • • ,xn(t2)),
which satisfies

H(x0,... ,Xi-i,xi+i,... ,xn,t2) = 0.

Letting x(t2) = (xo(t2),..., Xi-i(t2), Xi(h), xi+i(t2),..., xn(t2)), the point
on the curve (x(t),t) for t = t2 is obtained. A major advantage of this revi-
sion is that the size of the problem remains n x n throughout the procedure.

5.2. Real homotopy

Most polynomial systems arising in applications consist of polynomials with
real coefficients, and most often the only desired solutions are real solutions.
This suggests the use of real homotopies. That is, when the coefficients of
the target polynomial system P(x) = 0 we want to solve are all real, we
may choose a start system Q(x) = 0 with real coefficients, ensuring that
the homotopy H(x, t) = 0 has real coefficients for all t. Thus, for fixed
t, if a: is a solution of H(x, t) = 0, so is its conjugate x. Accordingly, a
major advantage of real homotopy is that following a complex homotopy
path (x(s),t(s)) provides its conjugate homotopy path (x(s),t(s)) as a by-
product without any further computation. On the other hand, although the
homotopy H(x, t) is still a map from C" x [0,1] to Cn, when a real homotopy
path is traced, we may consider H(x,t) as a map from Rn x [0,1] to E",
and hence the computation can be achieved in real arithmetic. In this way,
a considerable reduction in computation is achieved.

There are numerous computational problems associated with the path fol-
lowing algorithms of real homotopies. In particular, when real homotopies
are used, in contrast to the complex homotopy, bifurcation of some of the
homotopy paths is inevitable. Hence, efficient algorithms must be developed
to identify the bifurcation points and to follow the path after bifurcation.
We can no longer parametrize the homotopy path of H(x,t) = 0 by t con-
ventionally. Instead, the arclength s can be used as a parameter, and both
x and t are considered to be independent variables. We now have

H(x(s),t(s)) = 0

and

Hxx + Hti = 0,
dx • dt

where x = —, i = — and Ilill2 + lil2 = 1. It is easy to see that bifurca-
ds as
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tions can only occur at turning points, points (x*,t*) for which i = 0 and
Hx(x*,t*) = 0 is singular. To identify the bifurcation point, let a® = (x^Q\to)
be a point on the homotopy path F with i(ao) > 0. After a standard Euler
prediction with step size ho and Newton corrections (Allgower and Georg
1990, 1993), we obtain a point a\ = {x^l\t\) on F. When the tangent vec-
tor (x,i) is calculated at a\ with i(a\) < 0, a turning point a* = (x*,t*)
apparently exists in this situation (see Figure 6).

Fig. 6.

To identify a*, we take the following procedure.

(1) Let hi be the solution of the equation ...

h •, . ho — h ..
i ( ) + 2 t7

ho

Taking the Euler prediction at ao with step size h\ followed by Newton
corrections, we obtain a new point 02 on F.

(2) If i(oa) > 0, we replace ao by OQ, and replace ho by the real part of
the inner product of {a\ — OQ) and the unit tangent vector at aq,. If
Ka2) < 0> we replace ai by QQ, and ho by h\.

(3) (3) Repeat step 1 until i{ai) is sufficiently small. Then, aq, will be taken
as a bifurcation point a* = (x*,t*).

When the bifurcation point a* is identified, in order to follow the bifurca-
tion branches, tangent vectors of the branches need to be characterized. It
turns out that for the following special kind of turning point the bifurcation
phenomenon is rather simple.

Definition 5.1 A singular point {x* ,t*) e C " x [0,1] is said to be a quad-
ratic turning point of H(x, t) = 0 if

(1) Ra,nkRHx(x*,t*) = 2n-2
(2) RuDkR[Hx(x*,t*),Ht(x*,t*)] = 2n-l
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(3) For y ECn\ {0} satisfying Hx(x*,t*)y = 0, we have

RankR[Hx(x*,t*),Hxx(x*,t*)yy) = In.

Here, Rank# denotes the real rank.

Proposition 5.1 (Li and Wang 1994) Let (x*,t*) be a quadratic turn-
ing point. Then, there are only two branches of solution paths F and I"
passing through (x*,t*). If 4> is the tangent vector of the path F at (x*,t*),
then the tangent vector of F' is the direction of i<f> (see Figure 7).

When F is a real path, the assertion of this proposition can be considered
as a special case of Allgower (1984) and Henderson and Keller (1990). The
most general version, where F and x* may both be complex, was proved in
Li and Wang (1993).

Fig. 7.

To follow the bifurcation branch F' at a quadratic turning point, we con-
sider the following three situations.

(1) F is a real path.
Then, 0 is real and i(fi is pure imaginary. Apparently, the bifurcation
branch F' consists of a complex path and its complex conjugacy. We
need only to follow one of them with tangent vector icf> or — i<f>.

(2) F is a complex path and (x*,t*) is real.
Then, F consists of complex conjugate pairs (x, t) and (x,t) for each
t <t*. The tangent vector at (x*,t*) is

(x(Sl),t(sl))-(x(s2),t{s2))
- •0 Si — S2

= lim

where x(s2) = x(si),t(si) = £($2) is clearly pure imaginary. Hence,
icj) is real. Consequently, the bifurcation branch F' consists of two real
paths. We may follow them in real space R" x [0,1] with real tangent
vectors i(f> and —i<j> respectively.
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(3) F is a complex path and x* is complex.
The bifurcation branch V, in this case, consists of two complex solution
paths. They are not conjugate to each other. We may follow them with
tangent vector i<f> and — i<p respectively.

It was conjectured in Brunovsky and Meravy (1984) and proved in Li and
Wang (1993) that, generically, real homotopies contain no singular points
other than a finite number of quadratic turning points.

5.3. Software

Several software packages dedicated to solving polynomial systems by ho-
motopy continuation are publicly available. HOMPACK (Morgan, Sommese
and Watson 1989) and CONSOL (Morgan 1987) are written in FORTRAN
77. HOMPACK is a general package for homotopy continuation with a
polynomial driver. It has been parallelized to various architectures (Allison,
Chakraborty and Watson 1989, Harimoto and Watson 1989). The code for
CONSOL is contained in Morgan (1987), Appendix 6. The programs pss
(Malajovich, software) and Pelican (Huber, software) are written in C. The
pss contains facilities for parallel continuation and Pelican provides the poly-
hedral methods. The package PHC and MVC (Verschelde 1995) is written
in Ada and compiled on three different hardware platforms, for which ex-
ecutables are available on request. Two main features of this package are
the wide variety of homotopy methods and the powerful facilities for mixed
volume computation.

Nonetheless, a more efficient and user-friendly code including all the fea-
tures described in this article is still under development. In particular, a
better understanding of the convex geometry with a clever use of linear pro-
gramming techniques will make the polyhedra homotopy method described
in Section 3 much more powerful.
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