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Examples

I The root of polynomials

f(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 = 0

I Polynomial system 
p1(x1, x2, · · · , xn) = 0

p2(x1, x2, · · · , xn) = 0

· · · · · · · · ·
pn(x1, x2, · · · , xn) = 0

I Some transcendental equation for example

x = tan x

or systems.

I Equations obtained from the discretization of nonlinear ordinary

differential equations (ODEs) or partial differential equations (PDEs).
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Iterations

I Iterative methods

Object: construct sequence {xk}∞k=1, such that xk converge to a fixed

vector x∗, and x∗ is the solution of the linear system.

I General iteration idea:

If we want to solve equations

g(x) = 0,

and the equation x = f(x) has the same solution as it, then construct

xk+1 = f(xk).

If xk → x∗, then x∗ = f(x∗), thus the root of g(x) is obtained.
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Bisection method

I Suppose we have interval [a, b] and function f(x)

f(a)f(b) < 0

then there exists a root c ∈ [a, b] such that f(c) = 0.

I In order to minimized the worst case possibility, the section point must be
a+b
2

. So the length of the interval will be halved successively.

I A linear convergence method C = 1
2
.

a bx x1x2 3

x4

f(x)
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Bisection method

Algorithm

1. Set initial interval a0 = a, b0 = b, k = 0;

2. Choose m = ak+bk
2

. If f(m) = 0, over; if f(m)f(ak) < 0, set

ak+1 = ak, bk+1 = m

otherwise

ak+1 = m, bk+1 = bk

and set k = k + 1.

3. Repeat the above procedure until |bk − ak| ≤ ε0.
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Bisection method

Example: compute the minimal positive solution of the equation

cos(x) +
1

1 + e−2x
= 0

with bisection method.
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Newton’s method

I Taylor expansion at current iteration point x0

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·

I Local linear approximation

f(x) ≈ g(x) = f(x0) + f ′(x0)(x− x0)

I Compute the root of g(x), we have

x1 = x0 −
f(x0)

f ′(x0)

I Newton’s method

xk+1 = xk −
f(xk)

f ′(xk)
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Newton’s method

I Graphical explanation

f(x)

xx
k+1 k

I Example: compute the minimal positive solution of the equation

cos(x) +
1

1 + e−2x
= 0

with Newton’s method.



One dimensional case High dimensional case

Newton’s method

Theorem

If f ′(x∗) 6= 0, then Newton’s method converges with second order if x0 is close

to x∗ sufficiently.

Drawbacks of Newton’s method:

1. one needs to compute the derivative which is a huge cost (especially for

high dimensional case).

2. The initial state x0 must be very close to x∗.



One dimensional case High dimensional case

Secant method

I To overcome the drawback of Newton’s method on the evaluation of the

derivative, introduce the secant method.

I Suppose we have iteration point xk−1, xk then

f ′(xk) ≈ f(xk)− f(xk−1)

xk − xk−1

I Secant method

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)

I Secant method needs two starting points.
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Secant method

I Graphical explanation

f(x)

xk xk−1k+1
x

I Example: compute the minimal positive solution of the equation

cos(x) +
1

1 + e−2x
= 0

with secant method.
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Secant method

Theorem

If f ′(x∗) 6= 0, then Secant’s method converges with order
√

5+1
2

≈ 1.618 if

x0, x1 is close to x∗ sufficiently.

Secant method can NOT be applied to high dimensional case directly.
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Newton’s method

I Taylor expansion at current iteration point x0

F (x) = F (x0) +∇F (x0) · (x− x0) + · · ·

I Local linear approximation

F (x) ≈ G(x) = F (x0) +∇F (x0) · (x− x0)

where ∇F is the Jacobian matrix defined as (∇F )ij = ∂Fi
∂xj

.

I Compute the solution of G(x) = 0, then

x1 = x0 −∇F (x0)
−1 · F (x0)

I Newton’s method

xk+1 = xk −∇F (xk)−1 · F (xk)
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Newton’s method

I Example: compute one solution of the equation{
(x1 + 3)(x3

2 − 7) + 18 = 0

sin(x2e
x1 − 1) = 0

with Newton’s method, initial [−0.5, 1.4].
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Newton’s method

Theorem

If ∇F (x∗) is nonsingular, then Newton’s method converges with second order

if x0 is close to x∗ sufficiently.

Drawbacks of Newton’s method:

1. one needs to compute the Jacobian matrix which is a huge cost.

2. The initial state x0 must be very close to x∗.
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Broyden’s method

I Consider the local linear approximation of F at xk

F (x) ≈ F (xk) +∇F (xk)(x− xk)

I Take x = xk−1, and define

gk = F (xk−1)− F (xk), Ak = ∇F (xk), yk = xk−1 − xk

then we have

Ak · yk = gk

I Similar as quasi-Newton’s method for handling Ak, take

Ak = Ak−1 + Ck

where Ck is a correction matrix.
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Broyden’s method

I Take Ck as a rank one matrix

Ck = ukyT
k

where uk is undetermined.

I Thus we have

Ak−1 · yk + ukyT
k yk = gk

then

uk =
gk −Ak−1 · yk

yT
k yk

i.e. we have

Ak = Ak−1 +
gk −Ak−1 · yk

yT
k yk

yT
k
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Remark on Broyden’s method

I For the rank one correction of a matrix

B = A + xyT

If A is invertible, and yT Ax 6= −1, we have

B−1 = A−1 − A−1xyT A−1

1 + yT A−1x

I The formula above gives a efficient strategy to implement the

quasi-Newton’s method

xk+1 = xk −A−1
k · F (xk)

with A−1
k is known.

I Broyden’s method is a locally superlinear convergence method.
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Introduction to homotopy method

I In order to overcome the difficulty of the local convergence, we consider

the homotopy method.

I Introduce a linear homotopy

H(x, t) = (1− t)F 0(x) + tF (x)

If t = 0, H(x, 0) = F 0(x) which is often chosen a easily solved system.

If t = 1, H(x, 1) = F (x) which is the equations we would like to solve;

I Some choices of F 0(x):

F 0(x) = A(x− x0), A is nonsingular

F 0(x) = F (x)− F (x0)
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Introduction to homotopy method

I Set up a sequence

0 = λ0 < λ1 < · · · < λn = 1

The gap

max |λi − λi−1| ≤ Tolerance

I If we have the solution xi for system H(x, λi), then as an initial point,

compute the solution xi+1 for system H(x, λi+1) by Newton-like method.

Because λi − λi+1 is small, it is supposed xi is close to xi+1.

I This method is very successful in solving the roots for polynomial system.
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Homotopy method

I Graphical interpretation (^B¹�)

1

2

3

4

I Difficulties: The continuation pathway may be very complicate.

1. Turning point: case 3 in figure.

2. Going to infinity: case 1 in figure.

3. Bifurcation point: case 4 in figure.
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Homework assignment

Compute one solution of the equation{
(x1 + 3)(x3

2 − 7) + 18 = 0

sin(x2e
x1 − 1) = 0

with Broyden’s method, initial [−0.5, 1.4].
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