

Lecture 9 Solving nonlinear system

Weinan E^{1,2} and Tiejun Li²

¹ Department of Mathematics,
Princeton University,
weinan@princeton.edu

² School of Mathematical Sciences,
Peking University,
tieli@pku.edu.cn
No.1 Science Building, 1575

Outline

One dimensional case

High dimensional case

Examples

- ▶ The root of polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0$$

- ▶ Polynomial system

$$\begin{cases} p_1(x_1, x_2, \dots, x_n) = 0 \\ p_2(x_1, x_2, \dots, x_n) = 0 \\ \dots \quad \dots \quad \dots \\ p_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

- ▶ Some transcendental equation for example

$$x = \tan x$$

or systems.

- ▶ Equations obtained from the discretization of nonlinear ordinary differential equations (ODEs) or partial differential equations (PDEs).

Iterations

- ▶ Iterative methods

Object: construct sequence $\{x_k\}_{k=1}^{\infty}$, such that x_k converge to a fixed vector x^* , and x^* is the solution of the linear system.

- ▶ General iteration idea:

If we want to solve equations

$$g(x) = \mathbf{0},$$

and the equation $x = f(x)$ has the same solution as it, then construct

$$x_{k+1} = f(x_k).$$

If $x_k \rightarrow x^*$, then $x^* = f(x^*)$, thus the root of $g(x)$ is obtained.

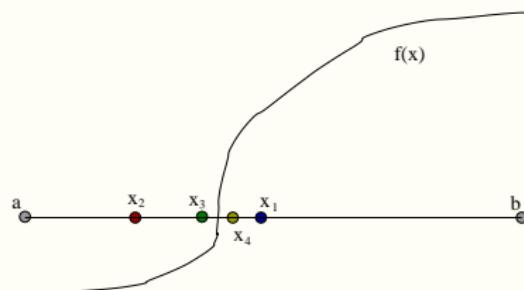
Bisection method

- ▶ Suppose we have interval $[a, b]$ and function $f(x)$

$$f(a)f(b) < 0$$

then there exists a root $c \in [a, b]$ such that $f(c) = 0$.

- ▶ In order to minimize the worst case possibility, the section point must be $\frac{a+b}{2}$. So the length of the interval will be halved successively.
- ▶ A linear convergence method $C = \frac{1}{2}$.



Bisection method

Algorithm

1. Set initial interval $a_0 = a, b_0 = b, k = 0$;
2. Choose $m = \frac{a_k + b_k}{2}$. If $f(m) = 0$, over; if $f(m)f(a_k) < 0$, set

$$a_{k+1} = a_k, \quad b_{k+1} = m$$

otherwise

$$a_{k+1} = m, \quad b_{k+1} = b_k$$

and set $k = k + 1$.

3. Repeat the above procedure until $|b_k - a_k| \leq \epsilon_0$.

Bisection method

Example: compute the minimal positive solution of the equation

$$\cos(x) + \frac{1}{1 + e^{-2x}} = 0$$

with bisection method.

Newton's method

- ▶ Taylor expansion at current iteration point x_0

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots$$

- ▶ Local linear approximation

$$f(x) \approx g(x) = f(x_0) + f'(x_0)(x - x_0)$$

- ▶ Compute the root of $g(x)$, we have

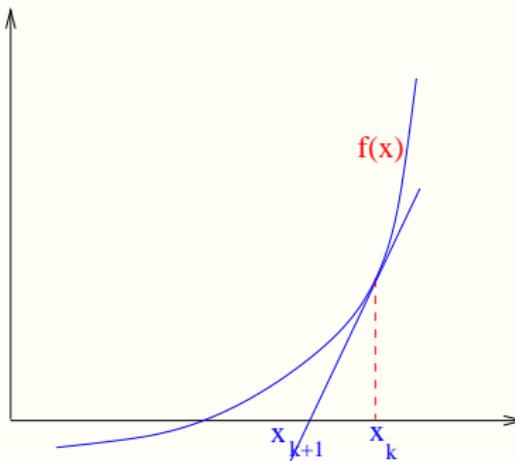
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

- ▶ Newton's method

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Newton's method

- ▶ Graphical explanation



- ▶ Example: compute the minimal positive solution of the equation

$$\cos(x) + \frac{1}{1 + e^{-2x}} = 0$$

with Newton's method.

Newton's method

Theorem

If $f'(x^*) \neq 0$, then Newton's method converges with **second order** if x^0 is close to x^* sufficiently.

Drawbacks of Newton's method:

1. one needs to compute the **derivative** which is a huge cost (especially for high dimensional case).
2. The initial state x_0 must be very close to x^* .

Secant method

- ▶ To overcome the drawback of Newton's method on the evaluation of the derivative, introduce the secant method.
- ▶ Suppose we have iteration point x_{k-1}, x_k then

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

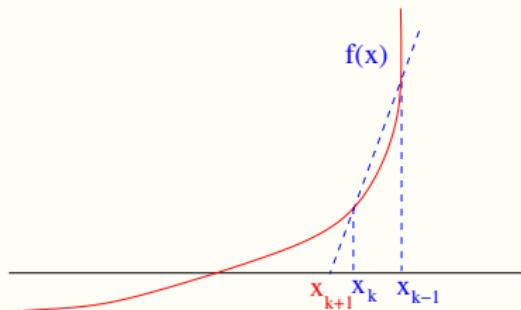
- ▶ Secant method

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

- ▶ Secant method needs two starting points.

Secant method

- ▶ Graphical explanation



- ▶ Example: compute the minimal positive solution of the equation

$$\cos(x) + \frac{1}{1 + e^{-2x}} = 0$$

with secant method.

Secant method

Theorem

If $f'(x^*) \neq 0$, then Secant's method converges with order $\frac{\sqrt{5}+1}{2} \approx 1.618$ if x_0, x_1 is close to x^* sufficiently.

Secant method can NOT be applied to high dimensional case directly.

Outline

One dimensional case

High dimensional case

Newton's method

- ▶ Taylor expansion at current iteration point \mathbf{x}_0

$$\mathbf{F}(\mathbf{x}) = \mathbf{F}(\mathbf{x}_0) + \nabla \mathbf{F}(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) + \dots$$

- ▶ Local linear approximation

$$\mathbf{F}(\mathbf{x}) \approx \mathbf{G}(\mathbf{x}) = \mathbf{F}(\mathbf{x}_0) + \nabla \mathbf{F}(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$

where $\nabla \mathbf{F}$ is the Jacobian matrix defined as $(\nabla \mathbf{F})_{ij} = \frac{\partial F_i}{\partial x_j}$.

- ▶ Compute the solution of $\mathbf{G}(\mathbf{x}) = 0$, then

$$\mathbf{x}_1 = \mathbf{x}_0 - \nabla \mathbf{F}(\mathbf{x}_0)^{-1} \cdot \mathbf{F}(\mathbf{x}_0)$$

- ▶ Newton's method

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \nabla \mathbf{F}(\mathbf{x}_k)^{-1} \cdot \mathbf{F}(\mathbf{x}_k)$$

Newton's method

- ▶ Example: compute one solution of the equation

$$\begin{cases} (x_1 + 3)(x_2^3 - 7) + 18 = 0 \\ \sin(x_2 e^{x_1} - 1) = 0 \end{cases}$$

with Newton's method, initial $[-0.5, 1.4]$.

Newton's method

Theorem

If $\nabla F(x^*)$ is nonsingular, then Newton's method converges with **second order** if x^0 is close to x^* sufficiently.

Drawbacks of Newton's method:

1. one needs to compute the **Jacobian matrix** which is a huge cost.
2. The initial state x_0 must be very close to x^* .

Broyden's method

- ▶ Consider the local linear approximation of \mathbf{F} at \mathbf{x}_k

$$\mathbf{F}(\mathbf{x}) \approx \mathbf{F}(\mathbf{x}_k) + \nabla \mathbf{F}(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k)$$

- ▶ Take $\mathbf{x} = \mathbf{x}_{k-1}$, and define

$$\mathbf{g}_k = \mathbf{F}(\mathbf{x}_{k-1}) - \mathbf{F}(\mathbf{x}_k), \quad \mathbf{A}_k = \nabla \mathbf{F}(\mathbf{x}_k), \quad \mathbf{y}_k = \mathbf{x}_{k-1} - \mathbf{x}_k$$

then we have

$$\mathbf{A}_k \cdot \mathbf{y}_k = \mathbf{g}_k$$

- ▶ Similar as quasi-Newton's method for handling \mathbf{A}_k , take

$$\mathbf{A}_k = \mathbf{A}_{k-1} + \mathbf{C}_k$$

where \mathbf{C}_k is a correction matrix.

Broyden's method

- ▶ Take C_k as a rank one matrix

$$C_k = u_k y_k^T$$

where u_k is undetermined.

- ▶ Thus we have

$$A_{k-1} \cdot y_k + u_k y_k^T y_k = g_k$$

then

$$u_k = \frac{g_k - A_{k-1} \cdot y_k}{y_k^T y_k}$$

i.e. we have

$$A_k = A_{k-1} + \frac{g_k - A_{k-1} \cdot y_k}{y_k^T y_k} y_k^T$$

Remark on Broyden's method

- ▶ For the rank one correction of a matrix

$$\mathbf{B} = \mathbf{A} + \mathbf{x}\mathbf{y}^T$$

If \mathbf{A} is invertible, and $\mathbf{y}^T \mathbf{A} \mathbf{x} \neq -1$, we have

$$\mathbf{B}^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1} \mathbf{x} \mathbf{y}^T \mathbf{A}^{-1}}{1 + \mathbf{y}^T \mathbf{A}^{-1} \mathbf{x}}$$

- ▶ The formula above gives a efficient strategy to implement the quasi-Newton's method

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{A}_k^{-1} \cdot \mathbf{F}(\mathbf{x}_k)$$

with \mathbf{A}_k^{-1} is known.

- ▶ Broyden's method is a locally superlinear convergence method.

Introduction to homotopy method

- ▶ In order to overcome the difficulty of the local convergence, we consider the homotopy method.
- ▶ Introduce a linear homotopy

$$\mathbf{H}(\mathbf{x}, t) = (1 - t)\mathbf{F}_0(\mathbf{x}) + t\mathbf{F}(\mathbf{x})$$

If $t = 0$, $\mathbf{H}(\mathbf{x}, 0) = \mathbf{F}_0(\mathbf{x})$ which is often chosen a easily solved system.

If $t = 1$, $\mathbf{H}(\mathbf{x}, 1) = \mathbf{F}(\mathbf{x})$ which is the equations we would like to solve;

- ▶ Some choices of $\mathbf{F}_0(\mathbf{x})$:

$$\mathbf{F}_0(\mathbf{x}) = \mathbf{A}(\mathbf{x} - \mathbf{x}_0), \quad \mathbf{A} \text{ is nonsingular}$$

$$\mathbf{F}_0(\mathbf{x}) = \mathbf{F}(\mathbf{x}) - \mathbf{F}(\mathbf{x}_0)$$

Introduction to homotopy method

- ▶ Set up a sequence

$$0 = \lambda_0 < \lambda_1 < \dots < \lambda_n = 1$$

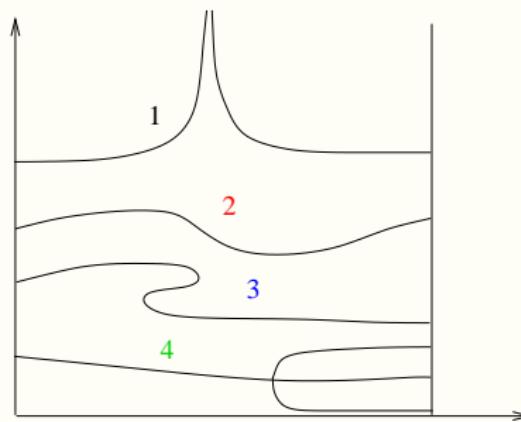
The gap

$$\max |\lambda_i - \lambda_{i-1}| \leq \text{Tolerance}$$

- ▶ If we have the solution \mathbf{x}_i for system $\mathbf{H}(\mathbf{x}, \lambda_i)$, then as an initial point, compute the solution \mathbf{x}_{i+1} for system $\mathbf{H}(\mathbf{x}, \lambda_{i+1})$ by Newton-like method. Because $\lambda_i - \lambda_{i+1}$ is small, it is supposed \mathbf{x}_i is close to \mathbf{x}_{i+1} .
- ▶ This method is very successful in solving the roots for polynomial system.

Homotopy method

- ▶ Graphical interpretation (顺藤摸瓜)



- ▶ Difficulties: The continuation pathway may be very complicate.
 1. Turning point: case 3 in figure.
 2. Going to infinity: case 1 in figure.
 3. Bifurcation point: case 4 in figure.

Homework assignment

Compute one solution of the equation

$$\begin{cases} (x_1 + 3)(x_2^3 - 7) + 18 = 0 \\ \sin(x_2 e^{x_1} - 1) = 0 \end{cases}$$

with Broyden's method, initial $[-0.5, 1.4]$.