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Review and applications

Singular value decomposition

Theorem (Singular value decomposition)
Let A € R™*™, then there exist U € R™*™, V € R™™™ and 3 € R™*" such
that

A=UXV

where 3 = diag(c1,...,0.) € R™*". r is the rank of A, o; > 0 are called

singular values of A, UTU = I,VTV = I are orthogonal matrices.

It is straightforward that
ATA=Vv"E"sVv = v'diag(ot,...,02,0,...,0)V

i.e. the singular value o; = \/X\;(AT A). Similarly we have o; = /\;(AA7T).
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About singular values

> To find the orthogonal matrices U and V is equivalent to find the
eigenvectors of matrices AT A and AAT.
» If A is symmetric, the singular value matrix X = D, where

D = diag(M\1,..., M, 0,...,0). ) is the eigenvalues of A, and V = U7

» The 2-norm of a matrix

HAH2 = Amax(ATA) = Omax-

The 2-condition number

v

Conda(4) = || 4|z} A"}z = Z22=.

min
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Generalized inverse of a matrix

> In general, if A is singular, A™* doesn't exist! If A € R™*", there is no
definition for A™1.

> We define the Moore-Penrose generalized inverse of A as
AT =V Tdiag(or ', ...,0.%,0,...,00U"

for arbitrary matrix A!
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Least square problems

> Least square problem 1: Ax = b may have more than one solution. If it
has more than one solution we wish to pick one with ||z||2 is the smallest,
i.e., to find x € S = {&|Ax = b} such that

min ||zl
x

> Least square problem 2: if it has no solution we wish to pick one which is

the solution of the following minimization problem
min ||Axz — bl|2
x
> In any case we have the following solution by generalized inverse

xz=A"b.
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Multivariate linear regression

» Formulation
Suppose we have a list of experimental data for a multi-variate function
Y = f(x1,22,...,Zm), after taking the zero-th and first order terms, we

approximate Y as
Y=00+pbiz1+ 4+ BmTm

The problem is how to recover 3; from the data?

> Naively consider the linear system
Y = Bo+ B1zi1n + -+ + BnTim

and i = 1,...,n. It may have no solution or have infinite solutions. This

is reduced to the least square problem for

XB=Y
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Multivariate linear regression

» We have
1 11 Ti2 - Tim /30
1 21 z22 Tom P
X = B =
1 Inl ITn2 o Inm ﬂm

> Least square solution

B=X"Y
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Principal component analysis (PCA)

> Object: For a multi-component problem, is it possible to catch very few
but very important characters to reduce the scale or dimension of the
problem?

> Answer: Yes! PCA can do this job!
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Principal component analysis (PCA)

» PCA
Suppose we have experimental data to n characters(#F4E) of ¢ units( 2 Jz)
for a biological species, which can be proposed a matrix under experiments

or investigations as

Yir Y2 - Yin
Yy — Y21 Y22 - Yon
Y1 Y2 Ytn

» Object: Intuitively, PCA is to find vectors

a; = (au,azi,am) (Z = oo ‘,n) such that
Fi;=a1y, + a2y, + - +any,, t=1,...,n

are perpendicular each other, and pick up some large components among

|[F;]|2. The analysis of a; will give the main components of the problem.
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Principal component analysis (PCA)

A geometrical interpretation of PCA for 2D coordinates analysis

random distribution

» A mathematical rigorous interpretation (Projection maximization)

N
X Z(ml ca))=a"X"Xa

ma.
llall2=1 4=
=1

» Courant-Fisher’s theorem gives PCA.
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Principal component analysis (PCA)

» Step 1: non-dimensionalization
t
_ 1 .
Calculate the mean g; = - Zykj, ji=12....n
k=1
t

Z(ykj_gj)27 i=12...,n

k=1

Calculate variance d; =

Transformation z;; = y”d;yj, 1=1,2...,t 7=1,2...,n
]

Non-dimensionalization is used to eliminate the effect of choice of unit (#£L).
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Principal component analysis (PCA)

> Step 2: Define principal component vector as
F;=ax1+axze+ -+ anitn, 1=1,....,n

where x; = (214, Z2i,...,2t). In order the vectors are independent each
other, we need
T . .
Fi Fj =0, ¢ # J

aij

az;

FiTFj = (a1 azi ... am‘)XTX . =0

Anj
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Principal component analysis (PCA)

> Step 3: There exists orthogonal matrix A such that
ATXTX A =diag(A1, ..., \n)

and A\, >0 (k=1,...,n). We have if ¢ # j, the vectors a;, a; in the i-th

and j-th column will satisfy the independent condition, and
[Fill2 = Ai

> Step 4: Take the eigenvectors a; corresponding to the first m biggest

eigenvalues (A1 > A2 > --+ > Ay > -+ ), and make linear combination
Fi :a1im1+a2im2+---+animn, = 1,2,...,771

We will obtain the first m principal component vectors.
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PCA and SVD

» If X has SVD
X=UXV

then we have A = V7T and
vxX'xvi =3x"xm
» To find the first m principal component vectors is equivalent to find the

first m principal (biggest) singular value and corresponding right singular

vectors.
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QR for symmetric matrix

Tri-diagonalization of symmetric matrix

> First transform symmetric A into tri-diagonal matrix T

a1 B

B1 o2

by a sequence of Householder transformations.

> The transformation procedure is the same as that for upper Hessenburg

form with symmetry argument.
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Tri-diagonalization of symmetric matrix

> The approach is to apply Householder transformation to A column by

column.

a1 a2 - Qln

a1 az2 Tt a2n
A =

anl  QGn2 - QAnn

> Suitably choose Householder matrix H 1 such that

aii a’u
a21 0/21
1 0
Hl . asi — 0 s Hl =]
. . 0 H;
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Tri-diagonalization of symmetric matrix

» Now we have

! !
ayp Qa2 0
! ! !
Q21 G2 - QAgp
A =H,AH, =
! !
0 An2 e Ann

by symmetry of A and A;.

> The next step is the same for upper Hesseburg form. Finally we have

tridiagonal form T and T has the same eigenvalues as A.
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Implicit shifted QR for symmetric tridiagonal matrix

Now we have symmetric tridiagonal T' with diagonal entries
a;(i =1,...,n) and off-diagonal entries 8;(¢ = 1,...,n — 1), one shifted
QR step is

T—-pl =QR

T =RQ + uI
In fact

T=QTTQ

If we can find Q, T directly, we doesn't need the intermediate steps.

In fact
Q'TQ=Q"(QR+u)Q=RQ+ul=T.
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Implicit shifted QR for symmetric tridiagonal matrix

» Find Givens matrix G1 = G(1,2;61) such that

(=) ()-(3)

» Define
T, = G{TG,.
We have

* * *

* * *

T, = * ok ok
*
* ok

» We should zero out the term *. That only needs another Givens matrix

G2 multiplication.
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Implicit shifted QR for symmetric tridiagonal matrix

» We can find Givens matrix G2 = G(2, 3; 02) such that the term * would

be zero out.

» Define
Ty =G5 G TG 1G>
We have
* %
* ok % *
T, = x %

* ok

» We should zero out the term * again. That needs a Givens matrix

multiplication again.
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Implicit shifted QR for symmetric tridiagonal matrix

» Sequentially we have

* %
x  x k
T, o= * % *
*
* x ok
» Finally we obtain
* %
x ok k
T = * %
*
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Implicit shifted QR for symmetric tridiagonal matrix

> lterating for T' to obtain the next QR step!

> In general the shift is chosen as the famous Wilkinson's shift: If the

S — n-1 Bn-a
ﬁnfl Qo
then choose 1 one of the eigenvalues of S which is more closer to a,.
1= o + 06 —sign(0),/6% + B85 _4

_ aptanp_1

submatrix of T'

> The convergence will be very fast with this shift.
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Numerical SVD

Implicit QR method for singular value computation

» First transform A into upper bidiagonal matrix B

di fa
da

fn
dn

by a sequence of Householder transformations

UL .. ) Ve )
A —5 eliminate the first column — eliminate the first row —

Up . . B
—= eliminate the n-th column =
0

> A has the same singular values as B.



Numerical SVD

Implicit QR method for singular value computation

> First transform A into upper bidiagonal matrix B
di f2
da

fn
dn

by a sequence of Householder transformations

U .. . v .. .
A —5 eliminate the first column — eliminate the first row —
Up . . B
—= eliminate the n-th column =
0
» Now we have

B
Un"'UlAVI"'Vn1:< 0 >
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Implicit shifted QR method for singular value computation

» Basic idea: Implicitly apply shifted QR method to symmetric tridiagonal
matrix BT B but without forming it.

> Steps:
> Determine the shift u. This is equivalent to the shift step for BT B.
Wilkinson shift: set u is the eigenvalue of

d%71 +f,,27(,1 dn—lfn
dnflfn d% +f,2L

closer to d2 + f2 to make the convergence faster.
> Find Givens matrix G1 = G(1,2;0) such that

(=) (5)-(3)

and compute BG].
This is equivalent to apply G step for BT B.
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Implicit shifted QR method for singular value computation

» We have

BG: = *

*

*

so we should zero out the term *. We want to find P> and G5 such that
P,(BG1)G: is bidiagonal and Gze1 = e1.
This is equivalent to apply G step for GT BT BG, .
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Implicit shifted QR method for singular value computation

> It is not difficult to find P2 and G2 by Givens transformation and we have

* %
%
PsBG.Gs = ¥ %
*
*

so we should zero out the term *. We want to find P3 and G3 such that
P3P>;BG1G2Gs is bidiagonal and Gse; = e;, i = 1,2.
These steps should be repeated until BG, becomes bidiagonal! It is

equivalent to find G; steps for symmetric tridiagonal matrix.
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Implicit shifted QR method for singular value computation

> Finally we have

P, 1---PsBGy1---Gp_1= *

> lterate until the off-diagonal entries converge to 0, and the diagonal

entries converge to singular values!
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