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Singular value decomposition

Theorem (Singular value decomposition)

Let A ∈ Rm×n, then there exist U ∈ Rm×m, V ∈ Rn×n and Σ ∈ Rm×n such

that

A = UΣV

where Σ = diag(σ1, . . . , σr) ∈ Rm×n. r is the rank of A, σi > 0 are called

singular values of A, UT U = I, V T V = I are orthogonal matrices.

It is straightforward that

AT A = V T ΣT ΣV = V T diag(σ2
1 , . . . , σ2

r , 0, . . . , 0)V

i.e. the singular value σi =
√

λi(A
T A). Similarly we have σi =

√
λi(AAT ).
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About singular values

I To find the orthogonal matrices U and V is equivalent to find the

eigenvectors of matrices AT A and AAT .

I If A is symmetric, the singular value matrix Σ = D, where

D = diag(λ1, . . . , λr, 0, . . . , 0). λi is the eigenvalues of A, and V = UT .

I The 2-norm of a matrix

‖A‖2 =

√
λmax(A

T A) = σmax.

I The 2-condition number

Cond2(A) = ‖A‖2‖A−1‖2 =
σmax

σmin
.
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Generalized inverse of a matrix

I In general, if A is singular, A−1 doesn’t exist! If A ∈ Rm×n, there is no

definition for A−1.

I We define the Moore-Penrose generalized inverse of A as

A+ = V T diag(σ−1
1 , . . . , σ−1

r , 0, . . . , 0)UT

for arbitrary matrix A!
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Least square problems

I Least square problem 1: Ax = b may have more than one solution. If it

has more than one solution we wish to pick one with ‖x‖2 is the smallest,

i.e., to find x ∈ S = {x|Ax = b} such that

min
x

‖x‖2

I Least square problem 2: if it has no solution we wish to pick one which is

the solution of the following minimization problem

min
x

‖Ax− b‖2

I In any case we have the following solution by generalized inverse

x = A+b.
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Multivariate linear regression

I Formulation

Suppose we have a list of experimental data for a multi-variate function

Y = f(x1, x2, . . . , xm), after taking the zero-th and first order terms, we

approximate Y as

Y = β0 + β1x1 + · · ·+ βmxm

The problem is how to recover βi from the data?

I Naively consider the linear system

Yi = β0 + β1xi1 + · · ·+ βmxim

and i = 1, . . . , n. It may have no solution or have infinite solutions. This

is reduced to the least square problem for

Xβ = Y
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Multivariate linear regression

I We have

X =


1 x11 x12 · · · x1m

1 x21 x22 · · · x2m

· · · · · · · · · · · · · · ·
1 xn1 xn2 · · · xnm

 , β =


β0

β1

...

βm


I Least square solution

β = X+Y
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Principal component analysis (PCA)

I Object: For a multi-component problem, is it possible to catch very few

but very important characters to reduce the scale or dimension of the

problem?

I Answer: Yes! PCA can do this job!
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Principal component analysis (PCA)

I PCA

Suppose we have experimental data to n characters(A�) of t units(ü�)

for a biological species, which can be proposed a matrix under experiments

or investigations as

Y =


y11 y12 · · · y1n

y21 y22 · · · y2n

· · · · · · · · · · · ·
yt1 yt2 · · · ytn


I Object: Intuitively, PCA is to find vectors

ai = (a1i, a2i, ani) (i = 1, . . . , n) such that

F i = a1iy1 + a2iy2 + · · ·+ aniyn, i = 1, . . . , n

are perpendicular each other, and pick up some large components among

‖F i‖2. The analysis of ai will give the main components of the problem.
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Principal component analysis (PCA)

A geometrical interpretation of PCA for 2D coordinates analysis

I A mathematical rigorous interpretation (Projection maximization)

max
‖a‖2=1

N∑
i=1

(xi · a)2 = aT XT Xa

I Courant-Fisher’s theorem gives PCA.
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Principal component analysis (PCA)

I Step 1: non-dimensionalization

Calculate the mean ȳj =
1

t

t∑
k=1

ykj , j = 1, 2 . . . , n

Calculate variance dj =

√√√√ t∑
k=1

(ykj − ȳj)2, j = 1, 2 . . . , n

Transformation xij =
yij − ȳj

dj
, i = 1, 2 . . . , t; j = 1, 2 . . . , n

Non-dimensionalization is used to eliminate the effect of choice of unit (ü ).
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Principal component analysis (PCA)

I Step 2: Define principal component vector as

F i = a1ix1 + a2ix2 + · · ·+ anixn, i = 1, . . . , n

where xi = (x1i, x2i, . . . , xti). In order the vectors are independent each

other, we need

F T
i F j = 0, i 6= j

i.e.

F T
i F j = (a1i a2i . . . ani)X

T X


a1j

a2j

...

anj

 = 0
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Principal component analysis (PCA)

I Step 3: There exists orthogonal matrix A such that

AT XT XA = diag(λ1, . . . , λn)

and λk ≥ 0 (k = 1, . . . , n). We have if i 6= j, the vectors ai, aj in the i-th

and j-th column will satisfy the independent condition, and

‖F i‖2 = λi

I Step 4: Take the eigenvectors ai corresponding to the first m biggest

eigenvalues (λ1 > λ2 > · · · > λm > · · · ), and make linear combination

F i = a1ix1 + a2ix2 + · · ·+ anixn, i = 1, 2, . . . , m

We will obtain the first m principal component vectors.
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PCA and SVD

I If X has SVD

X = UΣV

then we have A = V T , and

V XT XV T = ΣT Σ

I To find the first m principal component vectors is equivalent to find the

first m principal (biggest) singular value and corresponding right singular

vectors.
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Tri-diagonalization of symmetric matrix

I First transform symmetric A into tri-diagonal matrix T

T =


α1 β1

β1 α2

. . .

. . .
. . . βn−1

βn−1 αn


by a sequence of Householder transformations.

I The transformation procedure is the same as that for upper Hessenburg

form with symmetry argument.
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Tri-diagonalization of symmetric matrix

I The approach is to apply Householder transformation to A column by

column.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann


I Suitably choose Householder matrix H1 such that

H1 ·



a11

a21

a31

...

an1


=



a′11

a′21

0
...

0


, H1 =

(
1 0

0 H ′
1

)
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Tri-diagonalization of symmetric matrix

I Now we have

A1 = H1AH1 =


a′11 a′12 · · · 0

a′21 a′22 · · · a′2n

· · · · · · · · · · · ·
0 a′n2 · · · a′nn


by symmetry of A and A1.

I The next step is the same for upper Hesseburg form. Finally we have

tridiagonal form T and T has the same eigenvalues as A.
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Implicit shifted QR for symmetric tridiagonal matrix

I Now we have symmetric tridiagonal T with diagonal entries

αi(i = 1, . . . , n) and off-diagonal entries βi(i = 1, . . . , n− 1), one shifted

QR step is

T − µI = QR

T̂ = RQ + µI

In fact

T̂ = QT TQ

If we can find Q, T̂ directly, we doesn’t need the intermediate steps.

I In fact

QT TQ = QT (QR + µI)Q = RQ + µI = T̂ .
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Implicit shifted QR for symmetric tridiagonal matrix

I Find Givens matrix G1 = G(1, 2; θ1) such that(
c s

−s c

)T

·

(
α1 − µ

β1

)
=

(
∗
0

)
I Define

T 1 = GT
1 TG1.

We have

T 1 =



∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
. . .

. . .
. . . ∗
∗ ∗


I We should zero out the term *. That only needs another Givens matrix

G2 multiplication.
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Implicit shifted QR for symmetric tridiagonal matrix

I We can find Givens matrix G2 = G(2, 3; θ2) such that the term * would

be zero out.

I Define

T 2 = GT
2 GT

1 TG1G2

We have

T 2 =



∗ ∗
∗ ∗ ∗ ∗

∗ ∗
. . .

∗
. . .

. . . ∗
∗ ∗


I We should zero out the term * again. That needs a Givens matrix

multiplication again.
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Implicit shifted QR for symmetric tridiagonal matrix

I Sequentially we have

T n−2 =



∗ ∗
∗ ∗ ∗

∗ ∗
. . . ∗

. . .
. . . ∗

∗ ∗ ∗


I Finally we obtain

T̂ =



∗ ∗
∗ ∗ ∗

∗ ∗
. . .

. . .
. . . ∗
∗ ∗


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Implicit shifted QR for symmetric tridiagonal matrix

I Iterating for T̂ to obtain the next QR step!

I In general the shift is chosen as the famous Wilkinson’s shift: If the

submatrix of T

S =

(
αn−1 βn−1

βn−1 αn

)
then choose µ one of the eigenvalues of S which is more closer to αn.

µ = αn + δ − sign(δ)
√

δ2 + β2
n−1

and δ =
αn+αn−1

2
.

I The convergence will be very fast with this shift.
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Implicit QR method for singular value computation

I First transform A into upper bidiagonal matrix B

B =


d1 f2

d2

. . .

. . . fn

dn


by a sequence of Householder transformations

A
U1−→ eliminate the first column

V 1−→ eliminate the first row
···−→

Un−→ eliminate the n-th column =

(
B

0

)
I A has the same singular values as B.
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Implicit QR method for singular value computation

I First transform A into upper bidiagonal matrix B

B =


d1 f2

d2

. . .

. . . fn

dn


by a sequence of Householder transformations

A
U1−→ eliminate the first column

V 1−→ eliminate the first row
···−→

Un−→ eliminate the n-th column =

(
B

0

)
I Now we have

Un · · ·U1AV 1 · · ·V n−1 =

(
B

0

)
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Implicit shifted QR method for singular value computation

I Basic idea: Implicitly apply shifted QR method to symmetric tridiagonal

matrix BT B but without forming it.

I Steps:

I Determine the shift µ. This is equivalent to the shift step for BT B.

Wilkinson shift: set µ is the eigenvalue of(
d2

n−1 + f2
n−1 dn−1fn

dn−1fn d2
n + f2

n

)
closer to d2

n + f2
n to make the convergence faster.

I Find Givens matrix G1 = G(1, 2; θ) such that(
c s

−s c

)T

·
(

d2
1 − µ

d1f2

)
=

(
∗
0

)
and compute BG1.

This is equivalent to apply G1 step for BT B.
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Implicit shifted QR method for singular value computation

I We have

BG1 =



∗ ∗
∗ ∗ ∗

∗
. . .

. . . ∗
∗


so we should zero out the term *. We want to find P 2 and G2 such that

P 2(BG1)G2 is bidiagonal and G2e1 = e1.

This is equivalent to apply G2 step for GT
1 BT BG1.



Review and applications QR for symmetric matrix Numerical SVD

Implicit shifted QR method for singular value computation

I It is not difficult to find P 2 and G2 by Givens transformation and we have

P 2BG1G2 =



∗ ∗
∗ ∗

∗ ∗
. . .

. . . ∗
∗


so we should zero out the term *. We want to find P 3 and G3 such that

P 3P 2BG1G2G3 is bidiagonal and G3ei = ei, i = 1, 2.

These steps should be repeated until BG1 becomes bidiagonal! It is

equivalent to find Gi steps for symmetric tridiagonal matrix.
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Implicit shifted QR method for singular value computation

I Finally we have

P n−1 · · ·P 2BG1 · · ·Gn−1 =



∗ ∗
∗ ∗

∗
. . .

. . . ∗
∗


I Iterate until the off-diagonal entries converge to 0, and the diagonal

entries converge to singular values!
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