Lecture 10 Polynomial interpolation

Weinan $\mathsf{E}^{1,2}$ and Tiejun Li^2

¹ Department of Mathematics, Princeton University, weinan@princeton.edu

² School of Mathematical Sciences, Peking University, tieli@pku.edu.cn No.1 Science Building, 1575

Outline

Examples

Polynomial interpolation

Piecewise polynomial interpolation

Basic motivations

Plotting a smooth curve through discrete data points
 Suppose we have a sequence of data points

Coordinates	x_1	x_2	• • •	x_n
Function	y_1	y_2		y_n

► Try to plot a smooth curve (a continuous differentiable function) connecting these discrete points.

Basic motivations

Representing a complicate function by a simple one
 Suppose we have a complicate function

$$y = f(x),$$

we want to compute function values, derivatives, integrations,... very quickly and easily.

- One strategy
 - 1. Compute some discrete points from the complicate form;
 - 2. Interpolate the discrete points by a polynomial function or piecewise polynomial function;
 - 3. Compute the function values, derivatives or integrations via the simple form.

Polynomial interpolation

Polynomial interpolation is one the most fundamental problems in numerical methods.

Outline

Examples

Polynomial interpolation

Piecewise polynomial interpolation

Method of undetermined coefficients

▶ Suppose we have n+1 discrete points

$$(x_0,y_0),(x_1,y_1),\ldots,(x_n,y_n)$$

We need a polynomial of degree n to do interpolation (n+1 equations and n+1 undetermined coefficients a_0, a_1, \ldots, a_n

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

Equations

$$\begin{cases} p_n(x_0) = y_0 \\ p_n(x_1) = y_1 \\ & \dots \\ p_n(x_n) = y_n \end{cases}$$

Method of undetermined coefficients

The coefficient matrix

$$V_{n} = \begin{vmatrix} x_{0}^{n} & x_{0}^{n-1} & \cdots & x_{0} \\ x_{1}^{n} & x_{1}^{n-1} & \cdots & x_{1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}^{n} & x_{n}^{n-1} & \cdots & x_{n} \end{vmatrix}$$

is a Vandermonde determinant, nonsingular if $x_i \neq x_j \ (i \neq j)$.

- Though this method can give the interpolation polynomial theoretically, the condition number of the Vandermonde matrix is very bad!
- For example, if

$$x_0 = 0, \ x_1 = \frac{1}{n}, \ x_2 = \frac{2}{n}, \dots, x_n = 1$$

then $V_n \leq \frac{1}{n^n}!$

Lagrange interpolating polynomial

► Consider the interpolation problem for 2 points (linear interpolation), one type is the point-slope form

$$p(x) = \frac{y_1 - y_0}{x_1 - x_0}x + \frac{y_0x_1 - y_1x_0}{x_1 - x_0}$$

Another type is as

$$p(x) = y_0 l_0(x) + y_1 l_1(x)$$

where

$$l_0(x) = \frac{x - x_1}{x_0 - x_1}, \quad l_1(x) = \frac{x - x_0}{x_1 - x_0}$$

satisfies

$$l_0(x_0) = 1, l_0(x_1) = 0;$$
 $l_1(x_0) = 0, l_1(x_1) = 1$

▶ $l_0(x), l_1(x)$ are called basis functions. They are another base for space spanned by functions 1, x.

Lagrange interpolating polynomial

Define the basis function

$$l_i(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0)(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$

then we have

$$l_i(x_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

▶ The functions $l_i(x)$ (i = 0, 1, ..., n) form a new basis in \mathbb{P}_n instead of $1, x, x^2, ..., x^n$.

Lagrange interpolating polynomial

General form of the Lagrange polynomial interpolation

$$L_n(x) = y_0 l_0(x) + y_1 l_1(x) + \dots + y_n l_n(x)$$

then $L_n(x)$ satisfies the interpolation condition.

► The shortcoming of Lagrange interpolation polynomial: If we add a new interpolation point into the sequence, all the basis functions will be useless!

Define the 0-th order divided difference

$$f[x_i] = f(x_i)$$

Define the 1-th order divided difference

$$f[x_i, x_j] = \frac{f[x_i] - f[x_j]}{x_i - x_j}$$

▶ Define the k-th order divided difference by k − 1-th order divided difference recursively

$$f[x_{i_0}, x_{i_1}, \dots, x_{i_k}] = \frac{f[x_{i_0}, x_{i_1}, \dots, x_{i_{k-1}}] - f[x_{i_1}, x_{i_2}, \dots, x_{i_k}]}{x_{i_0} - x_{i_k}}$$

▶ Recursively we have the following divided difference table

Coordinates	0-th order	1-th order	2-th order
x_0	$f[x_0]$		
x_1	$f[x_1]$	$f[x_0, x_1]$	
x_2	$f[x_2]$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$
x_3	$f[x_3]$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$
:	:	:	:

Divided difference table: an example

Discrete data points

\overline{x}	0.00	0.20	0.30	0.50
f(x)	0.00000	0.20134	0.30452	0.52110

Divided difference table

i	x_i	$f[x_i]$	$f[x_{i-1}, x_i]$	$f[x_{i-2}, x_{i-1}, x_i]$	$f[x_0, x_1, x_2, x_3]$
0	0.00	0.00000			
1	0.20	0.20134	1.0067		
2	0.30	0.30452	1.0318	0.08367	
3	0.50	0.52110	1.0829	0.17033	0.17332

- ▶ The properties of divided difference
 - 1. $f[x_0, x_1, \ldots, x_k]$ is the linear combination of $f(x_0), f(x_1), \ldots, f(x_n)$.
 - 2. The value of $f[x_0, x_1, \dots, x_k]$ does NOT depend on the order the coordinates x_0, x_1, \dots, x_k .
 - 3. If $f[x, x_0, ..., x_k]$ is a polynomial of degree m, then $f[x, x_0, ..., x_k, x_{k+1}]$ is of degree m-1.
 - 4. If f(x) is a polynomial of degree n, then

$$f[x,x_0,\ldots,x_n]=0$$

From the definition of divided difference, we have for any function f(x)

$$f(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$+ \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$+ f[x, x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_n)$$

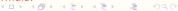
▶ Take f(x) as the Lagrange interpolation polynomial $L_n(x)$, because

$$L_n[x, x_0, x_1, \dots, x_n] = 0$$

we have

$$L_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

This formula is called Newton interpolation formula.

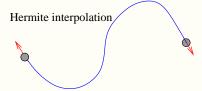


Hermite interpolation

- ▶ Hermite interpolation is the interpolation specified derivatives.
- Formulation: find a polynomial p(x) such that

$$p(x_0) = f(x_0), p'(x_0) = f'(x_0), p(x_1) = f(x_1), p'(x_1) = f'(x_1)$$

Sketch of Hermite interpolation



Hermite interpolation

► We need a cubic polynomial to fit the four degrees of freedom, one choice is

$$p(x) = a + b(x - x_0) + c(x - x_0)^2 + d(x - x_0)^2(x - x_1)$$

We have

$$p'(x) = b + 2c(x - x_0) + 2d(x - x_0)(x - x_1) + d(x - x_0)^2$$

then we have

$$f(x_0) = a, \quad f'(x_0) = b$$
$$f(x_1) = a + bh + ch^2, \quad f'(x_1) = b + 2ch + dh^2 \quad (h = x_1 - x_0)$$

ightharpoonup a, b, c, d could be solved.

Error estimates

Theorem

Suppose $a = x_0 < x_1 < \cdots < x_n = b$, $f(x) \in C^{n+1}[a,b]$, $L_n(x)$ is the Lagrange interpolation polynomial, then

$$E(f;x) = |f(x) - L_n(x)| \le \frac{\omega_n(x)}{(n+1)!} M_{n+1}$$

where

$$\omega_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n), \quad M_{n+1} = \max_{x \in [a,b]} |f^{(n+1)}(x)|.$$

Remark: This theorem doesn't imply the uniform convergence when $n \to \infty$.

Runge phenomenon

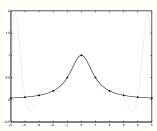
Suppose

$$f(x) = \frac{1}{1 + 25x^2}$$

take the equi-partitioned nodes

$$x_i = -1 + \frac{2i}{n}, \ i = 0, 1, \dots, n$$

▶ Lagrange interpolation (n = 10)



Remark on polynomial interpolation

- Runge phenomenon tells us Lagrange interpolation could NOT guarantee the uniform convergence when $n \to \infty$.
- ► Another note: high order polynomial interpolation is unstable!
- ▶ This drives us to investigate the piecewise interpolation.

Outline

Examples

Polynomial interpolation

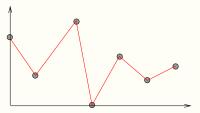
Piecewise polynomial interpolation

Piecewise linear interpolation

▶ Suppose we have n+1 discrete points

$$(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$$

▶ Piecewise linear interpolation is to connect the discrete data points as



Tent basis functions

▶ Define the piecewise linear basis functions as

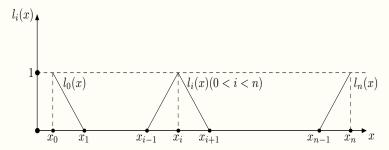
$$l_{n,0}(x) = \begin{cases} \frac{x - x_1}{x_0 - x_1}, & x \in [x_0, x_1], \\ 0, & x \in [x_1, x_n], \end{cases}$$

$$l_{n,i}(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}}, & x \in [x_{i-1}, x_i], \\ \frac{x - x_{i+1}}{x_i - x_{i+1}}, & x \in [x_i, x_{i+1}], \quad i = 1, 2, \dots, n - 1, \\ 0, & x \notin [x_{i-1}, x_{i+1}], \end{cases}$$

$$l_{n,n}(x) = \begin{cases} \frac{x - x_{n-1}}{x_n - x_{n-1}}, & x \in [x_{n-1}, x_n], \\ 0, & x \in [x_0, x_{n-1}]. \end{cases}$$

Tent basis functions

► The sketch of tent basis function



Piecewise linear interpolation function

▶ With the above tent basis function $l_{n,i}(x)$, we have

$$l_{n,i}(x_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- ▶ The functions $l_{n,i}(x)$ form a basis in piecewise linear function space with nodes x_i (i = 0, 1, ..., n).
- ▶ Piecewise linear interpolation function

$$p(x) = y_0 l_{n,0}(x) + y_1 l_{n,1}(x) + \dots + y_n l_{n,n}(x)$$

then p(x) satisfies the interpolation condition.

Cubic spline

- ▶ In order to make the interpolation curve more smooth, cubic spline is introduced.
- Formulation: Given discrete points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$, find function $S_h(x)$ such that
 - (1) $S_h(x)$ is a cubic polynomial in each interval $[x_i, x_{i+1}]$;
 - (2) $S_h(x_i) = y_i, i = 0, 1, ..., n;$
 - (3) $S_h(x) \in C^2[a,b].$

Cubic spline

- Suppose we have n cubic polynomials in each interval, we have 4n unknowns totally. The interpolation condition gives 2n equations, $S_h(x) \in C^1$ gives n-1 equations, $S_h(x) \in C^2$ gives n-1 equations, so we have 4n-2 equations totally, we need some boundary conditions.
- Supplementary boundary conditions:
 - (1) Fixed boundary: $S_h'(x_0) = f'(x_0), S_h'(x_n) = f'(x_n);$
 - (2) Natural boundary: $S_h''(x_0) = 0$, $S_h''(x_n) = 0$;
 - (3) Periodic boundary:

$$S_h(x_0) = S_h(x_n), \ S'_h(x_0) = S'_h(x_n), \ S''_h(x_0) = S''_h(x_n).$$

- lacktriangle Each type of boundary condition gives 2 equations, thus we have 4n equations and 4n unknowns. The system could be solved theoretically.
- ▶ Problem: Why are piecewise cubic polynomials needed?)

Homework assignment

Take interpolation points

$$x_k = -1 + \frac{2k}{n}, \ k = 0, 1, \dots, n$$

for Runge function, plot the Lagrange polynomial of degree n (n = 1, 2, ..., 15).

► Take interpolation points

$$x_k = \cos\frac{k\pi}{n}, \ k = 0, 1, \dots, n$$

for Runge function, plot the Lagrange polynomial of degree n $(n=1,2,\ldots,15).$