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Examples

Basic motivations

» Plotting a smooth curve through discrete data points

Suppose we have a sequence of data points

Coordinates ‘ r1 X2 -+ Tn

Function ‘y1 Y2 0 Yn

» Try to plot a smooth curve (a continuous differentiable function)

connecting these discrete points.



Examples

Basic motivations

» Representing a complicate function by a simple one

Suppose we have a complicate function
y = f(2),

we want to compute function values, derivatives, integrations,. .. very
quickly and easily.
> One strategy
1. Compute some discrete points from the complicate form;
2. Interpolate the discrete points by a polynomial function or piecewise
polynomial function;
3. Compute the function values, derivatives or integrations via the

simple form.
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Polynomial interpolation

Polynomial interpolation is one the most fundamental problems in
numerical methods.
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Polynomial interpolation

Method of undetermined coefficients

> Suppose we have n + 1 discrete points

(x0790)7 (‘Tlayl)v coog (:rnyyn)

» We need a polynomial of degree n to do interpolation (n + 1 equations

and n + 1 undetermined coefficients ag, a1, ..., an

pn(z) = ant™ + an—12" '+ 4 a0

» Equations
pn(z0) = 1o
pn(z1) =11

Pr(Tn) = Yn



Polynomial interpolation

Method of undetermined coefficients

» The coefficient matrix

Ty T Zo
n n—1
x7 1
Vo =
zn gt B

is a Vandermonde determinant, nonsingular if x; # x; (i # j).

> Though this method can give the interpolation polynomial theoretically,

the condition number of the Vandermonde matrix is very bad!

» For example, if

then Vi, < 1!



Polynomial interpolation

Lagrange interpolating polynomial

» Consider the interpolation problem for 2 points (linear interpolation), one

type is the point-slope form

_ Y1 —yoer Yox1 — Y1Zo

r1 — To 1 — o

p(z)
> Another type is as
p(x) = yolo(z) + y1l1 ()

where

satisfies
lo(fbo) = 1,[0(:1}1) = O; ll(CCo) = O,ll(.’El) = ]l

> lo(x),l1(x) are called basis functions. They are another base for space

spanned by functions 1, x.



Polynomial interpolation

Lagrange interpolating polynomial

» Define the basis function

li(z) = (@ —mo)(@—a1) - (T = i1)(T = Tig1) -+ (T — Tn)
' (i —zo)(zi — 1) (Ts — Tim1)(Ti — Tit1) -+ (Ti — Tn)

then we have

0 17y

» The functions [;(z) (¢ =0,1,...,n) form a new basis in P, instead of

1 i=j
li(x;) = di :{

n

2
Lz, x*,...,z".



Polynomial interpolation

Lagrange interpolating polynomial

> General form of the Lagrange polynomial interpolation
Ln(z) = yolo(z) + y1l1(2) + - + ynln(z)

then L, (x) satisfies the interpolation condition.

> The shortcoming of Lagrange interpolation polynomial: If we add a new

interpolation point into the sequence, all the basis functions will be useless!
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Newton interpolation

» Define the 0-th order divided difference

flzil = f(zi)
» Define the 1-th order divided difference

flzi] = fls]

f[xiaxj] = T; — T

> Define the k-th order divided difference by k& — 1-th order divided
difference recursively

f[mio,mil,. ..,Iik_ll — f[ac,-“:ciw 00 .,acik]

Tig — Tiy,

f[xi07x’i17"'axik:] =



Polynomial interpolation

Newton interpolation

> Recursively we have the following divided difference table

Coordinates 0-th order 1-th order  2-th order

To flzo]

T flz] flzo, z1]

T2 flae] flzn, z2]  flzo, x1, x2]
T3 flzs] flz2, 23] flz1, 22, 23]



Polynomial interpolation

Newton interpolation

» Divided difference table: an example

Discrete data points

T 0.00 0.20 0.30 0.50
f(x) 0.00000 0.20134 0.30452 0.52110

Divided difference table
iz fled]  fleicv @] flwieo, o1, @] flwo, 1, 22, 23]
0 0.00 0.00000
1 0.20 0.20134 1.0067
2 030 0.30452 1.0318 0.08367
3 050 0.52110 1.0829 0.17033 0.17332




Polynomial interpolation

Newton interpolation

> The properties of divided difference

1. flzo,z1,...,zk] is the linear combination of f(xo), f(x1),..., f(zn).
2. The value of f[zo,x1,...,2x] does NOT depend on the order the

coordinates xo, x1,...,Tk.
3. If flz,zo,...,xk] is a polynomial of degree m, then
flz,zo, ..., Tk, Trt1] is of degree m — 1.

4. If f(x) is a polynomial of degree n, then

flz,zo,...,zn] =0



Polynomial interpolation

Newton interpolation

» From the definition of divided difference, we have for any function f(x)
f(x) = flzo] + flzo, z1](z — mo) + flwo, x1, x2](x — o) (z — 1)

+ o+ flro,xa, . xn)(z — o) (x — 1) - (X — Tp—1)

+flz,xo, 1,y xn](x — o) (X — 1) -+ (T — Tp)

> Take f(x) as the Lagrange interpolation polynomial L, (), because
Ly[z,z0,x1,...,20] =0
we have
Ln(z) = flzo] + flwo, z1](z — @0) + f[zo, x1, 2] (z — @0)(z — =1)+

+o+ flro, i, . 2] — mo)(x — 1) - (X — Tp—1)

This formula is called Newton interpolation formula.



Polynomial interpolation

Hermite interpolation

» Hermite interpolation is the interpolation specified derivatives.

» Formulation: find a polynomial p(z) such that

p(zo) = f(x0), P’ (w0) = f'(x0), p(z1) = f(1),p' (z1) = /(1)

» Sketch of Hermite interpolation

Hermite interpolation



Polynomial interpolation

Hermite interpolation

We need a cubic polynomial to fit the four degrees of freedom, one choice
is
p(z) = a+b(z — zo) + c(z — z0)® + d(z — 20)(z — 21)

We have
p'(z) = b+ 2c(z — o) + 2d(x — z0)(z — 1) + d(x — 0)?

then we have
f(xo) =a, f'(x0) =0
f(z1) =a—+bh+ch®, f'(z1)=b+2ch+dh® (h=z1 —x0)

a,b, c,d could be solved.



Polynomial interpolation

Error estimates

Theorem
Suppose a = 19 < 1 < -+ < xp = b, f(x) € C"a,b], Ln(x) is the
Lagrange interpolation polynomial, then

wn ()

E(f;2) = |f(@) = Ln(@)] < (o

M1
where

wn(@) = (@ —20)(z — 1)+ (£~ 2a), Mupr = max |f) (@)
x€la,

Remark: This theorem doesn't imply the uniform convergence when n — oco.



Polynomial interpolation

Runge phenomenon

> Suppose

take the equi-partitioned nodes

zi=—-1+=,i=0,1,...
n

» Lagrange interpolation (n = 10)




Polynomial interpolation

Remark on polynomial interpolation

> Runge phenomenon tells us Lagrange interpolation could NOT guarantee

the uniform convergence when n — oo.
> Another note: high order polynomial interpolation is unstable!

» This drives us to investigate the piecewise interpolation.
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Piecewise polynomial interpolation



Piecewise polynomial interpolation

Piecewise linear interpolation

> Suppose we have n + 1 discrete points

(m07y0)7 (whyl)? ce (‘rn)y’"«)

> Piecewise linear interpolation is to connect the discrete data points as




Piecewise polynomial interpolation

Tent basis functions

» Define the piecewise linear basis functions as

xr — T

) S [xovle
ln,O(x) = To — T1

0, S [xlaan

T — X

Z 2l 2 € [mio, @),

Ti — Ti—1
lni(z) = L= 2k T € [Ti,Tit1], 1=1,2,...,n—1,

Ti— Tyl

0, x & [Ti-1, Tiy1],

T — Ty

7"17 S [mn—lyan
ln,n(x) = Tn — Tn—1

0, x € [To, Tn—1].



Piecewise polynomial interpolation

Tent basis functions

» The sketch of tent basis function

ll(.T)




Piecewise polynomial interpolation

Piecewise linear interpolation function

> With the above tent basis function [, ;(x), we have

1 i=j

0 i#j

> The functions I, ;(x) form a basis in piecewise linear function space with
nodes z; (1 =0,1,...,n).

Ini(zj) = 6i5 = {

> Piecewise linear interpolation function

p(z) = yoln,o(z) + y1ln,1(x) + - + Ynlnn(x)

then p(z) satisfies the interpolation condition.



Piecewise polynomial interpolation

Cubic spline

> In order to make the interpolation curve more smooth, cubic spline is

introduced.

» Formulation: Given discrete points (zo,%0), (T1,91),- -, (Tn,yn), find
function Sy (x) such that
(1) Sk(z) is a cubic polynomial in each interval [z;, zit1];
(2) Sh(zi) =y, i=0,1,...,n;
(3) Swn(z) € C?[a,b].



Piecewise polynomial interpolation

Cubic spline

Suppose we have n cubic polynomials in each interval, we have 4n
unknowns totally. The interpolation condition gives 2n equations,
Sp(x) € C* gives n — 1 equations, Sy, (x) € C? gives n — 1 equations, so

we have 4n — 2 equations totally, we need some boundary conditions.

Supplementary boundary conditions:

(1) Fixed boundary: S}, (xo) = f'(z0),Sh(zn) = f'(xn);
(2) Natural boundary: S}/ (zo) = 0,5} (zn) = 0;

(3) Periodic boundary:

Sh(x0) = Sh(zn), Sh(xo) = Sh(zn), Sh(zo) = Sh(Tn).

Each type of boundary condition gives 2 equations, thus we have 4n

equations and 4n unknowns. The system could be solved theoretically.

Problem: Why are piecewise cubic polynomials needed?)



Piecewise polynomial interpolation

Homework assignment

» Take interpolation points

2k
zr=—14+—, k=0,1,...,n
n

for Runge function, plot the Lagrange polynomial of degree n
(n=1,2,...,15).

> Take interpolation points
km
rr =cos—, k=0,1,...,n
n

for Runge function, plot the Lagrange polynomial of degree n
(n=1,2,...,15).
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