## Homework 15

1. Derive the inner solution for the boundary layer of the ODE

$$
\varepsilon y^{\prime \prime \prime}(x)-y^{\prime}(x)+x y(x)=0, \quad y(0)=y^{\prime}(0)=y(1)=1
$$

at $x=1$ up to order $\varepsilon$. That is, derive the expansion

$$
Y_{i n}(Z)=Y_{0}(Z)+\varepsilon^{\frac{1}{2}} Y_{1 / 2}(Z)+\varepsilon Y_{1}(Z)+\cdots
$$

where $Z=(1-x) / \delta$, where $\delta$ is the boundary layer thickness.
2. Assume that $a(x) \sim \alpha x, b(x) \sim \beta$ as $x \rightarrow 0+$ and $\alpha, \beta>0$, prove that

$$
\int_{x}^{1} \frac{b(t)}{a(t)} d t \sim-\frac{\beta}{\alpha} \ln x \quad x \rightarrow 0+
$$

and

$$
\int_{x}^{1} \frac{b(t)}{a(t)} d t+\frac{\beta}{\alpha} \ln x \sim \int_{0}^{1}\left(\frac{b(t)}{a(t)}-\frac{\beta}{\alpha t}\right) d t \quad x \rightarrow 0+
$$

under suitable regularity condition on $a(t)$ and $b(t)$.

