Homework 11

1. Examine the behavior of the trajectories in the phase plane for the following systems of equations:
(a). $\dot{y}_{1}=y_{2}, \dot{y}_{2}= \pm a^{2}\left(1-y_{1}^{2}\right) y_{2}-y_{1}$ (Van der Pol's equation);
(b). $\dot{y}_{1}=y_{2}, \dot{y}_{2}=\left(\sin y_{2}\right)-y_{1}$ (Show that this system has an infinite number of limit cycles which are alternately stable and unstable).
2. Show that the Jacobian

$$
J(t)=\frac{\partial[\mathbf{p}(t), \mathbf{q}(t)]}{\partial[\mathbf{p}(0), \mathbf{q}(0)]}
$$

satisfies $J(t)=1$ for all t if \mathbf{p} and \mathbf{q} satisfy the Hamiltonian system

$$
\begin{aligned}
\frac{d q_{j}}{d t} & =\frac{\partial H}{\partial p_{j}} \\
\frac{d p_{j}}{d t} & =-\frac{\partial H}{\partial q_{j}}
\end{aligned}
$$

3. (a). Prove that when $r<1$ the only critical point of the Lorenz model

$$
\begin{aligned}
\frac{d x}{d t} & =-3(x-y) \\
\frac{d y}{d t} & =-x z+r x-y \\
\frac{d z}{d t} & =x y-z
\end{aligned}
$$

is at $x=y=z=0$ and it is stable. Show also that when $r>1$ the origin becomes an unstable critical point. What happens when $r=1$?
(b). Show that when $r>1$ there are critical points at $x=y=$ $\pm \sqrt{r-1}, z=r-1$. Prove that these critical points are stable if $1<r<21$ and unstable if $r>21$.

