Homework 09

1. Prove that

$$
\int_{0}^{\infty} \frac{e^{-t} d t}{1+x t^{2}} \sim \sum_{n=0}^{\infty}(-1)^{n}(2 n)!x^{n}, \quad x \rightarrow 0+
$$

2. We define a general asymptotic expansion as follows. Let $\phi_{n}(x)$ be a sequence of functions satisfying $\phi_{n+1} \ll \phi_{n}\left(x \rightarrow x_{0}\right)$ for all n. Then we write $y(x) \sim \sum_{n=1}^{\infty} a_{n} \phi_{n}(x)\left(x \rightarrow x_{0}\right)$ and say that the series is asymptotic to $y(x)$ as $x \rightarrow x_{0}$ if $y(x)-\sum_{n=1}^{N} a_{n} \phi_{n}(x) \ll \phi_{N}(x)(x \rightarrow$ x_{0}) for all N.
(a). Show that if $y \sim \sum a_{n} \phi_{n}(x)$ and $z \sim \sum b_{n} \phi_{n}(x)$ as $x \rightarrow x_{0}$, then $c_{1} y+c_{2} z \sim \sum\left(c_{1} a_{n}+c_{2} b_{n}\right) \phi_{n}\left(x \rightarrow x_{0}\right)$.
(b). Show that if $\psi_{n}(x)=\int_{x_{0}}^{x} \phi_{n}(t) d t$ exists for each n and if all the functions $\phi_{n}(x)$ are positive for $x_{0}<x<x_{1}$ for some x_{1}, then $y \sim \sum a_{n} \phi_{n}$ as $x \rightarrow x_{0}$ implies $\int_{x_{0}}^{x} y(t) d t \sim \sum_{n=1}^{\infty} a_{n} \psi_{n}(x)(x \rightarrow$ $x_{0}+$).
3. Show that if $y(x), p(x), p^{\prime}(x), q(x)$ are expandable in asymptotic power series as $x \rightarrow x_{0}$ and if y satisfies $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, then y^{\prime} and $y^{\prime \prime}$ are also expandable in asymptotic series which may be obtained by differentiating the series for y termwise.
4. Show that if $f(x) \sim x^{p}(x \rightarrow+\infty)$ with $p \geq 1$ and $f^{\prime \prime}(x)>0$ for sufficiently large x, then $f^{\prime}(x) \sim p x^{p-1}(x \rightarrow+\infty)$.
