Homework 06

1. (a) Show that if $f(x) \sim a\left(x-x_{0}\right)^{-b}$ as $x \rightarrow x_{0}+$, then
(i) $\int^{x} f d x \sim[a /(1-b)]\left(x-x_{0}\right)^{1-b}\left(x \rightarrow x_{0}+\right)$ if $b>1$ and the path of integration does not pass through x_{0};
(ii) $\int^{x} f d x \sim c\left(x \rightarrow x_{0}+\right)$, where c is a constant if $b<1$; if $c=0$, then $\int^{x} f d x \sim[a /(1-b)] \cdot\left(x-x_{0}\right)^{1-b}\left(x \rightarrow x_{0}+\right)$;
(iii) $\int_{x_{0}}^{x} f d x \sim[a /(1-b)] \cdot\left(x-x_{0}\right)^{1-b}\left(x \rightarrow x_{0}+\right)$ if $b<1$;
(iv) $\int^{x} f d x \sim \operatorname{aln}\left(x-x_{0}\right)\left(x \rightarrow x_{0}+\right)$ if $b=1$.
(b) Show that if $f(x) \sim g(x)$ as $x \rightarrow x_{0}$ and $g(x)$ is one-signed in a neighborhood of x_{0}, then $\int^{x} f(x) d x \sim \int^{x} g(x) d x+c\left(x \rightarrow x_{0}\right)$, where c is some integration constant.
2. Find the leading behaviors as $x \rightarrow 0+$ of the following equations:
(a) $x^{4} y^{\prime \prime \prime}=y$;
(b) $x^{4} y^{\prime \prime \prime}-3 x^{2} y^{\prime}+2 y=0$;
(c) $x^{5} y^{\prime \prime \prime}-2 x y^{\prime}+y=0$.
3. (a) Give an example of an asymptotic relation $f(x) \sim g(x)(x \rightarrow \infty)$ that cannot be exponentiated; that is, $e^{f(x)} \sim e^{g(x)}(x \rightarrow \infty)$ is false. (b) Show that if $f(x)-g(x) \ll 1 \quad(x \rightarrow \infty)$, then $e^{f(x)} \sim e^{g(x)}(x \rightarrow$ $\infty)$.
4. Find the leading asymptotic behaviors as $x \rightarrow \infty$ of the following equation: $x y^{\prime \prime \prime}=y^{\prime}$.
5. What is the leading behavior of solutions to $y^{\prime \prime}+x^{-3 / 2} y^{\prime}-x^{-2} y=0$ as $x \rightarrow+\infty$? Show that it is inconsistent to assume that $S^{\prime \prime} \ll\left(S^{\prime}\right)^{2}(x \rightarrow$ $+\infty)$. However, show that the approximate equation $S^{\prime \prime}+\left(S^{\prime}\right)^{2} \sim$ $x^{-2}(x \rightarrow+\infty)$ can be solved exactly by assuming a solution of the form $S^{\prime}=c / x$.
6. Find the leading behavior of solutions to $y^{\prime}-y / x=\cos x$ as $x \rightarrow 0+$. Show that the leading behavior is determined by a three-term dominant balance. Compare this leading behavior with the exact solution.
7. Show that although $[x /(1+x)] \cos x \sim \cos x(x \rightarrow \infty)$, it does not follow that $\int_{0}^{x}[t /(1+t)] \cos t d t \sim \int_{0}^{x} \cos t d t(x \rightarrow \infty)$.
