Homework 06

- 1. (a) Show that if $f(x) \sim a(x-x_0)^{-b}$ as $x \to x_0+$, then
 - (i) $\int^x f dx \sim [a/(1-b)](x-x_0)^{1-b} (x \to x_0+)$ if b > 1 and the path of integration does not pass through x_0 ;
 - (ii) $\int^x f dx \sim c(x \to x_0 +)$, where c is a constant if b < 1; if c = 0, then $\int^x f dx \sim [a/(1-b)] \cdot (x-x_0)^{1-b} (x \to x_0 +)$;
 - (iii) $\int_{x_0}^x f dx \sim [a/(1-b)] \cdot (x-x_0)^{1-b} \ (x \to x_0+)$ if b < 1;
 - (iv) $\int^x f dx \sim aln(x-x_0) \ (x \to x_0+)$ if b = 1.

(b) Show that if $f(x) \sim g(x)$ as $x \to x_0$ and g(x) is one-signed in a neighborhood of x_0 , then $\int^x f(x)dx \sim \int^x g(x)dx + c \ (x \to x_0)$, where c is some integration constant.

- 2. Find the leading behaviors as $x \to 0+$ of the following equations:
 - (a) $x^4 y''' = y;$
 - (b) $x^4 y''' 3x^2 y' + 2y = 0;$
 - (c) $x^5 y''' 2xy' + y = 0.$
- 3. (a) Give an example of an asymptotic relation f(x) ~ g(x) (x → ∞) that cannot be exponentiated; that is, e^{f(x)} ~ e^{g(x)} (x → ∞) is false.
 (b) Show that if f(x) g(x) ≪ 1 (x → ∞), then e^{f(x)} ~ e^{g(x)} (x → ∞).
- 4. Find the leading asymptotic behaviors as $x \to \infty$ of the following equation: xy''' = y'.
- 5. What is the leading behavior of solutions to $y'' + x^{-3/2}y' x^{-2}y = 0$ as $x \to +\infty$? Show that it is inconsistent to assume that $S'' \ll (S')^2 (x \to +\infty)$. However, show that the approximate equation $S'' + (S')^2 \sim x^{-2} (x \to +\infty)$ can be solved exactly by assuming a solution of the form S' = c/x.
- 6. Find the leading behavior of solutions to $y' y/x = \cos x$ as $x \to 0+$. Show that the leading behavior is determined by a three-term dominant balance. Compare this leading behavior with the exact solution.

7. Show that although $[x/(1+x)] \cos x \sim \cos x \ (x \to \infty)$, it does not follow that $\int_0^x [t/(1+t)] \cos t dt \sim \int_0^x \cos t dt \ (x \to \infty)$.