Homework 05

1. Prove that the identity

$$
\left[\hat{N}, a^{\dagger}\right]=a^{\dagger}
$$

where $[A, B]=A B-B A$ is the commutator, $\hat{N}=a^{\dagger} a$.
2. Prove that

$$
|n\rangle=\frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n}|0\rangle, \quad n=0,1, \ldots
$$

satisfies $\left\langle n \mid n^{\prime}\right\rangle=\delta_{n n^{\prime}}$ by induction, where we have already taken $\langle 0 \mid 0\rangle=1$.
3. Prove that $H e_{n}(x)=2^{-n / 2} H_{n}(x / \sqrt{2})$, where

$$
\begin{aligned}
H_{n}(x) & =e^{\frac{x^{2}}{2}}\left(x-\frac{d}{d x}\right)^{n} e^{-\frac{x^{2}}{2}} \\
H e_{n}(x) & =(-1)^{n} e^{\frac{x^{2}}{2}}\left(\frac{d}{d x}\right)^{n} e^{-\frac{x^{2}}{2}}
\end{aligned}
$$

