Homework 05

1. Suppose $y_{1}(x)$ is a particular solution of the ODE

$$
L y=y^{(n)}+p_{n-1}(x) y^{(n-1)}+\cdots+p_{0}(x) y=0
$$

Define $y(x)=u(x) y_{1}(x)$. Prove that $v=u^{\prime}(x)$ satisfies a linear homogenous ODE of order- $(n-1)$.
2. Formulate the method of variation of parameters for a third-order linear equation. How does it work for an n th-order equation?
3. Show that a necessary and sufficient condition that

$$
M(x, y)+N(x, y) \frac{d y}{d x}=0
$$

be exact is

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

4. Show that any equation of the following form

$$
a(x) y^{\prime \prime}(x)+b(x) y^{\prime}(x)+c(x) y(x)+d(x) E y(x)=0, \quad y(\alpha)=y(\beta)=0
$$

can be transformed to the following Sturm-Liouville form

$$
\begin{equation*}
\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right]+[q(x)+E r(x)] y=0, \quad y(\alpha)=y(\beta)=0 \tag{1}
\end{equation*}
$$

