
Lecture 18 Path integral ∗

Tiejun Li

1 Wiener Measure

The path integral, which can be dated to R. Feynman to construct a new formulation

to understand quantum mechanics [2], gives very powerful formal approach to deal with

the probability measures on path space and compute the expectation for some functionals

of Wiener paths. Briefly speaking, path integral is a formal infinite dimensional limit of

the considered stochastic process under finite dimensional approximations. Let us start

with the formal representation of the Wiener measure P∗ defined on the canonical space

(C[0, 1],B(C[0, 1])) for the standard Wiener process.

From the definition of Wiener process, we have the joint pdf for (Wt1 ,Wt2 , . . . ,Wtn)

pn(w1, w2, . . . , wn) =
1

Zn
exp(−In(w)),

where 0 < t1 < t2 < · · · < tn ≤ 1 and

Zn = (2π)
n
2

[
t1(t2 − t1) · · · (tn − tn−1)

] 1
2 ,

In(w) =
1

2

n∑
j=1

(wj − wj−1

tj − tj−1

)2

(tj − tj−1), t0 := 0, w0 := 0.

Now we take the formal limit as n→∞, we obtain

pndw1dw2 · · · dwn →
1

Z
exp(−I[w])δ(w0)Dw, (1.1)

where the δ-function δ(w0) is to fix w0 = 0, I[w] is called the action functional of the Wiener

process defined as

I[w] =
1

2

∫ 1

0

ẇt
2dt.

Dw is a shortcut for
∏

0≤t≤1 dwt, which is the formal volume element in the path space

C[0, 1]. Z is the normalization factor. For notations, we use the lowercase wt for dumb

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China

1



variables, but the uppercase Wt for the stochastic process. This convention will be taken in

this whole chapter.

To give a formal understanding on the Wiener measure (1.1), we note that

Zn =
(2π

n

)n
2 → 0

if tj − tj−1 = 1/n. At the same time we have
∫ 1

0
ẇt

2dt → +∞ because Wt is almost

surely “half order” differentiable. This means exp(−
∫ 1

0
ẇt

2dt) → 0 as the subdivision is

infinitely refined. These two infinitesimals balance each other in the limit process and leads

to a nontrivial limit which is the volume element in the path space C[0, 1]. With this

understanding,
1

Z
exp(−I[w])δ(w0) =

DP∗
Dw

may be thought of as the pdf of the Wiener process in the space C[0, 1]. The probability of

the event {W· ∈ A}, where A ∈ B(C[0, 1]), can be obtained as

P(W· ∈ A) =

∫
A

1

Z
exp(−I[w])δ(w0)Dw.

We should emphasize that this interpretation is purely formal and all of the results

induced by the path integral need to be reproved in rigorous mathematical language before

we want to use it as an theorem. One reason to understand it is only formal is that we

have no infinite dimensional Lebesgue measure [1]. To see this, let us consider an infinite

dimensional Hilbert space H with orthonormal basis {e1, e2, . . .}. Define the balls

Bn = B 1
2
(en) = {x|‖x− en‖ ≤ 1/2}, B = B2(0) = {x|‖x‖ ≤ 2}.

As a Lebesgue measure, it should be translation invariant and finite for bounded sets. If

the Lebesgue measure on H exists as µ(·), then we have

0 < µ(B1) = µ(B2) = · · · = µ(Bn) = · · · <∞, 0 < µ(B) <∞.

However from the disjointness of {Bn} and Bn ⊂ B for any n, we obtain

µ(B) ≥
∑
n

µ(Bn) =∞,

which is a contradiction! Thus the notation Dw is totally meaningless! But the glamor of

path integral is that it can give some extremely insightful results in a very efficient way.

That is why it is also useful for applied mathematicians.
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2 Expectation of a Wiener Functional

Example 2.1. Compute the expectation

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)
.

Solution. Note that it is not straightforward to compute this expectation since the inte-

grand involves the whole Wiener path, i.e. a Wiener functional. From the Karhunen-Loeve

expansion, ∫ 1

0

W 2
t dt =

∫ 1

0

∑
k,l

√
λkλlαkαlφk(t)φl(t)dt

=
∑
k

∫ 1

0

λkα
2
kφ

2
k(t)dt =

∑
k

λkα
2
k.

Then

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

= E
(∏

k

exp(−1

2
λkα

2
k)
)

=
∏
k

E exp(−1

2
λkα

2
k).

From the identity

E exp(−1

2
λkα

2
k) =

∫ +∞

−∞

1√
2π
e−

x2

2 · e−
1
2
λkx

2

dx =

√
1

1 + λk

we obtain

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

=
∏
k

√
1

1 + λk
:= M,

where

M−2 =
∞∏
k=1

(
1 +

4

(2k − 1)2π2

)
.

From the identities for infinite product series we have

cosh(x) =
∞∏
n=1

(
1 +

4x2

(2n− 1)2π2

)
,

where cosh(x) = (ex + e−x)/2. Thus

M = (cosh(1))−
1
2 =

√
2e

1 + e2
.

Here we show how to apply the path integral approach to compute the expectation of

this Wiener functional. The path integral approach to compute the expectation is composed

of the following two steps.
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Step 1. Discretize the problem into finite dimensions.

At first let us take finite dimensional approximation to the functional

exp

(
−1

2

∫ 1

0

W 2
t dt

)
≈ exp

(
− 1

2

n∑
j=1

W 2
tj

∆t
)

= exp

(
−1

2
∆tXTAX

)
,

where ∆t = tj − tj−1 for j = 1, 2, . . . , n, A = I, and X = (Wt1 ,Wt2 , · · · ,Wtn)T . Thus

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)
≈
∫
Rn

exp

(
−1

2
∆txTAx

)
· 1

Zn
exp

(
−1

2
∆txTBx

)
dx, (2.1)

where x = (x1, x2, . . . , xn), Zn = (2π)
n
2 (det(∆tB)−1)

1
2 , and

B =
1

∆t2


2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1

 .

From equation (2.1), we have

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)
≈ (2π)

n
2 (det(∆t(A+B))−1)

1
2

(2π)
n
2 (det(∆tB)−1)

1
2

=

(
det(B)

det(A+B)

) 1
2

=

( ∏
i λ

B
i∏

i λ
A+B
i

) 1
2

,

where λBi , λ
A+B
i are eigenvalues of B and A+B, respectively.

Step 2. Take the formal limit as n→∞.

If we take the formal limit as n → +∞, the matrix B will converge to the differential

operator B = −d2/dt2 with zero Dirichlet boundary condition at t = 0 and free Neumann

boundary condition at t = 1. Thus the eigenvalues of B corresponds to the following Sturm-

Liouville boundary value problem

−d
2u

dt2
= λu(t), u(0) = 0, u′(1) = 0.

With the observation ∫ 1

0

W 2
t dt = (AWt,Wt),

where A = I and (f, g) :=
∫ 1

0
fgdt, we have the formal path integral limit

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

=

∫
exp

(
− 1

2
(Awt, wt)

)
· 1

Z
exp

(
− 1

2
(Bwt, wt)

)
δ(w0)Dw
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where the operator Bu(t) := d2u/dt2 and

Z =

∫
exp

(
− 1

2
(Bwt, wt)

)
δ(w0)Dw.

Now we formally apply the Gaussian integrals in infinite dimensions to obtain

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

=
( detB

det(A+ B)

) 1
2
,

where detB, det (A+ B) mean the products of all eigenvalues for the following boundary

value problems: {
Bu = λu, or (A+ B)u = λu,

u(0) = 0, u′(1) = 0.

This yield the same result as before.

3 Girsanov Transformation

We have seen that the Wiener measure over [0, 1] can be formally expressed as

dµW = Z−1 exp

(
−1

2

∫ 1

0

ẇ2
t dt

)
δ(w0)Dw.

The solution of the SDE

dXt = b(Xt, t) + σ(Xt, t)dWt, X0 = 0.

can be viewed as a map between the Wiener path {Wt} and {Xt}:

{Wt}
Φ−→ {Xt}.

Consequently, the mapping Φ induces another measures on C[0, 1], which is nothing but the

distribution of {Xt}.
We now ask the question how the measure dµW changes under the mapping Φ? Let us

first consider the case when σ = 1 in one dimension. The more general conditions can be

derived in a similar way. We will perform the path integral through two steps as in the

previous section: that is, making discretization first and then taking the formal continuum

limit.

Step 1. Discretize the problem into finite dimensions.

With the Euler-Maruyama discretization, we obtain

Xtj+1
= Xtj + b(Xtj , tj)(tj+1 − tj) + (Wtj+1

−Wtj). (3.1)
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In matrix form we have

B ·


Xt1

Xt2
...

Xtn

−


b(Xt0 , t0)(t1 − t0)

b(Xt1 , t1)(t2 − t1)
...

b(Xtn−1 , tn−1)(tn − tn−1)

 = B ·


Wt1

Wt2
...

Wtn

 ,

where t0 = 0, Xt0 = 0, and the matrix B has the form

B =


1

−1 1
. . . . . .

. . . . . .

−1 1


n×n

.

The equation (3.1) indeed introduces a finite dimensional transformation Φn as

{Wt1 ,Wt2 , · · · ,Wtn}
Φn−→ {Xt1 , Xt2 , · · · , Xtn}.

With dumb variables representation for (3.1), we have

xj+1 = xj + b(xj, tj)(tj+1 − tj) + (wj+1 − wj), j = 0, . . . , n− 1 (3.2)

where w0 = 0 and x0 is fixed. It is not difficult to find that the Jacobian of the transformation

∂(w1, . . . , wn)

∂(x1, . . . , xn)
= 1. (3.3)

Suppose we want to compute the average 〈F [Xt]〉, then

〈F [Xt]〉 ≈ 〈F (Xt1 , Xt2 , · · · , Xtn)〉 = 〈G(Wt1 ,Wt2 , · · · ,Wtn)〉,

where G = F ◦ Φn. Furthermore with transformation of variables

〈F [Xt]〉 ≈
∫
G(w1, w2, · · · , wn)

1

Zn
exp(−In(w))dw1dw2 · · · dwn

=

∫
F (x1, x2, · · · , xn)

1

Zn
exp(−Ĩn(x))dx1dx2 · · · dxn, (3.4)

where the transformation holds because of (3.3), and Ĩn(x) = In ◦Φ−1
n (x) by definition (3.2)

Ĩn(x) =
1

2

n∑
j=1

(xj − xj−1

tj − tj−1

)2

(tj − tj−1) +
1

2

n∑
j=1

b2(xj−1, tj−1)(tj − tj−1)

−
n∑
j=1

(xj − xj−1) · b(xj−1, tj−1).

6



Changing the dumb variables xi to wi, we obtain

〈F [Xt]〉 ≈
∫
F (w1, w2, · · · , wn)

1

Zn
exp(−In(w)) exp

(
− 1

2

n∑
j=1

b2(wj−1, tj−1)(tj − tj−1)
)

· exp
( n∑
j=1

b(wj−1, tj−1) · (wj − wj−1)
)
dw1dw2 · · · dwn

=
〈
F (Wt1 ,Wt2 , · · · ,Wtn) exp

(
− 1

2

n∑
j=1

b2(Wtj−1
, tj−1)(tj − tj−1)

)
· exp

( n∑
j=1

b(Wtj−1
, tj−1) · (Wtj −Wtj−1

)
)〉
.

Step 2. Take the formal limit as n→∞.

Now with the finite dimensional discretization, we can take formal continuum limit

〈F [Xt]〉 =
〈
F [Wt] exp

(
− 1

2

∫ 1

0

b2(Wt, t)dt+

∫ 1

0

b(Wt, t)dWt

)〉
. (3.5)

Since (3.5) is valid for arbitrary F , in mathematical language, this asserts that the distri-

bution µX is absolutely continuous with respect to µW , and

dµX
dµW

= exp
(
− 1

2

∫ 1

0

b2(Wt, t)dt+

∫ 1

0

b(Wt, t)dWt

)
.

The above derivations can be done directly with continuum version if one gets familiar

enough

〈F [Xt]〉 = 〈G[Wt]〉 (where G = F ◦ Φ)

=

∫
G[wt] ·

1

Z
exp

(
− 1

2

∫ 1

0

ẇ2
t dt
)
δ(w0)Dw

=

∫
F [xt] ·

1

Z
exp

(
− 1

2

∫ 1

0

ẋ2
tdt−

1

2

∫ 1

0

b2(xt, t)dt+

∫ 1

0

b(xt, t)ẋtdt
)
δ(x0)Dx

=

∫
F [wt] ·

1

Z
exp

(
− 1

2

∫ 1

0

ẇ2
t dt−

1

2

∫ 1

0

b2(wt, t)dt+

∫ 1

0

b(xt, t)ẇtdt
)
δ(w0)Dw

=
〈
F [Wt] exp

(
− 1

2

∫ 1

0

b2(Wt, t)dt+

∫ 1

0

b(Wt, t)dWt

)〉
.

A special case of this representation is the Cameron-Martin formula, for the transfor-

mation

Xt = Wt + φ(t) (3.6)

where φ is a smooth function. This can be obtained from SDE with b(Xt, t) = φ̇(t). In this

case, we get
dµX
dµW

= exp
(
− 1

2

∫ 1

0

φ̇2(t)dt+

∫ 1

0

φ̇(t)dWt

)
. (3.7)
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A slight generalization is the Girsanov formula. Consider two SDE’s:{
dXt = b(Xt, t)dt+ σ(Xt, t)dWt,

dYt = (b(Yt, t) + γ(t, ω))dt+ σ(Yt, t)dWt,

where X,Y , b,γ ∈ Rn, W ∈ Rm and σ ∈ Rn×m. Assume that X0 = Y0 = x. Then the

distributions of {Xt} and {Yt} over [0, 1] are absolutely continuous with respect to each

other. Moreover the Radon-Nikodym derivative is given by

dµY
dµX

[X.] = exp

(
−1

2

∫ 1

0

|φ(t, ω)|2dt+

∫ 1

0

φ(t, ω)dWt

)
, (3.8)

where φ is the solution of

σ(Xt, t)φ(t, ω) = γ(t, ω).

Mathematically, the above two results have another formulation whose idea can be ex-

plained as follows. Suppose we have n independent standard Gaussian random variables

Z1, Z2, . . . , Zn ∼ N(0, 1) on probability space (Ω,F , P ). Given a vector (µ1, µ2, . . . , µn) ∈
Rn, the new random variables with translation

Z̃k = Zk + µk, k = 1, 2 . . . , n

are no longer N(0, 1) distributed. But we can define another probability measure

P̃ (dω) = exp
(
−

n∑
k=1

µkZk(ω)− 1

2

n∑
k=1

µ2
k

)
P (dω).

Then we have

P̃
(
Z̃1 ∈ [z̃1, z̃1 + dz̃1), . . . , Z̃n ∈ [z̃n, z̃n + dz̃n)

)
= exp

(
−

n∑
k=1

µk(z̃k − µk)−
1

2

n∑
k=1

µ2
k

)
P
(
Z̃1 ∈ [z̃1, z̃1 + dz̃1), . . . , Z̃n ∈ [z̃n, z̃n + dz̃n)

)
= exp

(
−

n∑
k=1

µk(z̃k − µk)−
1

2

n∑
k=1

µ2
k

)
· (2π)−

n
2 exp

(
− 1

2

n∑
k=1

(z̃k − µk)2
)
dz̃1 · · · dz̃n

= (2π)−
n
2 exp

(
− 1

2

n∑
k=1

z̃2
k

)
dz̃1 · · · dz̃n.

This reveals that the variables {Z̃k}k=1,...,n are again independent N(0, 1) random variables

on space (Ω,F , P̃ ). If we take

Zk =
∆Wk√

∆tk
, Z̃k =

∆W̃k√
∆tk

, µk = φk
√

∆tk
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and take the formal limit as n → ∞, where ∆Wk = Wtk+1
−Wtk and Wt is the standard

Wiener process on (Ω,F , P ), we may claim that

W̃t = Wt +

∫ t

0

φ(s)ds

is again a standard Wiener process on (Ω,F , P̃ ) with

P̃ (dω) = exp
(
−
∫ t

0

φ(s)dWs −
1

2

∫ t

0

φ2(s)ds
)
P (dω). (3.9)

This claim is indeed true even for multidimensional case and the translation φ(t) can be

ω-dependent.

Theorem 3.1 (Girsanov theorem I). For Itô process

dW̃t = φ(t, ω)dt+ dWt, W̃0 = 0, (3.10)

where W ∈ Rd is a d-dimensional standard Wiener process on (Ω,F ,P). Define

Zt(ω) = exp
(
−
∫ t

0

φ(s, ω)dWs −
1

2

∫ t

0

φ2(s, ω)ds
)
. (3.11)

Assume φ(t, ω) satisfies Novikov’s condition

E exp
(1

2

∫ T

0

|φ|2(s, ω)ds
)
<∞, (3.12)

where T ≤ ∞ is a fixed constant. Define P̃ as

P̃(dω) = ZT (ω)P(dω), (3.13)

then we have W̃ is a d-dimensional Wiener process with respect to (Ω,FT , P̃) for t ≤ T .

The Novikov’s condition is to ensure the process Zt in (3.11) is an exponential martingale.

The rigorous proof of Theorem 3.1 may be referred to [3, 4]. The definition (3.11) does not

contradict (3.7). Indeed, they are consequences of each other. To see this, we note that for

any functional F〈
F [W̃t]

〉
P̃

=
〈
F [W̃t]ZT

〉
P

=
〈
F [W̃t] exp

(
−
∫ T

0

φ(s, ω)dW̃s +
1

2

∫ T

0

φ2(s, ω)ds
)〉

P

=
〈
F [Wt] exp

(
−
∫ T

0

φ(s, ω)dWs +
1

2

∫ T

0

φ2(s, ω)ds
)dµW̃

dµW

〉
P

=
〈
F [Wt]

〉
P
.
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It can also be verified by path integrals as follows

〈F [Wt]〉P =

∫
F [wt] ·

1

Z
exp

(
− 1

2

∫ T

0

ẇ2
t dt
)
δ(w0)Dw

=

∫
F [w̃t] ·

1

Z
exp

(
− 1

2

∫ T

0

˙̃w2
t dt
)
δ(w̃0)Dw̃

=

∫
F ◦ Φ[wt] ·

1

Z
exp

(
− 1

2

∫ T

0

ẇ2
t dt−

1

2

∫ T

0

φ2dt−
∫ T

0

φ(t)ẇtdt
)
δ(w0)Dw

=
〈
G[Wt] exp

(
− 1

2

∫ T

0

φ2(t)dt−
∫ T

0

φ(t)dWt

)〉
P

=
〈
F [W̃t] exp

(
− 1

2

∫ T

0

φ2(t)dt−
∫ T

0

φ(t)dWt

)〉
P

=
〈
F [W̃t]ZT

〉
P

=
〈
F [W̃t]

〉
P̃
.

Corresponding to (3.8), we have another form of Girsanov theorem.

Theorem 3.2 (Girsanov theorem II). For Itô processes X,Y satisfy{
dXt = b(Xt, t)dt+ σ(Xt, t)dWt, X0 = x,

dYt = (b(Yt, t) + γ(t, ω))dt+ σ(Yt, t)dWt, Y0 = x,

where X,Y , b,γ ∈ Rn, W ∈ Rm and σ ∈ Rn×m, and assume b and σ satisfy the usual

conditions in Theorem ??. Suppose there exists unique φ(t, ω) such that

σ(Xt, t)φ(t, ω) = γ(t, ω)

and the Novikov’s condition holds

E exp
(1

2

∫ T

0

|φ|2(s, ω)ds
)
<∞. (3.14)

Define W̃t, Zt and P̃ as in Theorem 3.1, then W̃ is a standard Wiener process under

(Ω,FT , P̃) and Y satisfies

dYt = b(Yt, t)dt+ σ(Yt, t)dW̃t, Y0 = x, t ≤ T.

Thus the law of Yt under P̃ is the same that of Xt under P for t ≤ T .

The readers may be referred to [3, 4] for proof details.

4 Feynman-Kac Formula: Revisited

Earlier we have known that the solution of PDE

∂tv =
1

2
∆v + q(x)v, v|t=0 = f(x)
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can be represented as

v(x, t) = Ex
(

exp
(∫ t

0

q(Ws)ds
)
f(Wt)

)
.

In path integral form

v(x, t) =

∫
δ(w0 − x)

1

Z
exp

(
−
∫ t

0

(1

2
ẇ2
s − q(ws)

)
ds
)
f(wt)Dw,

where the delta-function δ(w0 − x) is to shift the starting point of the Wiener process to x.

Feynmann-Kac formula originates from Feynmann’s interpretation of quantum mechanics,

namely that solution of linear Schrödinger equation

i~∂tψ = − ~2

2m
∆ψ + V (x)ψ, ψ|t=0 = ψ0(x) (4.1)

can be expressed formally as

ψ(x, t) =

∫
δ(w0 − x)

1

Z
exp

( i
~
I[w]

)
ψ0(wt)Dw, (4.2)

where I[·] is the Lagrangian defined as

I[w] =

∫ t

0

(m
2
ẇ2
s − V (ws)

)
ds.

Formally if we take

m = 1, ~ = −i

in (4.1) and (4.2), we exactly obtain the above formulation for Feynman-Kac problem!

Indeed, that is the real story on how Feynman-Kac formula is created.

Feynman’s formally expression is yet to be made rigorous. However, Kac’s reinterpre-

tation for the heat equation instead of Schrödinger’s equation can be readily proved. The

Feynman-Kac formula can also be generalized to the case when ∆ is replaced by more

general second order differential operator as we did in previous Chapter.

Homeworks

1. Derive the infinite dimensional characteristic function for Wiener process Wt〈
exp

(
i

∫ 1

0

ξ(t)dWt

)〉
= exp

(
− 1

2

∫ 1

0

|ξ|2dt
)
.
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