
Lecture 16 Numerical SDEs: Basics ∗

Tiejun Li

1 Schemes

As most of the SDEs can not be solved in analytical form, we should appeal to numerical

computations for practical purpose. Below we illustrate the basic idea of constructing the

numerical schemes for solving the SDEs

dXt = b(Xt)dt+ σ(Xt)dWt. (1.1)

Most of the ideas can be extended to the multidimensional SDEs with coefficients involving

t explicitly.

With Ito’s formula, we define

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2 = (L1f)(Xt)dt+ (L2f)(Xt)dWt, (1.2)

where

(L1f)(x) = b(x)f ′(x) +
1

2
σ2(x)f ′′(x), (L2f)(x) = σ(x)f ′(x).

Taking integral from tn to tn+1 to both sides of (1.1), and taking f(x) = b(x) and σ(x), we

have

Xtn+1 =Xtn +

∫ tn+1

tn

b(Xs)ds+

∫ tn+1

tn

σ(Xs)dWs

=Xtn + b(Xtn)δtn + σ(Xtn)(Wtn+1 −Wtn) (1.3)

+

∫ tn+1

tn

dWs

∫ s

tn

(L2σ)(Xτ )dWτ (1.4)

+

∫ tn+1

tn

dWs

∫ s

tn

(L1σ)(Xτ )dτ +

∫ tn+1

tn

ds

∫ s

tn

(L2b)(Xτ )dWτ (1.5)

+

∫ tn+1

tn

ds

∫ s

tn

(L1b)(Xτ )dτ, (1.6)
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where δtn = tn+1− tn. The above procedure can be further carried on by replacing Lib(Xτ ),

Liσ(Xτ ) as Lib(Xt), Liσ(Xt) and getting higher order iterative integrals correspondingly.

The obtained series is usually called Itô-Taylor expansion for SDEs. It is not difficult to

find that each term in the Ito-Taylor expansion has the form

Ii(g) =

∫ tn+1

tn

dW i1
s1

∫ s1

tn

dW i2
s2
· · ·
∫ sk−1

tn

dW ik
sk
g(Xsk)

with some k ∈ {1, 2, . . .}. Here the characteristic index of the integral i = (i1, i2, . . . , ik)

and ij ∈ {0, 1} for j = 1, 2, . . . , k. The integrand g is the action of some compositions of

operators L1 and L2 on function b or σ. We take the convention W 0
t := t and W 1

t := Wt for

the ease of notation. This set-up can be extended to the system driven by multidimensional

Brownian easily.

Now similar with solving deterministic ODEs, we truncate the Ito-Taylor series to dif-

ferent orders to obtain different schemes. For example, if we only keep terms until (1.3),

then we have

(1) Euler-Maruyama scheme

Xn+1 = Xn + b(Xn)δtn + σ(Xn)δWn, (1.7)

where δWn ∼ N(0, δtn). The Euler-Maruyama scheme is the most commonly used numerical

scheme for its simplicity.

From the basic intuition dWt ∼
√
dt, we have that roughly (1.8)∼ O(δt), (1.5)∼ O(δt3/2)

and (1.6)∼ O(δt2). By extracting the leading order term (1.8), we obtain∫ tn+1

tn

dWs

∫ s

tn

(L2σ)(Xτ )dWτ ≈ (L2σ)(Xtn)

∫ tn+1

tn

dWs

∫ s

tn

dWτ

=
1

2
(L2σ)(Xtn)[(δWn)2 − δtn].

Substitute this into the Ito-Taylor expansion we obtain the well-known Milstein scheme.

(2) Milstein scheme

Xn+1 =Xn + b(Xn)δtn + σ(Xn)δWn +
1

2
(σσ′)(Xn)[(δWn)2 − δtn]. (1.8)

We should remark that although Milstein scheme is more accurate than the Euler-

Maruyama scheme in some sense, it is only practical for the SDEs driven by single Wiener

process. That is because the explicit characterization∫ tn+1

tn

∫ s

tn

dWsdWτ =
1

2
[(δWn)2 − δtn]
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is only valid in one dimensional case. In multi-dimensions, when i 6= j it is impossible to

get an explicit sampling form of ∫ tn+1

tn

∫ s

tn

dW i
sdW

j
τ ,

where W i
t ,W

j
t are independent Wiener processes. Though some strategies are proposed to

approximate the above random variables, they are not so common in practical applications.

The readers may be refereed to [1] for more details.

Although Milstein scheme is more accurate, it is not so popular in practice for the term

σ′(Xt) may be too complicate to compute even in 1D case. To overcome this issue, one can

take the following type of schemes by borrowing the idea from Runge-Kutta method for

solving ODEs.

(3) Runge-Kutta scheme

X̂n =Xn + σ(Xn)
√
δtn,

Xn+1 =Xn + b(Xn)δtn + σ(Xn)δWn

+
1

2

1√
δtn

[σ(X̂n)− σ(Xn)][(δWn)2 − δtn]. (1.9)

If we formally take higher order Itô-Taylor expansion, specifically applying formula (1.2) to

(L1b)(Xτ ), (L2b)(Xτ ), (L1σ)(Xτ ), (L2σ)(Xτ )

and dropping higher order terms, we have the following higher order scheme.

(4) Higher order scheme

Xn+1 =Xn + bδtn + σδWtn +
1

2
σσ′{(δWn)2 − δtn}

+ σb′∆Zn +
1

2
(bb′ +

1

2
σ2b′′)δt2n

+ (bσ′ +
1

2
σ2σ′′)(δWnδtn − δZn)

+
1

2
σ
[
σσ′′ + (σ′)2

][1

3
(δWn)2 − δtn

]
δWn, (1.10)

where

∆Zn :=

∫ tn+1

tn

∫ s

tn

dWτds

is a Gaussian R.V. satisfying E(∆Zn) = 0, E((∆Zn)2) = δt3n/3,E(δZnδWn) = δt2n/2.

The convergence of the discretized solution of SDEs has two senses according to the

needs of realistic applications. They are called strong convergence and weak convergence,

respectively. Define {Xδt
t } a numerical solution of SDEs with maximal stepsize δt, Xt is the

exact solution, then we have the following definition.
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Definition 1.1 (Convergence of numerical solutions). We have the following two typical

concepts of convergence for the numerical solution of SDEs.

(1) Strong convergence (mean-square convergence) If

max
0≤t≤T

E|Xδt
t −Xt|2 ≤ C(∆t)2α,

where C is a constant independent of δt, then we call {X∆t
t } strongly converges, or converges

in the mean-square sense, to Xt with order α.

(2) Weak convergence (convergence w.r.t. expectation) If

max
0≤t≤T

|Ef(Xδt
t )− Ef(Xt)| ≤ Cf (δt)

β,

for any f ∈ C∞b (Rn), where Cf is a constant independent of δt but may depend on f , then

we call {Xδt
t } weakly converges to Xt with order β.

A straightforward result about the convergence order is below.

Proposition 1.2. When the considered function f in the weak convergence has the property

‖f ′‖∞ ≤ K, we have β ≥ α.

Proof. By the mean value theorem and the Hölder’s inequality, we obtain

|Ef(Xδt
t )− Ef(Xt)| ≤ E|f(Xδt

t )− f(Xt)| ≤ KE|Xδt
t −Xt| ≤ K(E|Xδt

t −Xt|2)
1
2 .

The above proposition gives a rationale why the former is called strong convergence

compared with the other one in some sense. Before introducing the convergence analysis,

let us state the main theorem about the convergence of numerical schemes

Theorem 1.3 (Convergence order). Define the length of the multi-index i = (i1, i2, . . . , ik)

as

l(i) := k, n(i) := {the number of zeros in i}.

and the set of indices

Sα =

{
i| l(i) + n(i) ≤ 2α or l(i) = n(i) = α +

1

2

}
for α ∈

{
1

2
, 1,

3

2
, · · ·

}
,

Wβ = {i|l(i) ≤ β} for β ∈ {1, 2, 3, · · · }.

Then with mild smoothness conditions on b, σ and the function f in weak approximation,

the scheme derived by truncating the Ito-Taylor expansion up to all indices with i ∈ Sα has

strong order α; the scheme derived by truncating the Ito-Taylor expansion up to terms with

i ∈ Wβ has weak order β.

The proof and detailed requirements about the smoothness conditions on b, σ and f may

be found in [1] (Theorems 10.6.3 and 14.5.1). Applying this theorem to the constructed

schemes in this section, we have Table 1.
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Strong order Weak order

Euler-Maruyama 1/2 1

Milstein 1 1

Scheme (1.9) 1 1

Scheme (1.10) 2 2

Table 1: The convergence order of some numerical schemes for SDE.

2 Strong convergence

We will analyze the mean-square convergence of the Euler-Maruyama scheme under the

assumption that b(x) satisfies global Lipschitz and linear grow condition with constant L

and σ = 1, i.e. the additive noise case.

Now suppose the SDE takes the form

dXt = b(Xt)dt+ dWt (2.1)

with the Euler-Maruyama discretization

Xn+1 = Xn + b(Xn)δtn + δWn. (2.2)

Introduce the “linear stochastic” interpolation of Xn as

dX̄t = b(Xn)dt+ dWt, t ∈ [tn, tn+1).

where the driving term Wt is assumed to be the same as that in continuous form. Then

X̄tn = Xn and we have the so called “discrete Ito formula” for f ∈ C2(R)

df(X̄t) = f ′(X̄t)dX̄t +
1

2
f ′′(X̄t)(dX̄t)

2,

i.e.

f(X̄t) = f(Xn) +

∫ t

tn

[
f ′(X̄s)b(Xn) +

1

2
f ′′(X̄s)

]
ds+

∫ t

tn

f ′(X̄s)dWs, t ∈ [tn, tn+1).

Lemma 2.1. Let δt = maxn δtn. We have the following bounds for Xt

sup
t≤T

E|Xt|2 ≤ K1(T ), sup
t∈[tn,tn+1)

E|Xt −Xtn|2 ≤ K2(T )δt,

where the constant K1(T ) depends on T , L and E|X0|2, and K2(T ) depends on L, δt and

K1(T ).
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Proof. Applying Ito formula to |Xt|2, we have

d|Xt|2 = 2Xt · (b(Xt) + dWt) + dt.

Integrating from 0 to t and taking expectation we have

E|Xt|2 = E|X0|2 + 2E
∫ t

0

Xs · b(Xs)ds+ 2E
∫ t

0

XsdWs + t.

Taking advantage of (??) for the Ito integral and the inequality 2ab ≤ a2 + b2, we obtain

E|Xt|2 ≤ E|X0|2 + T +

∫ t

0

E|Xs|2ds+ L

∫ t

0

(1 + E|Xs|2)ds.

The Gronwall inequality gives

sup
t≤T

E|Xt|2 ≤ (E|X0|2 + T + LT ) exp((L+ 1)T ).

For the second inequality, we have from SDE

Xt −Xtn =

∫ t

tn

b(Xs)ds+ (Wt −Wtn).

Squaring both sides and taking expectation we get

E|Xt −Xtn|2 ≤ 2E
(∫ t

tn

b(Xs)ds

)2

+ 2δt.

From Hölder’s inequality we obtain

E|Xt −Xtn|2 ≤ 2Lδt

∫ t

tn

(1 + E|Xs|2)ds+ 2δt ≤ 2Lδt2(1 +K1(T )) + 2δt, t ∈ [tn, tn+1).

Proposition 2.2 (Half order mean-square convergence). The Euler-Maruyama scheme is

of strong order 1/2.

Proof. From (2.1) we have

Xtn+1 = Xtn +

∫ tn+1

tn

b(Xt)dt+ δWn,

and the Equation (2.2) can be rewritten as

Xn+1 = Xn +

∫ tn+1

tn

b(Xn)dt+ δWn.

Define the error en+1 = Xtn+1 −Xn+1, then

en+1 = en +

∫ tn+1

tn

(b(Xt)− b(Xn))dt.
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Squaring both sides and from the inequality 2ab ≤ a2δt+ b2/δt, we obtain

|en+1|2 = |en|2 +
[ ∫ tn+1

tn

(b(Xt)− b(Xn))dt
]2

+ 2en ·
[ ∫ tn+1

tn

(b(Xt)− b(Xn))dt
]

≤ |en|2(1 + δt) +

(
1 +

1

δt

)[∫ tn+1

tn

(b(Xt)− b(Xn))dt

]2

≤ |en|2(1 + δt) + L2(1 + δt)

∫ tn+1

tn

|Xt −Xn|2dt, (2.3)

where the last inequality is from Hölder’s inequality and Lipschitz condition.

From the inequality |Xt −Xn|2 ≤ 2|Xt −Xtn|2 + 2|Xtn −Xn|2 we have

E|en+1|2 ≤ E|en|2(1 + L1δt) + L2δt
2,

where L1 = 1+2L2(1+δt) and L2 = 2L2(1+δt)K2(T ) can be bounded by positive constants

independent of δt if δt is small.

The discrete Gronwall’s inequality then guarantees

E|en|2 ≤ E|e0|2(1 + L1δt)
n + L2δt

2 (1 + L1δt)
n − 1

L1δt
≤ L2

L1

(eL1T − 1)δt

if we assume e0 = 0. The proof is complete.

We want to remark here that in the considered additive noise case, the Euler-Maruyama

scheme is exactly the Milstein scheme since σ′σ = 0 and thus the last term in (1.8) dimin-

ishes! From Theorem 1.3, we can prove it is of strong order 1 in principle. It is indeed true

but the proof will be more tedious with higher smoothness condition on b. We leave the

proof as an exercise to the reader.

3 Weak Convergence

Now let us consider the weak convergence of the Euler-Maruyama scheme with the tools

from PDEs. We will only consider the 1D case with σ = 1 for simplicity. But the essential

part of the proof is the same for high dimensional case. The weak convergence is to analyze

the error

en = Ef(Xn)− Ef(Xtn)

for smooth function f . From the stated result in Theorem 1.3, we know that the Euler-

Maruyama scheme is of weak order 1. Before we go to the rigorous proof, let us give a more

transparent observation on this point by elementary deductions.

Suppose X0 = x, f is a smooth enough function. Formally in order to consider the weak

convergence of a numerical scheme to approximate Markov process Xt, we start from the
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weak Ito-Taylor expansion

Exf(Xh) = f(x) +

∫ h

0

Af(Xt)dt ∼
∑
n=0

Anf(x)

n!
hn, (3.1)

where A is the infinitesimal generator of Xt and h is the time stepsize. Correspondingly for

the numerical solution XN
t , we have

Exf(XN
h ) = f(x) +

∫ h

0

Af(XN
t )dt ∼

∑
n=0

AnNf(x)

n!
hn, (3.2)

where AN is the infinitesimal generator of XN
t . To have an idea about the global weak

convergence order, we need to figure out the local weak truncation order at first.

Take the diffusion process as a specific example. Now

dXt = b(Xt)dt+ dWt

and the Euler-Maruyama scheme reads

Xn+1 = Xn + b(Xn)∆t+ ∆Wn.

Define the continuous extension of the numerical solution as

dXN
t = b(Xn)dt+ dWt, t ∈ [tn.tn+1).

We have the infinitesimal generator

Af(y) = b(y)f ′(y) +
1

2
f ′′(y)

and

A2f(y) = b(y)
[
b(y)f ′(y) +

1

2
f ′′(y)

]
+

1

2

[
b(y)f ′(y) +

1

2
f ′′(y)

]′′
.

Correspondingly for the numerical solution XN
t we have

ANf(y) = b(x)f ′(y) +
1

2
f ′′(y)

and

A2
Nf(y) = b(x)

[
b(x)f ′(y) +

1

2
f ′′(y)

]
+

1

2

[
b(x)f ′(y) +

1

2
f ′′(y)

]′′
,

where x is the initial condition. Now it is obvious that

Exf(XN
h )− Exf(Xh) = O(h2) (3.3)

and thus the weak local truncation error is of second order and we can expect that the

Euler-Maruyama scheme is of weak order 1. In fact if one can bound the expansion terms in
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(3.1) and (3.2) up to corresponding order, the above formal derivations based on the local

error analysis can be made rigorous.

It will become clear soon that the weak convergence analysis essentially relies on some

estimates about the solution of the backward equation. Let us first consider the partial

differential equation

∂tu(x, t) = Lu(x, t) = b(x)∂xu+
1

2
∂xxu, u(x, 0) = f(x). (3.4)

Define the notation Cm
P (Rd,R) the space of functions w ∈ Cm(Rd,R) for which all partial

derivatives up to order m have polynomial growth. More concretely, there exist a constant

K > 0, and m, p ∈ N such that

|∂jxw(x)| ≤ K(1 + |x|2p), ∀ |j| < m

for any x ∈ Rd, where j is a d-multi-index. Here we have d = 1 and we will simply denote

Cm
P (Rd,R) as Cm

P in later texts.

The following important lemma can be found in [1] (Theorem 4.8.6, pp. 153).

Lemma 3.1. Suppose that f ∈ C2β
P for some β ∈ {2, 3, . . .}, Xt is time-homogeneous and

b ∈ C2β
P with uniformly bounded derivatives. Then ∂u/∂t is continuous and

u(·, t) ∈ C2β
P , t ≤ T

for any fixed T <∞.

Theorem 3.2 (Weak convergence). Assume that b is Lipschitz and the conditions in Lemma

3.1 also hold for b and f , then the Euler-Maruyama scheme is of weak order 1 .

Proof. Define the backward operator

L̃ = ∂t + b(x)∂x +
1

2
∂xx,

and denote by v the solution of

L̃v = 0, t ∈ (0, tn) (3.5)

with the final condition v(x, tn) = f(x). It is straightforward that v(x, t) = u(x, tn − t) for

the solution u of (3.4).

By Itô’s formula we have

Ev(X0, 0) = Ev(Xtn , tn) = Ef(Xtn).

9



Hence

|en| = |Ef(Xn)− Ef(Xtn)|
= |Ev(Xn, tn)− Ev(X0, 0)|

=
∣∣∣E(∫ tn

0

(
∂tv(X̄s, s) + b(Xns)∂xv(X̄s, s) +

1

2
∂xxv(X̄s, s)− L̃v(X̄s, s)

)
ds
)∣∣∣,

where ns := {m|tm ≤ s < tm+1}, and X̄s is the continuous extension of Xn defined as

dX̄s = b(Xns)ds+ dWs, x ∈ [tm, tm+1).

With this definition, we obtain

|en| =
∣∣∣E(∫ tn

0

(
b(Xns)∂xv(X̄s, s)− b(X̄s)∂xv(s, X̄s)

)
ds
)∣∣∣

≤
∣∣∣E(∫ tn

0

(
b(Xns)∂xv(Xns , tns)− b(X̄s)∂xv(X̄s, s)

)
ds
)∣∣∣

+
∣∣∣E(∫ tn

0

b(Xns)
(
∂xv(X̄s, s)− ∂xv(Xns , tns)

)
ds
)∣∣∣

=
∣∣∣E∑

m

∫ tm+1

tm

(
b(Xm)∂xv(Xm, tm)− b(X̄s)∂xv(X̄s, s)

)
ds
∣∣∣

+
∣∣∣E∑

m

∫ tm+1

tm

b(Xm)
(
∂xv(X̄s, s)− ∂xv(Xm, tm)

)
ds
∣∣∣. (3.6)

Using Itô’s formula again, we have for any function g(x, t)

g(X̄t, t)− g(Xm, tm) =

∫ t

tm

[
∂tg(X̄s, s) + b(Xm)∂xg(X̄s, s) +

1

2
∂xxg(X̄s, s)

]
ds

+

∫ t

tm

∂xg(X̄s, s)dWs, t ∈ [tm, tm+1).

Using this with g = b∂xv and g = ∂xv in (3.6), we have the highest derivatives ∂xxxv, ∂xxb ∈
C2β
P as long as β ≥ 2. Notice that b(Xm) is independent of

∫ t
tm
∂xg(X̄s, s)dWs conditional

on Xm, together with the fact that E|Xm|2r and E|X̄t|2r ≤ C for any r ∈ N (Exercise 3), we

get

|en| ≤ C
∑
m

∆t2 ≤ C∆t,

which is the desired estimate.

Example 3.3 (Weak approximation). For the SDE

dXt = −1

2
Xtdt+ dWt, X0 = 0,

compute u = EX2
t |t=1 with the Euler-Maruyama scheme.
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Solution. The exact solution of u is

u = EX2
t |t=1 = 1− e−1 ≈ 0.632.

In order to compute the expectation numerically, we take the Euler-Maruyama scheme

Xn+1,k = (1− ∆t

2
)Xn,k +

√
∆t ·Rn,k, k = 1, 2, . . . , N,

where ∆t = 1/M , n = 0, 1, . . . ,M − 1 and Rn,k are i.i.d. N(0, 1) random variables. So the

approximate solution

uN,∆t =
1

N

N∑
k=1

(XM,k)
2.

We take M = 2000, and compute u with different sample size N as follows.

N 100 200 300 400 500 600

u 0.6586 0.6563 0.6785 0.6234 0.6407 0.6320

Error 0.0265 0.0242 0.0464 0.0087 0.0086 0.0001

Table 2: Weak approximation with Euler-Maruyama scheme

Homeworks

1. Give a sampling method for the random variables

∆Z1 :=

∫ tn+1

tn

∫ s

tn

dWτds, ∆Z2 :=

∫ tn+1

tn

∫ s

tn

dτdWs.

and ∆Wn.

2. Prove the Euler-Maruyama scheme is of strong order 1 for the SDE (2.1) with additive

noise and higher smoothness condition on b.

3. Prove that for the Euler-Maruyama scheme

E|Xn|2r, E|Xt|2r, E|X̄t|2r ≤ C

for t ≤ T , n ≤ N and any r ∈ N.
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