
Lecture 14 Connections with PDE ∗

Tiejun Li

1 Liouville equation

Consider N non-interacting particles moving according to the following deterministic

ODEs
dX i

t

dt
= b(X i

t), X i
t

∣∣
t=0

= X i
0, i = 1, 2, . . . , N. (1.1)

An interesting question is to ask what the transition rule for the distribution of these particles

is in macroscopic viewpoint, that is, to describe its distributive law when the number of

particles N goes to infinity. To investigate this, it is natural to consider its empirical

distribution at time t at first

µN(x, t) =
1

N

N∑
i=1

δ(x−X i
t),

where δ(·) is the Dirac’s δ-function. We have for any compactly supported smooth function

φ(x) ∈ C∞c (Rd)

d

dt
(µN , φ) =

1

N

N∑
i=1

d

dt

∫
Rd

δ(x−X i
t)φ(x)dx

=
1

N

N∑
i=1

d

dt
φ(X i

t) =
1

N

N∑
i=1

∇xφ(X i
t) · b(X i

t)

=
(
µN , b · ∇xφ(x)

)
,

where the notation (f , g) :=
∫
Rd f(x) ·g(x)dx is the inner product of functions. Denote the

space of probability measures on Rd as M(Rd). Now let us suppose the initial distribution

µN(x, 0) :=
1

N

N∑
i=1

δ(x−X i
0)
∗→ µ0(x) ∈M(Rd) as N →∞
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in the sense that (µN , φ) → (µ, φ) for any φ ∈ C∞c (Rd). One can establish the limit

µN(x, t)
∗→ µ(x, t) and indeed µ satisfies

d

dt
(µ, φ) = (µ, b · ∇xφ(x)), µ(x, 0) = µ0(x).

If we assume the probability measure µ has density ψ(x, t) ∈ C1(Rd× [0, T ]), then we obtain

the following hyperbolic equation after integration by parts

∂tψ +∇x · (bψ) = 0.

If the drift vector b satisfies ∇x · b = 0, we get

∂tψ + b(x) · ∇xψ = 0.

This is called the Liouville equation which is well-known in classical mechanics. The orbit

of the equation
dx

dt
= b(x)

is called the characteristics of the above hyperbolic PDE.

2 Fokker-Planck equation

If the deterministic equation (1.1) is replaced with the following SDEs

dXt = b(Xt, t)dt+ σ(Xt, t) · dWt, (2.1)

the same question on the probability distribution of X may be asked. To simplify the

discussion, we assume the transition probability density function exists and is defined as

(t ≥ s)

p(x, t|y, s)dx = P{Xt ∈ [x,x+ dx)|Xs = y}.

For any function f ∈ C∞c (Rd), the Ito formula gives

df(Xt) = ∇f(Xt) · dXt +
1

2
(dXt)

T · ∇2f(Xt) · (dXt)

= (b · ∇f +
1

2
σσT : ∇2f)dt+∇f · σ · dWt.

Integrating both sides from s to t we get

f(Xt)− f(Xs) =

∫ t

s

∇f(Xτ ) · {b(Xτ , τ)dτ + σ(Xτ , τ)dWτ}

+
1

2

∫ t

s

∑
i,j

∂2ijf(Xτ )aij(Xτ , τ)dτ,
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where the diffusion matrix a(x, t) = σ(x, t)σT (x, t). Now taking expectation on both sides

and utilizing the initial condition Xs = y, we have

Ef(Xt)− f(y) = E
∫ t

s

Lf(Xτ , τ)dτ, (2.2)

where the operator L is defined as

Lf(x, t) = b(x, t) · ∇f(x) +
1

2

∑
i,j

aij(x, t)∂
2
ijf(x). (2.3)

In the language of transition pdf p(x, t|y, s), we have∫
Rd

f(x)p(x, t|y, s)dx− f(y) =

∫ t

s

∫
Rd

Lf(x, τ)p(x, τ |y, s)dxdτ.

This is exactly the definition of the weak solution of the PDE with respect to t and x

∂tp = L∗xp(x, t|y, s), p(x, t|y, s)|t=s = δ(x− y), t ≥ s, (2.4)

in the sense of distribution, where the operator L∗ is the formal adjoint of L defined through

(Lf, g)L2 = (f,L∗g)L2 .

The concrete form of L∗ reads

L∗f(x, t) = −∇x · (b(x, t)f(x)) +
1

2
∇2

x : (a(x, t)f(x)), (2.5)

where∇2
x : (af) =

∑
ij ∂ij(aijf). Indeed by assuming the solution p(x, t|y, s) ∈ C2,1(Rd, [0, T ]),

which means p is C2 in x-variable and C1 in t-variable, we can directly obtain the PDE

(2.4) through integration by parts. For the rigorous proof about the connection between

the SDEs and above PDE, the readers may be referred to [?].

The Equation (2.4) is well-known as the Kolmogorov’s forward equation, or the Fokker-

Planck equation in physics. The “forward” means it is for the forward time variable t > s

and its corresponding space variable x. When we consider the equation for the backward

time variable s < t and y, we will call it backward equation, which will be considered in

Section 4. The transition pdf p(x, t|y, s) is simply the fundamental solution of this operator.

By analogy with the deterministic case, the SDE (2.1) may be regarded as the “stochastic

characteristics” of the parabolic equation (2.4). This viewpoint will be found to be very

useful in many situations.

We finally remark that the joint distribution p(x, t;y, s) and the distribution density

p(x, t) starting from some initial distribution both satisfy the forward Kolmogorov type

equation with respect to x and t. The reason is straightforward since the derivation from

p(x, t|y, s) to p(x, t;y, s) or p(x, t) is simply by timing p(y, s) and integrating with respect

to y.
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Example 2.1 (Brownian motion). The SDE reads

dXt = dWt, X0 = 0.

So the Fokker-Planck equation is

∂tp =
1

2
∆p, p(x, 0) = δ(x). (2.6)

It is well-known from PDE that its unique solution is the heat kernal

p(x, t) =
1√
2πt

exp
(
− x

2

2t

)
,

which is exactly the pdf of N(0, tI). The PDE (2.6) gives another characterization of the

Brownian motion.

Example 2.2 (Brownian dynamics). The SDE reads

dXt = −1

γ
∇V (Xt)dt+

√
2kBT

γ
dWt. (2.7)

So the Fokker-Planck equation is

∂tp−∇ ·
(1

γ
∇V (x)p

)
=
kBT

γ
∆p = D∆p, (2.8)

where D = kBT/γ is the diffusion coefficient. Note that this also gives another understand-

ing about the Einstein’s relation in (??).

Alternatively (2.8) can be derived from the following recipe. Define the free energy

associated with the pdf p as

F(p) =

∫
Rd

(
kBTp(x) ln p(x) + V (x)p(x)

)
dx, (2.9)

where the first term kB
∫
Rd p(x) ln p(x)dx corresponds to the negative entropy −S in ther-

modynamics, and the second term
∫
Rd V (x)p(x)dx is the internal energy U . The chemical

potential µ is then given by

µ =
δF
δp

= kBT (1 + ln p(x)) + V (x).

The current density is defined as

j(x) := p(x)u(x) (2.10)

with the velocity field u(x) given by the Fick’s Law

u(x) =
1

γ
f = −1

γ
∇µ,
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where f = −∇µ is the force field. Then the Smoluchowski’s equation (2.8) is a consequence

of the continuity equation

∂tp+∇ · j = 0.

This approach via deterministic PDE to describe the Brownian dynamics is more common

in physics.

Finally we want to mention that if the underlying stochastic dynamics is a Stratonovich

SDE, we will have its transition pdf satisfies the following type of PDE

∂tp+∇x · (bp) =
1

2
∇x · (σ · ∇x · (σp)), (2.11)

where ∇x · (σ ·∇x · (σp)) = ∂i(σik∂j(σjkp)). If the underlying stochastic dynamics is defined

through the backward stochastic integral,

dXt = b(x, t)dt+ σ(x, t) ∗ dWt,

then p(x, t) satisfies

∂tp+ ∂i

[
(bi + ∂kσijσkj)p

]
=

1

2
∂ij : (σikσjkp), (2.12)

where the Einstein summation convention is assumed. In the one-dimensional case, it can

be simplified to

∂tp+ ∂x(bp) =
1

2
∂x(σ

2∂xp). (2.13)

The proof is straightforward and left as an exercise.

3 Boundary Condition

Many stochastic problems occur in a bounded domain, in which case the boundary

conditions are needed. To pose suitable boundary conditions in different situations, we

need to understand the probability current j(x, t) = b(x, t)p(x, t)− 1/2∇x · (a(x, t)p(x, t))

in the Fokker-Planck equation

∂tp(x, t) +∇x · j(x, t) = 0 (3.1)

more intuitively at first. To do this, let us investigate the role of probability flux between

regions R1 and R2 separated by a boundary S12 (see Fig. 1).

Consider the probability transfer from region R1 to R2 during the time t to t + δt, we

have

P1→2 =

∫
R2

dx

∫
R1

dyp(x, t+ δt;y, t),
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R1 R2n

S12

S1
S2

Figure 1: Probability flux across a boundary

and with the similar reason the probability transfer from region R2 to R1 has the form

P2→1 =

∫
R1

dx

∫
R2

dyp(x, t+ δt;y, t).

Thus the net probability flow rate from R2 to R1 is

J2→1 = lim
δt→0

(P2→1 − P1→2)/δt.

With the equality ∫
R2

dx

∫
R1

dyp(x, t;y, t) = 0,

we obtain

J2→1 =

∫
R1

dx

∫
R2

dy∂tp(x, t;y, s = t)−
∫
R2

dx

∫
R1

dy∂tp(x, t;y, s = t)

=

∫
R2

dx∇x · j(x, t;R1, t)−
∫
R1

dx∇x · j(x, t;R2, t)

=

∫
S12

dSn · (j(x, t;R1, t) + j(x, t;R2, t)),

where j(x, t;R1, t) :=
∫
R1
dyj(x, t;y, t), n is the normal pointing from R2 to R1. The

last equality is obtained by divergence theorem and the fact that j(x, t;R2, t) = 0 when

x ∈ S1 and j(x, t;R1, t) = 0 when x ∈ S2. From the fact that x ∈ R1 ∪ R2 we have

j(x, t) =
∫
Rd dyj(x, t;y, t) = j(x, t;R1, t) + j(x, t;R2, t) and thus

J2→1 =

∫
S12

dSn · j(x, t).

Recalling the probability flux defined as

Jnij = µn,ipij − µn,jpji

from state i to state j at time n in a discrete time Markov chain and

Jij(t) = µi(t)pij − µj(t)pji
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for a continuous time Markov chain, we have that n · j(x, t) is exactly the continuous space

version of Jij(t) along a specific direction n.

Three commonly used boundary conditions are as follows. It will be instructive for the

readers to compare them with the boundary conditions for the Wiener process.

Reflecting barrier. In the microscopic sense, the reflecting barrier means that the particles

will be reflected once it hits the boundary ∂D. Thus there will be no probability flux across

∂D and the reflecting boundary condition has the form

n · j(x, t) = 0 x ∈ ∂D. (3.2)

Note that in this case the total probability is conserved since

d

dt

∫
D

p(x, t)dx = −
∫
D

∇x · j(x, t)dx

= −
∫
∂D

n · j(x, t)dS = 0.

Absorbing barrier. In the microscopic sense, the absorbing barrier means that the parti-

cles will be absorbed (or removed) once it hits the boundary ∂D. Thus the probability on

the boundary ∂D will be zero. The absorbing boundary condition is

p(x, t) = 0 x ∈ ∂D. (3.3)

The total probability is no longer conserved in this case.

Periodic boundary condition. In the periodic case with period Lj in the xj-direction

for j = 1, . . . , d, the boundary condition is

p(xj + Lj, t) = p(xj, t), j = 1, 2, . . . , d.

4 Backward equation

Now let us consider the equation for the transition pdf p(x, t|y, s) with respect to variable

y and s. Suppose Xt satisfies (2.1). For any given f(x) ∈ C∞c (Rd), we define

u(y, s) = Ey,sf(Xt) =

∫
Rd

f(x)p(x, t|y, s)dx, s ≤ t.

Assume that p(x, t|y, s) is C1 in s and C2 in y, then we have

du(Xτ , τ) = (∂τu+ Lu)(Xτ , τ)dτ +∇u · σ · dWτ

by Ito formula. Taking expectation we obtain

lim
t→s

1

t− s
(Ey,su(Xt, t)− u(y, s)) = lim

t→s

1

t− s

∫ t

s

Ey,s(∂τu+ Lu)(Xτ , τ)dτ

= ∂su(y, s) + Lu(y, s).
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On the other hand it is obvious that

Ey,su(Xt, t) = Ey,sf(Xt) = u(y, s)

and thus

∂su(y, s) + Lu(y, s) = 0.

From the arbitrariness of f , we obtain

∂sp(x, t|y, s) + Lyp(x, t|y, s) = 0, p(x, t|y, t) = δ(x− y), s < t. (4.1)

This is the well-know Kolmogorov backward equation for the transition density since the

time variable s goes backward.

5 Invariant distribution and detailed balance

Consider the Fokker-Planck equation (3.1) for describing the evolution of the probability

density. It is interesting to study the case when the system achieves a steady state: that is,

the pdf is independent of the time, if the system admits such a solution. This situation is

only meaningful when the drift b and diffusion coefficient σ does not depend on t. In this

case, the process {Xt} is a time-homogeneous Markov process since the transition rule only

depends on the states other than the time. The steady state pdf satisfies the following PDE

∇x · (b(x)ps(x)) =
1

2
∇2

x : (a(x) ps(x)) (5.1)

with suitable boundary conditions. This ps(x) is called the stationary distribution or in-

variant distribution of the considered system.

Specially for the Langevin equation (2.7), the invariant distribution satisfies

∇ · js(x) = 0,

where js is defined in (2.10). In particular, we are interested in the equilibrium solution

with a stronger condition js = 0, i.e. the detailed balance condition in the continuous case,

which implies the chemical potential

µ = constant.

It is not difficult to deduce the following well-known Gibbs distribution for the equilibrium

ps(x) =
1

Z
exp

(
− V (x)

kBT

)
(5.2)

as long as the normalization constant

Z =

∫
Rd

e
−V (x)

kBT dx (5.3)

is finite.
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6 Further topics on Diffusion Processes

All of the discussions in this section are considered for the time-homogeneous SDEs

dXt = b(Xt)dt+ σ(Xt) · dWt. (6.1)

where b and σ are independent of time t. This time-homogeneity implies that the transla-

tional invariance of time for its transition kernel p(·, t|y, s) (see pp. 110 in [2])

p(A, t+ s|y, s) = p(A, t|y, 0), s, t ≥ 0

for any y ∈ Rd and A ∈ B(Rd), where

p(A, t|y, s) := Ey,s1A(Xt) =

∫
A

p(dx, t|y, s).

6.1 Semigroup and backward Equation

Define the operator Tt on any function f ∈ C0(Rd) as

Ttf(x) = Exf(Xt) =

∫
Rd

f(z)p(dz, t|x, 0).

Then we have T0f(x) = f(x) and the following semigroup property for any t, s ≥ 0

Tt ◦ Tsf(x) = Ex(EXtf(Xs))

=

∫
p(dy, t|x, 0)

∫
f(z)p(dz, s|y, 0)

=

∫
f(z)

∫
p(dz, s+ t|y, t)p(dy, t|x, 0)

= Ex(f(Xt+s)) = Tt+sf(x).

Under the condition that b and σ are bounded and Lipschitz, one can further show Tt :

C0(Rd)→ C0(Rd) and it is strongly continuous (Theorem 18.11 in [1]) in the sense that

lim
t→0+

‖Ttf − f‖∞ = 0, for any f ∈ C0(Rd).

Tt is called Feller semigroup in the literature. With this setup, we can utilize the tools from

semigroup theory to study Tt [3].

Definition 6.1. The infinitesimal generator A of Tt is defined as

Af(x) = lim
t→0+

Exf(Xt)− f(x)

t
,

where f ∈ D(A) := {f ∈ C0(Rd) such that the limit exists}.
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For f ∈ C2
c (Rd) ⊂ D(A) we have

Af(x) = Lf(x) = b(x) · ∇f(x) +
1

2
(σσT ) : ∇2f(x).

from Ito formula (2.2). We will show that u(x, t) = Exf(Xt) satisfies the backward equation

for f ∈ C2
c (Rd)

∂tu = Au(x), u|t=0 = f(x). (6.2)

Proof. At first it is not difficult to observe that u(x, t) is differentiable with respect to t

from Ito’s formula and the condition f ∈ C2
c (Rd). For any fixed t > 0, define g(x) = u(x, t).

Then we have

Ag(x) = lim
s→0+

1

s

(
Exg(Xs)− g(x)

)
= lim

s→0+

1

s

(
ExEXsf(Xt)− Exf(Xt)

)
= lim

s→0+

1

s

(
Exf(Xt+s)− Exf(Xt)

)
= lim

s→0+

1

s
(u(x, t+ s)− u(x, t)) = ∂tu(x, t).

This means u(·, t) ∈ D(A) and the proof is complete.

The readers can also derive the equation (6.2) from (4.1) if the transition pdf exists.

6.2 Feynman-Kac Formula

Theorem 6.2. (Feynman-Kac Formula) Let f ∈ C2
0(Rd) and q ∈ C(Rd). Assume that q is

lower bounded, then

v(x, t) = Ex
(

exp(

∫ t

0

q(Xs)ds)f(Xt)
)

satisfies the PDE

∂tv = Av + qv, v|t=0 = f(x). (6.3)

Intuitive explanation: In the absence of Brownian motion, the SDE becomes

dXt

dt
= b(Xt), X0 = x

and the PDE becomes

∂tv = b · ∇v + qv, v|t=0 = f(x).

The method of characteristics gives us

v(x, t) = exp(

∫ t

0

q(Xs)ds)f(Xt).

10



0

t

Deterministic Characteristics

Stochastic Characteristics

x

(x,t)

Figure 2: Schematics of Feynmann-Kac formula.

The Feynmann-Kac formula tells us the solution of that parabolic PDE (6.3) can be repre-

sented by the ensemble of solution for the ODEs with stochastic characteristics originated

from x.

Proof. Let Yt = f(Xt), Zt = exp(
∫ t
0
q(Xs)ds), define v(x, t) = Ex(YtZt). With the similar

reason as the previous section, we have v(x, t) is differentiable with respect to t and

1

s

(
Exv(Xs, t)− v(x, t)

)
=

1

s

(
ExEXsZtf(Xt)− ExZtf(Xt)

)
=

1

s

(
Ex exp(

∫ t

0

q(Xr+s)dr)f(Xt+s)− ExZtf(Xt)
)

=
1

s
Ex
(

exp(−
∫ s

0

q(Xr)dr)Zt+sf(Xt+s)− Ztf(Xt)
)

=
1

s
Ex
(
Zt+sf(Xt+s)− Ztf(Xt)

)
+

1

s
Ex
(
Zt+sf(Xt+s)(exp(−

∫ s

0

q(Xr)dr)− 1)
)

→ ∂tv − q(x)v(x, t) as s→ 0.

The left hand side is Av(x, t) by definition. The proof is complete.

6.3 First exit time

Theorem 6.3. Suppose D ⊂ Rd is a bounded open set and the boundary ∂D is of C2 type.

The coefficients b,σ of the SDEs satisfy the Lipschitz condition on D̄ and the diffusion

matrix a is coercive which is defined as∑
i,j

aij(x)ξiξj ≥ K|ξ|2 for x ∈ D, ξ ∈ Rd, K > 0.

11



Then for f ∈ C(∂D), the solution of PDE

Au = 0 in D, u = f(x) on ∂D

can be represented as

u(x) = Ex
(
f(XτD)

)
,

where τD is the first exit time from domain D defined as

τD := inf
t
{t ≥ 0,Xt /∈ D}

and thus XτD is the first exit point. Specially, if Au = ∆u, then u(x) = Ex
(
f(WτD)

)
.

Heuristic proof. From PDE theory, one has the solution u ∈ C2(D)∩C(D̄) (c.f. Chapter

6 in [?]). So we can apply the Ito’s formula to u(Xt) and take expectation

Exu(XτD)− u(x) = Ex

∫ τD

0

Au(Xt)dt = 0. (6.4)

Thus

u(x) = Exu(XτD) = Ex
(
f(XτD)

)
.

Note that in the above derivations we naively take the expectation of the stochastic

integral term to be zero. But this is not true in general because τD is a random time. In

fact, it is the result of the following useful Dynkin’s formula.

Lemma 6.4 (Dynkin’s formula). Let f ∈ C2
0(Rd). Suppose τ is a stopping time with

Exτ <∞, then

Exf(Xτ ) = f(x) + Ex

∫ τ

0

Au(Xt)dt.

To prove ExτD < ∞, we define an auxiliary function h(x) = −A exp(λx1). Then for

sufficiently large A, λ > 0 we have

Ah(x) =
∑
ij

aij(x)∂ijh(x) +
∑
i

bi(x)∂ih(x) ≤ −1, x ∈ D.

By Itô’s formula

Exh(XτD∧T )− h(x) = Ex

∫ τD∧T

0

Ah(Xs)ds ≤ −Ex(τD ∧ T )

for any fixed T > 0. Since |h(x)| ≤ C for x ∈ D, we have

Ex(τD ∧ T ) ≤ 2C.

Taking T →∞ and using the monotone convergence theorem we obtain Ex(τD) ≤ 2C.
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Homeworks

1. Derive the equations (2.11) and (2.12).

2. Derive the detailed balance condition for the multidimensional OU process:

dXt = BXtdt+ σdWt

if the invariant distribution has mean 0 and covariance matrix Σ.
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