
Lecture 12 Construction of BM and its properties ∗

Tiejun Li

1 Construction of Wiener Process

Below we will show three approaches to construct the Wiener process. Different forms

play different roles in different circumstances.

A. Construction from invariance principle

The first construction from the invariance principle embodies the idea of taking contin-

uum limit of symmetric random walk.

Theorem 1.1. (Invariance Principle) Suppose {ξi} are i.i.d. N(0, 1) random variables,

define Sn =
∑n

i=1 ξi and Xn
t as follows:

Xn
t =


sk√
n
, t =

k

n
,

(1− θ) sk√
n

+ θ
sk+1√
n
, t ∈

(
k

n
,
k + 1

n

)
, θ = nt− k,

then Xn ∈ C[0,∞) and

Xn d−→ W,

where
d→ is the weak convergence on the function space C[0,∞) to be defined below.

Before stating the sketch of the proof, let us consider a special case by taking

P (ξi) =

{
1/2, ξi = 1,

1/2, ξi = −1,

then Eξi = 0, varξi = 1. The state of Xn
t at the time tk = k/n is nothing but the

random walk considered before. The construction from invariance principle indicates that

the standard Brownian motion is just the rescaled limit of the random walk with spatial

scale l = 1/
√
n and time scale τ = 1/n. The relation l2/τ = 1 is exactly the regime

considered before. This approximation is the most common one in computations.
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Proposition 1.2. The function space C[0,∞) equipped with the metric

ρ(x, y) =
∞∑
k=1

1

2k
(
‖x− y‖L∞([0,k]) ∧ 1

)
, x, y ∈ C[0,∞)

is a complete, separable metric space.

It is also natural to define the σ-algebra B(C[0,∞)) in space C[0,∞) through finite

dimensional cylinder sets

C = {ω ∈ C[0,∞)|(ω(t1), ω(t2), . . . , ω(tn)) ∈ A}, n ≥ 1, A ∈ Rn (1.1)

One can show B(C[0,∞)) is equivalent to the Borel σ-algebra generated by the open sets

in the metric space (C[0,∞), ρ).

Definition 1.3. A family of probability measures {Pn}∞n=1 on the metric space S with Borel

σ-algebra B(S) is said to converge weakly to another probability measure P on the same

space if and only if

lim
n→∞

∫
S

f(s)Pn(ds) = lim
n→∞

∫
S

f(s)P (ds)

for every bounded, continuous real-valued function f on S.

Definition 1.4. Let Xn be the random variables defined on the probability space (Ωn,Fn, Pn)

and X be defined on another probability space (Ω,F , P ). Both Xn and X take their values

on the metric space S equipped with the Borel σ-algebra B(S). The random variables {Xn}
are said to converge weakly to X if the corresponding distribution µn = Pn ◦X−1

n converges

weakly to µ = P ◦X−1. It is usually denoted as

Xn d−→ X.

The proof of the weak convergence in the invariance principle relies on the Prohorov’s

theorem on the weak compactness of the probability measures and the probabilistic type of

Arzela-Ascoli compactness theorem in space S = C[0,+∞). It is quite involved so we will

skip the detailed proof. The interested readers may be referred to [2].

The probability measure P∗ as the weak convergence limit of Pn ◦X−1
n on the space S =

C[0,∞) is called the Wiener measure and the probability space (C[0,∞),B(C[0,∞)), P∗)

is called the canonical probability space for Wiener process, under which the coordinate

mapping Wt(ω) = ω(t) is a standard Brownian motion.

Heuristic Check. Now we give a heuristic check for the validity of invariance principle

based on the central limit theorem for some discrete time. From the definition Sn =
∑n

i=1 ξi,

where {ξi} are i.i.d. N(0, 1) random variables, then by CLT

Sk√
n

=

√
k√
n
· Sk√

k

d−→ N(0, t), as k, n→∞ and t =
k

n
.
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The limit X of Xn is then a Gaussian process formally with X0 = 0 and

EXtXs ∼ EXn
t X

n
s

= EXn
t∧s(X

n
t∨s −Xn

t∧s +Xn
t∧s)

= E(Xn
t∧s)

2 + EXn
t∧s(X

n
t∨s −Xn

t∧s)

→ t ∧ s. for t = k/n, s = l/n and k, l, n→∞.

The last identity holds because of the independence between Xn
t∧s and Xn

t∨s −Xn
t∧s, and

E(Xn
t∧s −Xn

t∨s) = 0.

Heuristically the key point in the invariance principle is CLT when n, k is sufficiently

large. This implies the condition ξn ∼ i.i.d. N(0, 1) may be relaxed to ξn be i.i.d. with mean

0 and variance 1. The distribution of ξn is not important. That is why the theorem is called

“invanriance” principle.

A realization of Wiener process with finite N is shown in Fig. 1.

B. Construction from Karhunen-Loeve Expansion

The construction from Karhunen-Loeve expansion is based on the theory for Gaussian

random fields. It can be easily extended to the case of Brownian bridge or high dimensional

cases like the Brownian sheet etc [5].

Theorem 1.5. (Karhunen-Loeve expansion) Let Xt (t ∈ [0, 1]) be a Gaussian process with

mean function m(t) = 0 and continuous covariance function K(s, t). Consider the following

eigenvalue problem ∫ 1

0

K(s, t)φk(t)dt = λkφk(s), k = 1, 2, · · ·

where

∫ 1

0

φkφjdt = δkj. We have

Xt =
∞∑
k=1

αk
√
λkφk(t), (1.2)

in the sense that the series

XN
t =

N∑
k=1

αk
√
λkφk(t)→ Xt in L∞t L

2
P , (1.3)

i.e. we have

lim
N→∞

sup
t∈[0,1]

E|XN
t −Xt|2 = 0.

Here αk are i.i.d. N(0, 1) random variables.
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Proof. At first it is easy to find that the operator K : L2[0, 1]→ L2[0, 1] defined as

(Kφ)(s) :=

∫ 1

0

K(s, t)φ(t)dt

through the covariance kernel function is nonnegative, self-adjoint and compact from the

non-negativity, symmetry and continuity of K(s, t) on [0, 1]2 [3]. From the theory of func-

tional analysis, there are countable real eigenvalues, and 0 is the only possible accumulation

point. For each nonzero eigenvalue, the eigensubspace is finite dimensional. This verifies

the formal validity of the definition (1.2).

From Mercer’s theorem which states that the convergence

N∑
k=1

λkφk(s)φk(t)→ K(s, t), s, t ∈ [0, 1], N →∞

holds in absolute and uniform sense when K is continuous [6], we have for N > M

E|XN
t −XM

t |2 =
N∑

k=M+1

λkφ
2
k(t)→ 0

in the absolute and uniform sense when N,M →∞. This implies XN
t is a Cauchy sequence

in the Banach space L∞t L
2
P , thus the limit Xt exists and is unique in this space. For each

fixed t, the mean square convergence of the Gaussian random vector (XN
t1
, XN

t2
, . . . , XN

tm)

to (Xt1 , Xt2 , . . . , Xtm) implies the convergence in probability for any t1, t2, . . . , tm ∈ [0, 1].

Application of the Theorem ?? ensures that the limit Xt is indeed a Gaussian process. It is

not difficult to prove that

EXt = lim
N→∞

EXN
t = 0,

EXsXt = lim
N→∞

EXN
s X

N
t =

∞∑
k=1

λkφk(s)φk(t) = K(s, t)

by the convergence of XN to X in L∞t L
2
P . The proof is completed.

As an application of Karhunen-Loeve expansion to Brownian motion, one can obtain the

eigensystem {λk, φk(t)} as follows. We have∫ 1

0

(s ∧ t)φk(t)dt = λkφk(s)

and thus ∫ s

0

tφk(t)dt+

∫ 1

s

sφk(t)dt = λkφk(s). (1.4)

Taking differentiation with respect to s we obtain

λkφ
′
k(s) = sφk(s) +

∫ 1

s

sφk(t)dt− sφk(s) =

∫ 1

s

sφk(t)dt. (1.5)
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Differentiating once again gives a Sturm-Liouville problem

λkφ
′′
k(s) = −φk(s).

This naturally suggests λk 6= 0. Take s = 0 in (1.4), we obtain φk(0) = 0; take s = 1 in

(1.5), we have φ′k(1) = 0.

Solving this boundary value problem we obtain

λk =

(
(k − 1

2
)π

)−2

, φk(s) =
√

2 sin

(
(k − 1

2
)πs

)
, k = 1, 2, . . . .

Thus we get another representation of Brownian motion

Wt =
∞∑
k=1

αk

√
2

(k − 1
2
)π

sin

(
(k − 1

2
)πt

)
. (1.6)

It is easy to find that W0 = 0 with this representation. To understand why it is almost

surely continuous, we need the following theorem.

Theorem 1.6. For the Karhunen-Loeve expansion to the Gaussian random field Xt with

the same condition as in Theorem 1.5, if additionally∫ 1

0

(− lnu)1/2dp(u) <∞, (1.7)

where

p(u) := max{σ(s, t) : |s− t| ≤ |u|}

and

σ(s, t) =
∞∑
k=1

λk(φk(s)− φk(t))2 = K(s, s) +K(t, t)− 2K(s, t),

then XN
t converges to Xt uniformly for t ∈ [0, 1] with probability one, and thus X has

continuous trajectory almost surely.

The proof of this theorem may be referred to [1]. For the Wiener process, σ(s, t) =

t ∨ s− t ∧ s and p(u) = |u|, so the condition (1.7) is satisfied and we have the continuity of

the constructed Wt almost surely.

A realization with cutoff N = 1000 is shown in Fig. 1.

C. Construction from Haar basis

The construction below based on the Haar basis is originated from P. Lévy’s interpolation

method for Brownian motion. At first let us define the mother function

ψ(t) =


1, t ∈ [0, 1/2),

−1, t ∈ [1/2, 1),

0, otherwise.
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The multilevel Haar functions {H(n)
k } are defined as H

(0)
0 (t) = 1 and

H
(n)
k (t) = 2

n−1
2 ψ(2n−1t− k), n ≥ 1, k ∈ In := {0, 1, . . . , 2n−1 − 1}

for t ∈ [0, 1], where n is the level and we take the convention that I0 = {0}. It is a standard

result that the Haar system {H(n)
k } for n ∈ N and k ∈ In forms an orthonormal basis in

L2[0, 1] [7]. We have the following theorem.

Theorem 1.7. Let the random variables {α(n)
k } i.i.d. N(0, 1). Then

WN
t =

N∑
n=0

∑
k∈In

α
(n)
k

∫ t

0

H
(n)
k (s)ds −→ Wt, N →∞,

uniformly in t ∈ [0, 1] in the almost sure sense.

A direct check on the finite terms approximation shows

EWN
t =

N∑
n=0

∑
k∈In

Eα(n)
k

∫ t

0

H
(n)
k (s)ds = 0,

and

EWN
t W

N
s =

N∑
n,m=0

∑
k∈In,l∈Im

E(α
(n)
k α

(m)
l )

∫ t

0

H
(n)
k (τ)dτ

∫ s

0

H
(m)
l (τ)dτ

=
N∑
n=0

∑
k∈In

∫ t

0

H
(n)
k (τ)dτ

∫ s

0

H
(n)
k (τ)dτ

=
N∑
n=0

∑
k∈In

∫ 1

0

H
(n)
k (τ)χ[0,t](τ)dτ

∫ 1

0

H
(n)
k (τ)χ[0,s](τ)dτ

→
∫ 1

0

χ[0,t]χ[0,s](τ)dτ = t ∧ s. (1.8)

where χ[0,t](τ) is the indicator function on [0, t]. Here the last convergence in the above

equations is due to Parseval’s identity because {H(n)
k } is an orthonormal basis. Below we

give the rigorous proof.

Proof. At first, we show WN
t uniformly converges to some continuous function Wt in the

almost sure sense. We have the following tail estimate for any Gaussian distributed random

variable ξ ∼ N(0, 1).

P(|ξ| > x) =

√
2

π

∫ ∞
x

e−
y2

2 dy ≤
√

2

π

∫ ∞
x

y

x
e−

y2

2 dy =

√
2

π

e−
x2

2

x
, x > 0.
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Define an = maxk∈In α
(n)
k , then we obtain

P(an > n) = P

(⋃
k∈In

α
(n)
k > n

)
≤ 2n−1

√
2

π

e−
n2

2

n
, n ≥ 1.

From
∑∞

n=1 2n−1
√

2
π
e−

n2

2

n
< ∞, the Borel-Cantelli lemma implies that there exists a set Ω̃

with P(Ω̃) = 1 such that for any ω ∈ Ω̃ there is a N(ω) satisfying am(ω) ≤ m for any

m ≥ N(ω). In this case∣∣∣∣∣∣
∞∑

m=N(ω)

∑
k∈Im

α
(m)
k

∫ t

0

H
(m)
k (s)ds

∣∣∣∣∣∣ ≤
∞∑

m=N(ω)

m
∑
k∈Im

∫ t

0

H
(m)
k (s)ds ≤

∞∑
m=N(ω)

m2−
m+1

2 <∞,

which shows the uniform convergence of WN
t to a continuous function Wt in the almost sure

sense.

Now we prove Wt is indeed the standard Brownian motion. From the uniform conver-

gence of WN
t with respect to t in a almost sure sense, the limit Wt is indeed a Gaussian

process from Theorem ??. From the initial condition W0 = 0 and the covariance function

relation (1.8), we obtain a new representation of the Wiener process Wt.

A realization with finite cutoff is shown in Fig. 1.
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Figure 1: Numerical constructions of Brownian motion

Example 1.8. Compute the expectation

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)
.

Solution. Note that it is not straightforward to compute this expectation since the inte-

grand involves the whole Wiener path, i.e. a Wiener functional. From the Karhunen-Loeve
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expansion, ∫ 1

0

W 2
t dt =

∫ 1

0

∑
k,l

√
λkλlαkαlφk(t)φl(t)dt

=
∑
k

∫ 1

0

λkα
2
kφ

2
k(t)dt =

∑
k

λkα
2
k.

Then

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

= E
(∏

k

exp(−1

2
λkα

2
k)
)

=
∏
k

E exp(−1

2
λkα

2
k).

From the identity

E exp(−1

2
λkα

2
k) =

∫ +∞

−∞

1√
2π
e−

x2

2 · e−
1
2
λkx

2

dx =

√
1

1 + λk

we obtain

E exp
(
− 1

2

∫ 1

0

W 2
t dt
)

=
∏
k

√
1

1 + λk
:= M,

where

M−2 =
∞∏
k=1

(
1 +

4

(2k − 1)2π2

)
.

From the identities for infinite product series we have

cosh(x) =
∞∏
n=1

(
1 +

4x2

(2n− 1)2π2

)
,

where cosh(x) = (ex + e−x)/2. Thus

M = (cosh(1))−
1
2 =

√
2e

1 + e2
.

2 Properties of Wiener path

In this section, we investigate some basic properties and the regularity of the Wiener

path.

Theorem 2.1 (Basic properties). Suppose Wt is a standard Brownian motion, then

1. Time-homogeneity: For any s > 0, Wt+s −Ws, t ≥ 0, is a Brownian motion;

2. Symmetry: The process −Wt, t ≥ 0, is a Brownian motion;
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3. Scaling: For every c > 0, the process cWt/c2, t ≥ 0, is a Brownian motion;

4. Time-inversion: The process X defined by X0 = 0, Xt = tW1/t for t > 0, is a Brownian

motion.

The proof of these properties are left as exercise. Specially, the scaling property 3 has

important implication for the dimensional analysis involving Brownian motion, which states

Wkt ∼
√
kWt, Ẇkt ∼

1√
k
Ẇt, (2.1)

where Ẇt means the formal derivative of Wt with respect to t as discussed later. Note that

for a standard smooth function f(t) with the change of variable t = kτ , we have the relation

df

dt
(kτ) =

1

k

df

dτ
(kτ), (2.2)

instead of (2.1).

Now let us investigate the regularity of the Brownian motion. The total variation of a

specific path of the process X on [a, b] is defined as

V (X(ω); [a, b]) = sup
∆

∑
k

|Xtk+1
(ω)−Xtk(ω)|,

where ∆ = ∪k[tk, tk+1] is any fixed subdivision of [a, b]. The discrete quadratic variation of

X on [0, t] with subdivision ∆ is defined as

Q∆
t =

∑
k

|Xtk+1
(ω)−Xtk(ω)|2.

If for any t and any sequence ∆n of subdivisions of [0, t] such that |∆n| goes to zero, there

exists a finite process 〈X,X〉 such that

Q∆n
t → 〈X,X〉t in Probability as n→∞,

then 〈X,X〉 is called the quadratic variation process of X. It is obvious that 〈X,X〉 is

increasing. The definition can be straightforwardly extended to the case on the interval

[a, b] as

Q∆n

[a,b] → 〈X,X〉b − 〈X,X〉a as n→∞.

Proposition 2.2. For any t and subdivision ∆ of [0, t], we have for Wiener process W

E(Q∆
t − t)2 = 2

∑
k

(tk+1 − tk)2, (2.3)

thus we get

Q∆
t −→ t in L2(P) as |∆| → 0

and 〈W,W 〉t = t a.s.
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The proof of Proposition 2.2 is straightforward and left as an exercise. This result is

sometimes formally stated as dW 2
t = dt.

Theorem 2.3 (Unbounded variation of the Wiener path). The Wiener paths are a.s. of

infinite variations on any interval.

Proof. Suppose the probability space is (Ω,F ,P). Based on (2.3) and the subsequence

argument, there is a set Ω0 ⊂ Ω such that P(Ω0) = 1, and there exits a subsequence of the

subdivisions, still denoted as ∆n, such that for any rational pair p < q,

Q∆n

[p,q] → q − p, on Ω0.

Now for any rational interval [p, q], we have

q − p←
∑
k

(Wtk+1
−Wtk)2 ≤ sup

k
|Wtk+1

−Wtk | · V (W (ω), [p, q]).

From the uniformly continuity of W on [p, q], supk |Wtk+1
−Wtk | → 0, thus we complete the

proof.

The following result shows the Brownian motion has very curious smoothness.

Theorem 2.4 (Smoothness of the Wiener path). Consider the Wiener process on the prob-

ability space (Ω,F ,P). Define Ωα the set of functions that are Hölder continuous with

exponent α (0 < α < 1)

Ωα =

{
f ∈ C[0, 1], sup

0≤s,t≤1

|f(t)− f(s)|
|t− s|α

<∞
}
.

Then if 0 ≤ α < 1
2
, P(Wt ∈ Ωα) = 1; if α ≥ 1

2
, P(Wt ∈ Ωα) = 0.

The proof of Theorem 2.4 relies on the following generalized Kolmogorov’s continuity

theorem, which can be referred to [5].

Theorem 2.5. Let Xt (t ∈ [0, 1]d) be a Banach-valued process for which there exist three

strictly positive constants γ, c, ε such that

E(|Xt −Xs|γ) ≤ c|t− s|d+ε,

then there is a modification X̃ of X such that

E
(

sup
s 6=t

(|X̃t − X̃s|/|t− s|α)
)γ

<∞

for every α ∈ [0, ε/γ). In particular, the paths of X̃ are Hölder continuous of order α.
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Proof of Theorem 2.4. When α < 1/2, according to the generalized Kolmogorov conti-

nuity theorem and the following identity for 1D Gaussian R.V.

E|Bt|2p = Ctp

for any p ∈ N, we have ε/γ = (p− 1)/2p = 1/2− 1/2p. Thus for α < 1/2, P(Wt ∈ Ωα) = 1.

When α > 1/2, if there exists rational interval [p, q] such that |Wt −Ws| ≤ c|t− s|α for

any p ≤ s, t ≤ q then by Proposition 2.2

q−p←
∑
k

(Wtk+1
−Wtk)2 ≤ c2

∑
k

|tk+1−tk|2α−1|tk+1−tk| ≤ c2(q−p) sup
k
|tk+1−tk|2α−1 → 0,

which is a contradiction.

For the critical case α = 1/2, one should apply the deep theorem on Lévy’s modulus of

continuity. The readers may be referred to [5].

From Fig. 1 we may observe the Brownian path is always fluctuating and it is a very

noisy curve. Theorem 2.3 and 2.4 tell us that each trajectory is continuous and nowhere

differentiable and it has unbounded variation in any finite interval! All of these results show

the Brownian motion is a very subtle and strange mathematical object.

The following theorem due to A. Khinchin, characterizes the local behavior of Wt when

t goes to zero.

Theorem 2.6 (Local law of the iterated logarithm). For the standard Brownian motion,

we have

P
(

lim sup
t→0

Wt√
−2t ln ln t

= 1
)

= 1.

Correspondingly

P
(

lim inf
t→0

Wt√
−2t ln ln t

= −1
)

= 1.

For the long time behavior of the Brownian motion, we have the following type of strong

law of large numbers.

Theorem 2.7 (Strong Law of Large Numbers). For the standard Brownian motion, we

have

lim
t→∞

Wt

t
= 0, a.s.

The readers may be referred to [2, 4, 5] for more properties of Brownian motion.

3 Homeworks

• HW1. (Scaling invariance of Wiener Process) Let Wt be a Wiener process. Show

that

Xt =

{
0 if t = 0

tW1/t if t ∈ (0, 1]
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Yt =
1√
c
Wct, t > 0, c > 0

Zt = W (T )−W (T − t), 0 < t ≤ T.

are all Wiener processes in the sense that they have the same finite dimensional dis-

tributions.

• HW2. Prove Proposition 2.2 and if we set the points tk = k2−nt, k = 0, 1, . . . , 2n

and consider the discrete quadrative variation of Brownian motion in [0, t], prove the

following sharpening of the Proposition 2.2.

lim
n→∞

YN(t, ω)→ t, a.s.

• HW3. Prove that C[0,∞) is a complete, separable metric space with the metric

defined as

d(x, y) =
∞∑
n=1

1

2n

(
‖x− y‖L∞[0,n] ∧ 1

)
• HW4. Prove that that given 0 ≤ s < t, Ws = x, Wt = y, then the conditional

distribution

W s+t
2
|Ws = x,Wt = y ∼ N

(x+ y

2
,
t− s

4

)
.
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