
Lecture 10 Random Walk and Brownian motion ∗

Tiejun Li

1 1D Symmetric Random Walk

Example 1. (1D Random Walk) Suppose a particle suffers displacements along a straight line from the

origin, denote its position Xn ∈ Z. Let ξi are i.i.d. random moves such that ξi = ±1 with probability 1
2 , and

let

Xn = ξ1 + ξ2 + . . .+ ξn (i.e. X0 = 0)

{Xn} is called a unconstrained symmetric random walk on Z. Given Xn = i, we have

P{Xn+1 = i± 1| Xn = i} =
1

2
,

P{Xn+1 = anything else| Xn = i} = 0.

It is a typical example of the simplest Markov chains.

After taking N steps, the particle could be at any of the points

−N,−N + 2, . . . , . . . , N − 2, N.

1.1 Distribution of XN

One basic question is the probability W (m,N) = Prob{XN = m} that the particle arrives at the point

m after suffering N displacements.

It is not difficult to find that W (m,N) obeys binomial distribution

W (m,N) =
N !

(N+m
2 )!(N−m2 )!

(1

2

)N
,

and it is easy to note that m can be odd or even only according as N is odd or even.

The expectation position and mean square deviation are

EXN = 0, EX2
N = N,

then the root mean square displacement is
√
N .
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Definition 1. (Diffusion coefficient) The 1D diffusion coefficient D is defined as

D =
〈(XN −X0)2〉

2N
.

It is assumed EXN = X0 here. In general continuous case, it is defined as

D = lim
t→∞

〈(Xt −X0)2〉
2dt

,

where d is the space dimension.

For this simplest random walk, D = 1
2 .

Next we consider the case N,m � 1, and m � N since we will rescale the process with the relation

x = ml, t = Nτ and l ∼ O(
√
τ), τ → 0. Thus m/N = x/t · τ/l→ 0. So only the range m� N matters. By

Stirling’s formula

log n! = (n+
1

2
) log n− n+

1

2
log 2π +O(n−1) (n→ +∞),

we have

logW (m,N) ≈ (N +
1

2
) logN − 1

2
(N +m+ 1) log

[N
2

(1 +
m

N
)
]

−1

2
(N −m+ 1) log

[N
2

(1− m

N
)
]
− 1

2
log 2π −N log 2.

Since m� N we have Taylor series expansion for x� 1

log(1 + x) = x− 1

2
x2 +O(x3),

thus

logW (m,N) ≈ −1

2
logN + log 2− 1

2
log 2π − m2

2N
+O

((m
N

)2)
.

In other words, one obtains the the asymptotic formula

W (m,N) ≈
( 2

πN

) 1
2

exp(−m
2

2N
).

An interesting thing is to take the continuum limit of random walk. Now suppose we rescale the random

walk with the spatial steplength l and the time spacing τ for each movement, we take the limit in the

following sense when considering the point (x, t)

N,m→∞, l, τ → 0, and Nτ = t, ml = x. (1)

To make the continuum limit physically reasonable, we also ask to fix the diffusion coefficient

D =
〈(XNτ −X0)2〉

2Nτ
=

l2

2τ

in the limit. Consider the intervals ∆x which are large compared with the length l, we have the probability

that y ∈ (x−∆x/2, x+ ∆x/2) for the continuous probability density W (x, t) satisfies

W (x, t)∆x ≈
∫ x+∆x/2

x−∆x/2

W (y, t)dy ≈
∑

m′∈{m,m±2,m±4,...}
m′l∈(x−∆x/2,x+∆x/2)

W (m′, N) ≈W (m,N)
∆x

2l
(x = ml)
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since m can take only even or odd values depending on whether N is even or odd. Combining the results

above one has

W (x, t)∆x =
1√

2πt l
2

τ

exp(− x2

2t l
2

τ

)∆x,

thus the limiting probability density at time t

W (x, t) =
1√

4πDt
exp(− x2

4Dt
).

1.2 Random walk with reflecting and absorbing Barriers

Case 1: A reflecting barrier at m = m1;

Suppose m1 > 0 We now ask the probability W (m,N ;m1) that the particle will arrive at m(≤ m1) after

N steps.

This problem may be solved very efficiently in the (m−N) plane in a neat way.
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Figure 1: Schematics of reflection principle.

From Fig. 1, the actual sample paths are shown with solid lines (including the reflected path), and the

paths crossing the barrier m1 in the unrestricted random walk case are shown with dashed lines. These

paths can be classified into two classes. One class only contains the paths not hitting m1 and finally reaching

m; the other class contains the paths hitting m1 before time N and finally reaching m1 or 2m1 −m. We

have the following two assertions on these paths:

• In the unrestricted random walk, all of the sample paths have equal probability 1/2N ;

• The probability of the reflected paths which hits m1 is equal to the sum of the probability of the

paths hitting m1 and reaching m and the paths reaching 2m1 −m. A simple argument to prove this

is to observe that the reflecting probability is 1 at the reflection point shown as points 1 and 2 in the
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figure. From 1 = 1/2 + 1/2, this decomposition actually decompose the paths into those go leftwards

and rightwards with equal probability, which corresponds to all the paths just stated.

• The number of the paths hitting m1 and hitting m finally is equal to that of the paths hitting 2m1−m
finally. This can be understood because these paths have to cross m1 and we can denote the final

hitting time as N2 as shown in the figure. So after N2, the paths go leftwards or rightwards with

mirror symmetry to hit m or 2m1 −m. Before N1, the paths can be either branch.

These assertions are called the reflection principle, which is the basis of the following calculations for

reflection and absorbing barrier problem.

So we have the following identity

Wr(m,N ;m1) = W (m,N) +W (2m1 −m,N).

If we take large N limit we have

Wr(m,N ;m1) ≈
( 2

πN

) 1
2 [

exp(−m
2

2N
+ exp(− (2m1 −m)2

2N

]
,

then passing to the continuum limit we have

Wr(x, t;x1) =
1√

4πDt

[
exp(− x2

4Dt
) + exp(− (2x1 − x)2

4Dt
)
]
, (2)

and we may note in this case
∂Wr

∂x

∣∣∣
x=x1

= 0.

with W is defined in (2).

Case 2: Absorbing wall at m = m1;

Similarly as before we easily deduce that

Wa(m,N ;m1) = W (m,N)−W (2m1 −m,N).

by reflection principle.

In the large N limit we have

Wa(m,N ;m1) ≈
( 2

πN

) 1
2 [

exp(−m
2

2N
)− exp(− (2m1 −m)2

2N
)
]
,

and the continuum limit is

Wa(x, t;x1) =
1√

4πDt

[
exp(− x2

4Dt
)− exp(− (2x1 − x)2

4Dt
)
]
, (3)

and we may note in this case

Wa(x, t;x1) = 0.

with Wa is defined in (3).

Define the first hitting probability a(m1, N) = Prob{XN = m1, and Xn < m1,∀n < N} that taking N

steps the particle will arrive at m1 without ever hitting m = m1 at any earlier step. Then we have

a(m1, N) =
1

2
Wa(m1 − 1, N − 1;m1) =

m1

N
W (m1, N)
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by the above formula and the relation W (m,N) = N
N+mW (m− 1, N − 1). In the large N limit we have

a(m1, N) ≈ m1

N

( 2

πN

) 1
2

exp(−m
2
1

2N
).

The continuous probability density a(m1, t) becomes

a(m1, t)∆t ≈ a(m1, N)
∆t

2τ
(t = Nτ)

In the continuum limit one obtains

a(x1, t) =
x1

t

1√
4πDt

exp(− x2
1

4Dt
).

We may note in this case

a(x1, t) = −D∂W
∂x

∣∣∣
x=x1

.

with W is defined in (3).

2 Arcsine law and the law of iterated logarithm

To simplify the notations, we define the first hitting time

σ2n = min{1 ≤ k ≤ 2n : Sk = 0}

and we define σ2n = +∞ if Sk 6= 0 for 1 ≤ k ≤ 2n. For 0 ≤ k ≤ n we define

u2k = P(S2k = 0), f2k = P(σ2n = 2k). (4)

It is clear that u2k = Ck2k · 2−2k. From the reflection principle, we have

f2k = 2
1

2
· 1

2k − 1
W (1, 2k − 1) =

1

2k
u2(k−1) = u2(k−1) − u2k. (5)

Now define P2k,2n be the probability that during the interval [0, 2n] the particle spends 2k units of time on

the positive side (We say that the particle is on the positive side in the interval [m− 1,m] if one, at least,

of the value Sm−1 and Sm is positive).

Lemma 1. Let u0 = 1 and 0 ≤ k ≤ n. Then

P2k,2n = u2k · u2n−2k. (6)

Proof. At first let us show that (6) holds for k = 0. Suppose we have a path with S2n = 0 and

min0≤k≤2nXk = −m, where m > 0. Denote l = min{k|Xk = −m}. We can map this path into a

path only in the positive side. Take a reflection of the path {Xk}0≤k≤l with respect to the axis t = l and

denote the new path by {X̃k}0≤k≤l such that X̃k = Xl−k. Concatenate X̃0 to the point (2n, 0) and translate

the left endpoint of the new path into the origin. With such manipulation, we get a path on the positive side

and the right endpoint is (2n, 2m). Conversely, for each path on the positive side with the right endpoint is

(2n, 2m), we take l = max{k|Xk = m}. We can cut the part beyond t = k, make a reflection with respect
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Figure 2: Schematics of construction from a path with S2n = 0 to a new path on the positive side.

to t = l, concatenate it to the left endpoint of the rest part and translate the whole path into the origin, we

then get a new path with S2n = 0. A special case is illustrate in Figure 2. The case for k = n is trivially

true by symmetry and the case k = 0.

Then let us prove the following relation

u2k =

k∑
r=1

f2r · u2(k−r). (7)

Since {S2k = 0} ⊂ {σ2n ≤ 2k}, we have

{S2k = 0} = {S2k = 0} ∩ {σ2n ≤ 2k} =

k∑
r=1

{S2k = 0} ∩ {σ2n = 2r} (8)

Consequently

u2k = P(S2k = 0) =

k∑
r=1

P(S2k = 0, σ2n = 2r)

=

k∑
r=1

P(S2k = 0|σ2n = 2r)P(σ2n = 2r). (9)

But

P(S2k = 0|σ2n = 2r) = P(S2k = 0|S1 6= 0, . . . , S2r−1 6= 0, S2r = 0)

= P(S2r + (ξ2r+1 + · · ·+ ξ2k) = 0|S1 6= 0, . . . , S2r−1 6= 0, S2r = 0)

= P(S2r + (ξ2r+1 + · · ·+ ξ2k) = 0|S2r = 0)

= P(ξ2r+1 + · · ·+ ξ2k = 0) = P(S2(k−r) = 0). (10)

Combing (9) and (10) we obtain (7). To prove (6), we apply the induction method. Now let 1 ≤ k ≤ n− 1.

If the particle is on the positive side for exactly 2k instants, it must pass through zero. Let 2r be the time

of first passage through zero. There are two possibilities: either Sk ≥ 0, k ≤ 2r, or Sk ≤ 0, k ≤ 2r.

The number of paths of the first kind is

(22r · 1

2
f2r) · (22(n−r) · P2(k−r),2(n−r)) =

1

2
22nf2rP2(k−r),2(n−r).

The number of paths of the second kind is

1

2
22nf2rP2k,2(n−r).
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Consequently, for 1 ≤ k ≤ n− 1,

P2k,2n =
1

2

k∑
r=1

f2rP2(k−r),2(n−r) +
1

2

k∑
r=1

f2rP2k,2(n−r). (11)

Suppose that P2k,2m = u2k · u2m−2k holds for m = k, k + 1, . . . , n− 1. Then by (7) and (11) we have (How

is the induction applied here?)

P2k,2n =
1

2
u2n−2k

k∑
r=1

f2ru2k−2r +
1

2
u2k

k∑
r=1

f2ru2n−2k−2r

=
1

2
u2n−2ku2k +

1

2
u2ku2n−2k = u2ku2n−2k.

This completes the proof.

Now let γ(2n) be the number of time units that the particle spends on the positive axis in the interval

[0, 2n]. Then when x < 1,

P
{1

2
<
γ(2n)

2n
≤ x

}
=

∑
k,1/2<2k/2n≤x

P2k,2n.

Since

u2k ∼
1√
πk

by Stirling’s formula as k →∞, we have

P2k,2n ∼
1

π
√
k(n− k)

as k, n− k →∞.

Therefore ∑
{k,1/2<2k/2n≤x}

P2k,2n −
∑

k,1/2<2k/2n≤x

1

πn
·
[k
n

(
1− k

n

)]− 1
2 → 0, n→∞,

Whence ∑
{k,1/2<2k/2n≤x}

P2k,2n →
1

π

∫ x

1
2

dt√
t(1− t)

, n→∞.

From the symmetry, ∑
{k,2k/2n≤1/2}

P2k,2n →
1

2

and
1

π

∫ x

1
2

dt√
t(1− t)

=
2

π
arcsin

√
x− 1

2
.

Thus we have the following theorem:

Theorem 1 (Arcsine Law). The probability that the fraction of the time spent by the particle on the positive

side is at most x tends to 2
π arcsin

√
x: ∑
{k,k/n≤x}

P2k,2n →
2

π
arcsin

√
x.
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The following deep theorem is due to Hartman and Wintler (1941).

Theorem 2 (Law of Iterated Logarithm). Let ξ1, . . . , ξn are i.i.d. R.V. with Eξi = 0,Varξi = σ2 > 0, Then

P
{

lim sup
Sn√

2σ2n ln lnn
= 1
}

= 1.

Remark 1. Application of the above result to −ξi, one also obtains

P
{

lim inf
Sn√

2σ2n ln lnn
= −1

}
= 1.

3 Random Flights With Gaussian Displacements

In the general problem of random flights, the position R of the particle after N displacements is given

by

R =

N∑
i=1

ri,

where the ri = (r1
i , r

2
i , r

3
i )’s denote the different displacements. Assume the probability that the ith dis-

placement between ri and ri + dri is given by

τi(r
1
i , r

2
i , r

3
i )dr

1
i dr

2
i dr

3
i = τidri (i = 1, . . . , N).

Now we ask the probability WN (R)dR that the position of the particle after N displacements lies in the

interval R,R+ dR. The method presented in the following is originally devised by A.A. Markov.

It is a standard exercise to have

ŴN (R) =

∫
WN (R) exp(iρ ·R)dR =

N∏
i=1

∫
τi(ri) exp(iρ · ri)dri =

N∏
i=1

τ̂i(ri).

In the case of Gaussian distribution of random displacement ri, we have the pdf

τi(ri) =
1

(2πl2)
3
2

exp(−|ri|
2

2 l2
),

From the property of Fourier transform for Gaussian distribution, we have

WN (R) =
1

(2πNl2)
3
2

exp(− |R|
2

2Nl2
).

Suppose the time spacing is τ each time and define the diffusion coefficient as before

D = lim
t→0

〈(Xt −X0)2〉
2dt

=
3Nl2

6Nτ
=

l2

2τ
,

Then we have the continuum limit pdf for free Gaussian random flight

W (R, t) =
1

(4πDt)
3
2

exp
(
− |R|

2

4Dt

)
(t = Nτ).

Remark 2. Similar results for WN (R) holds for other distributions which can be refereed in [1]. These

results will be further clarified in next lecture on Brownian motion.

Question 1. How about more general reflecting and absorbing barrier problem in high dimensions?
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4 Einstein’s work on the theory of Brownian motion

In 1905, A. Einstein published a seminal paper on the theory of Brownian motion (he also publishes two

other seminal papers on Special Relativity and photoemission in this year). Two major points in Einstein’s

solution to Brownian motion are

(i) The motion is caused by the exceedingly frequent impacts on the pollen grain of the incessantly

moving molecules of liquid in which it is suspended;

(ii) The motion of these molecules is so complicated that its effect on the pollen grain can only be

described probabilistically in terms of exceedingly frequent statistically independent impacts.

His mathematical interpretation is as follows (1D version).

In a small time interval τ , the X-coordinates of an individual particle will increase by an amount ∆.

There will be a certain “frequency law” for ∆

dn = nφ(∆)d∆

where ∫ +∞

−∞
φ(∆)d∆ = 1, φ(−∆) = φ(∆),

and φ is only different from 0 for very small values of ∆.

Let f(x, t) be the number of particles per unit volume, then

f(x, t+ τ)dx =

∫ +∞

−∞
f(x−∆, t)dxφ(∆)d∆.

Since τ is small

f(x, t+ τ) = f(x, t) +
∂f

∂t
τ,

furthermore

f(x−∆, t) = f(x, t)−∆
∂f

∂x
+

∆2

2

∂2f

∂x2
+ · · · .

Thus

f(x, t) +
∂f

∂t
τ = f

∫ +∞

−∞
φ(∆)d∆ +

∂f

∂x

∫ +∞

−∞
∆φ(∆)d∆ +

∂2f

∂x2

∫ +∞

−∞

∆2

2
φ(∆)d∆ + · · · .

Set
1

τ

∫ +∞

−∞

∆2

2
φ(∆)d∆ = D

throwing h.o.t., we have
∂f

∂t
= D

∂2f

∂x2
.

His description contains very many of the major concepts which have been developed more and more

generally and rigorously since then, such as

(i) Chapman-Kolmogorov equation;

(ii) Fokker-Planck equation;

(iii) Kramers-Moyal expansion;

etc.
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5 Homeworks

• HW1. Prove that the continuum limit pdf W (x, t) for free random walk satisfies the PDE
∂W

∂t
= D

∂2W

∂x2
, x ∈ R, t ≥ 0

W (x, t)
∣∣∣
t=0

= δ(x).

• HW2. Prove that the continuum limit pdf W (x, t) with reflecting barrier satisfies the PDE

∂W

∂t
= D

∂2W

∂x2
, x ≤ x1, t ≥ 0

W (x, t)
∣∣∣
t=0

= δ(x),

∂W

∂x
(x, t)

∣∣∣
x=x1

= 0.

• HW3. Prove that the continuum limit pdf W (x, t) with absorbing barrier satisfies the PDE

∂W

∂t
= D

∂2W

∂x2
, x ≤ x1, t ≥ 0

W (x, t)
∣∣∣
t=0

= δ(x),

W (x, t)
∣∣∣
x=x1

= 0.

• HW4 (optional). Give the detailed procedure for the induction in proving the Arcsine Law.
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