Lecture 1 Introduction *

Tiejun Li

1 Stochastics: why, what and where

There are still debates on whether the world is deterministic or stochastic. We take a
practical point of view on this problem. The reason why we utilize stochastics is as below:

1. The problem itself is stochastic (quantum mechanics).

2. Even the problem is deterministic in nature, the degrees of freedom is too huge to be

handled in a deterministic manner (statistical mechanics).

3. The considered problem is in deterministic form, but we utilize its equivalent stochastic
form to do computing (Monte Carlo methods).

The course will be composed of three parts:

1. Monte Carlo methods.
2. SDEs and their simulations.

3. Applications.
The main application area of Monte Carlo method:

Statistical Physics,  Statistical inference, Mathematical finance, Data Science.

2 Monte Carlo concepts

Example 1. (Buffon test)
1. Parallel lines with distance a in the plane;
2. Tossing a needle of length | (I < a) randomly;
3. Intersection probability?



Figure 1: Schematics for Buffon’s needle problem.

Solution. This is a geometric probability problem. The admissible set is

Q:z{OSxS%,OSqﬁSW}.

The set of intersection is

G = {z < Ssing},

then the probability of intersection

Py = ([ 3o /() = 20

thus

and l
G = {.T S §Sin¢}a
we also have o
pP=—
am

Example 2. (Monte Carlo integration) Numerically solve

10= [ s

1. Midpoint rule:

N
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Accuracy: O(h?).
2. Monte Carlo:

N
() = & S 7). Xi~iid up,1]
=1

one has IE[](\?)(f) = I(f), and the mean square error

Elen|” = E(I{(f) = 1(f))* =E (% D (X)) - f<f>>>
1 N =1
=2 Z E(f(Xi) = LX) = I(F))
1 - o 1
= SE(F(X) ~ I()* = 5 Var (),
One obtains ey ~ VarT(f) ~ O(h2) — half order convergence. (How to generate X;?)

The above derivations are independent of dimensions.
3. High dimensional case:

Ensemble average in statistical mechanics

(A) = l/ A(z)e PH® dy
Z R6N

where Z = fRGN e PH@)dy is partition function, 8 = (kpT) ™', kp is Boltzmann constant, T
is the absolute temperature, dv = dxq - - - dxydp; - - - dpy, N is the number of particles.

06N

Deterministic quadrature: 10 segments in each direction, totally 1 nodes!

Monte Carlo method is the only viable approach!

4. Estimate of computational effort:

Dimension — d, # of quadrature points — N
Midpoint rule ~ O(N~%), Monte Carlo ~ O(N~2).
If d > 4, Monte Carlo is better.

5. Brief summary:

The advantage of Monte Carlo:
e Half order convergence independent of dimensions;
e Parallel essentially;

e Versatile: If we can find a probabilistic interpretation of a problem, we can apply MC.



The disadvantage of Monte Carlo:

e Half order convergence (slow convergence);

e Noisy result.

3 Further applications

Example 3 (Randomized linear algebra). Compute the matriz product
C = AB,
where A € R™*" B € R"P, and assume n > 1.

When n is huge, which is possible in many applications in big data, the following ran-

domized matrix multiplication was proposed:

Gwen any probability distribution {p;}, where p; > 0 and > p; = 1, randomly pick
K columns with the i, th column from A, L™ and the i,,th row from B, R"™ according to
{p:}. Correspondingly define

1 1
Lm=——_—A, R™=———B . m=1,....K
\/ Kp'lm V szm
then compute
K
O3 LR, 1)

Does it work? Is it possible to generalize and improve it?

Example 4. (Bayesian methods in statistical learning) Sampling the posterior distribution

of the unknown parameters 6.

In statistics, we have large amount of sampling data, and we want to extract the param-
eters from some type of probabilistic model. Suppose we have the likelihood function

L(O|x), 6 €O,

and the prior distribution of the parameter 6 is 7(80), we would like to sample the posteriori
distribution of
m(0|x) o< L(O|x)m(0)

or compute the expectation of the parameters. Usually @ is in a high dimensional space,
and 7(0|x) is only known up to a constant. We need the Monte Carlo sampling method

here.



Example 5. (Simulated annealing for optimization) min, H(z), H(z) is an energy function.

1. If H(x) is convex, the problem is quite easy by steepest decent method

dx
el v <
dt v

2. If H(z) is non-convex, the problem is complicate. The solution by steepest descent

will fall into a local minimum generally.

3. Introduce thermal noise

d
d—?:—VH#—ezb

€ ~ temperature. Let ¢ — 0 with suitable speed, one can achieve the global minimum.

Example 6. (Harmonic oscillator with random forcing) How to describe the noise mathe-

matically? (Potential U(zx) = Lka?)

1. Conservative harmonic oscillator
T = v
mv = —kx
2. Frictional harmonic oscillator (frictional coefficient )

r = v
mv = —yv—kx

3. White noise forcing (mesoscopic particles)

r = v
mv = —yv —kx +/2kgTyw
w is the temporal white noise. How to define w?

Example 7. (First exit time) Connection with PDEs.

Solving the elliptic PDE
Au = 0 D
v = f 0D

Traditional method: FEM, FD
u(@) =E(f(X,))

where X, is the first exit point form JD of the Brownian motion starting at « € D.

One can compute the value of u at any point in {2 separately.

Example 8. (Particle system) Macroscopic behavior from microscopic movements
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1. Deterministic case(without interaction): Liouville equation.

dwi
dt

2. Stochastic case(without interaction): Fokker-Planck equation.

=b(x;)) — Y+ V- (b)) =0

da:i
dt

3. Stochastic case (with interaction): Mckean-Vlasov equation.

= blm) 4o — U+ V- (b) = A

diBi
dt

1 & 1
:szlb(:ci—wj)—l—’wi — U+ V- (U) = SAY

where U = [ b(z — y)y(y)dy.

Example 9. (Chemical reaction kinetics) Stochastic simulation algorithm.

Traditional modeling of chemical reaction: reaction rate equation (RRE):

%~ afa) 2)
where @ is the concentration of the reactants, a is the reaction rate. In biological reactions,
the population of some species are very few. The concept concentration does not make any
sense there. The reaction also shows the random character. How to model the chemical

reaction kinetics?

Example 10. (DLA model) Fractal growth of crystallization. (See Fig. 2)

20 Lattice Cons!
—

Figure 2: DLA model. Adapted from PRL 47(1981), 1400.

Example 11. (Complex fluids) Such as the suspensions, colloids and liquid crystals, etc.

How to describe the behavior of the fluids through describing the polymers?
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Figure 3: Schematics of flexible, semi-flexible and rigid polymers.

4 Course plan

The following topics will be covered in this course:

e Generation of pseudo random variables,

e Variance reduction methods,

e Simulated annealing and quasi-Monte Carlo,

e Large deviation principle,

e Metropolis algorithm (Markov chain Monte Carlo method),
e Multilevel sampling and kinetic MC,

e Wiener Process and its construction,

e Stochastic differential equations and Ito’s formula,

e Fokker-Planck equation and diffusion process,

e Numerical solution of SDEs,

e Path integral methods and Girsanov transformation,
e Applications in material science(rare events),

e Applications in biology,

e Applications in networks,

e Applications in fluids.

We will have 2 numerical projects which will account for 15 pts. The homeworks will

account for 15 pts, and the final exam will account for 70 pts.
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Homeworks

Discuss about the method (1). Why is it a valid method? How to characterize its

accuracy?
Show that the midpoint rule has second order convergence if f € C?[0, 1].

Numerically testify the half order convergence of Monte Carlo integration for
1
I(f) = / sinzdr = Esin X
0

where X is uniformly distributed in [0, 1].



