Lecture 7. Q-Process

Tiejun Li1,2

1School of Mathematical Sciences (SMS),
\&
2Center for Machine Learning Research (CMLR),
Peking University,
Beijing 100871,
P.R. China
tieli@pku.edu.cn

Office: No. 1 Science Building, Room 1376E
Table of Contents

Poisson Process

Q-Process
Poisson Process

Definition (Poisson Process)

Let $X(t)$ be the number of calls received up to time t. $X(t)$ is called a Poisson process if:

1. $X(0) = 0$;
2. $X(t)$ has independent increments, i.e. for any $0 \leq t_1 < t_2 < \cdots < t_n$, $X(t_2) - X(t_1), X(t_3) - X(t_2), \ldots, X(t_n) - X(t_{n-1})$ are independent;
3. for any $t \geq 0, s \geq 0$, we have the distribution of the increment $X(t+s) - X(t)$ is independent of t (time-homogeneous);
4. for any $t \geq 0, h > 0$, we have
 $$P\{X(t+h) = X(t) + 1 | X(t)\} = \lambda h + o(h),$$
 $$P\{X(t+h) = X(t) | X(t)\} = 1 - \lambda h + o(h),$$
 $$P\{X(t+h) \geq X(t) + 2\} = o(h),$$

where λ is called the rate.
Poisson Process

Definition (Poisson Process)

Let $X(t)$ be the number of calls received up to time t. $X(t)$ is called a Poisson process if:

1. $X(0) = 0$;
Poisson Process

Definition (Poisson Process)

Let $X(t)$ be the number of calls received up to time t. $X(t)$ is called a Poisson process if:

1. $X(0) = 0$;
2. $X(t)$ has independent increments, i.e. for any $0 \leq t_1 < t_2 < \cdots < t_n$,
 \[
 X(t_2) - X(t_1), X(t_3) - X(t_2), \ldots, X(t_n) - X(t_{n-1})
 \]
 are independent;
Poisson Process

Definition (Poisson Process)

Let $X(t)$ be the number of calls received up to time t. $X(t)$ is called a Poisson process if:

1. $X(0) = 0$;
2. $X(t)$ has independent increments, i.e. for any $0 \leq t_1 < t_2 < \cdots < t_n$,
 $$X(t_2) - X(t_1), X(t_3) - X(t_2), \ldots, X(t_n) - X(t_{n-1})$$
 are independent;
3. for any $t \geq 0, s \geq 0$, we have the distribution of the increment $X(t+s) - X(t)$ is independent of t (time-homogeneous);
Poisson Process

Definition (Poisson Process)

Let $X(t)$ be the number of calls received up to time t. $X(t)$ is called a Poisson process if:

1. $X(0) = 0$;

2. $X(t)$ has independent increments, i.e. for any $0 \leq t_1 < t_2 < \cdots < t_n$,

$$X(t_2) - X(t_1), X(t_3) - X(t_2), \ldots, X(t_n) - X(t_{n-1})$$

are independent;

3. for any $t \geq 0, s \geq 0$, we have the distribution of the increment $X(t + s) - X(t)$ is independent of t (time-homogeneous);

4. for any $t \geq 0, h > 0$, we have

$$\mathbb{P}\{X(t + h) = X(t) + 1 | X(t)\} = \lambda h + o(h),$$

$$\mathbb{P}\{X(t + h) = X(t) | X(t)\} = 1 - \lambda h + o(h),$$

$$\mathbb{P}\{X(t + h) \geq X(t) + 2\} = o(h),$$

where λ is called the rate.
Poisson Process: Distribution

Let \(p_m(t) = \mathbb{P}\{X(t) = m\} \). Then

\[
p_0(t + h) = p_0(t)p_0(h) = p_0(t)(1 - \lambda h) + o(h).
\]

This gives

\[
\frac{p_0(t + h) - p_0(t)}{h} = -\lambda p_0(t) + o(1).
\]

As \(h \to 0 \), we obtain

\[
\frac{dp_0(t)}{dt} = -\lambda p_0(t), \quad p_0(0) = 1.
\]

The solution is given by

\[
p_0(t) = e^{-\lambda t}.
\]
Poisson Process: Distribution

Let $p_m(t) = \mathbb{P}\{X(t) = m\}$. Then

$$p_0(t + h) = p_0(t)p_0(h) = p_0(t)(1 - \lambda h) + o(h).$$

This gives

$$\frac{p_0(t + h) - p_0(t)}{h} = -\lambda p_0(t) + o(1).$$

As $h \to 0$, we obtain

$$\frac{dp_0(t)}{dt} = -\lambda p_0(t), \quad p_0(0) = 1.$$

The solution is given by

$$p_0(t) = e^{-\lambda t}.$$

For $m > 0$, we have

$$p_m(t + h) = p_m(t)p_0(h) + p_{m-1}(t)p_1(h) + \sum_{i=2}^{m} p_{m-i}(t)p_i(h).$$
From the definition of Poisson process, we get

\[p_m(t + h) = p_m(t)(1 - \lambda h) + p_{m-1}(t)\lambda h + o(h). \]

Taking the limit as \(h \to 0 \), we get

\[\frac{dp_m(t)}{dt} = -\lambda p_m(t) + \lambda p_{m-1}(t) \]

Using the fact \(p_m(0) = 0(m > 0) \), we get

\[p_m(t) = \frac{(\lambda t)^m}{m!} e^{-\lambda t} \]

by induction method. This means that for any fixed \(t \), the distribution of \(X(t) \) is Poisson with parameter \(\lambda t \).
Poisson Process: Waiting Time Distribution

The waiting times can be obtained in the following way. Define

\[\mu_t = \mathbb{P}\{\text{Waiting time } \geq t\}. \]
The waiting times can be obtained in the following way. Define

\[\mu_t = \mathbb{P}\{\text{Waiting time} \geq t\}. \]

Then \(\mu_0 = 1 \), and it obeys \(\mu_t - \mu_{t+h} = \mu_t \lambda h + o(h) \), thus \(\mu'_t = -\lambda \mu_t \), we get

\[\mu_t = e^{-\lambda t}. \]

i.e. The waiting times are i.i.d. exponentially distributed with rate \(\lambda \).
Table of Contents

Poisson Process

Q-Process
Now let us turn to general continuous time Markov chains. We will restrict only on finite state space case in this text. We define

\[p_{ij}(t) = \text{Prob}\{X(t + s) = j|X(s) = i\}. \]
Now let us turn to general continuous time Markov chains. We will restrict only on finite state space case in this text. We define

\[p_{ij}(t) = \text{Prob}\{X(t+s) = j | X(s) = i\}. \]

Here we also assumed the stationarity of the Markov chain, i.e. the right hand side is independent of \(s \). By definition we have

\[p_{ij}(t) \geq 0, \quad \sum_{j=1}^{N} p_{ij}(t) = 1. \]
Q-Process: Definition

In addition we require that

\[p_{ii}(h) = 1 - \lambda_i h + o(h), \quad \lambda_i > 0, \]

It is a statement about the regularity in time of the Markov chain; together with the obvious constraint that \(p_{jj}(0) = 1 \).
Q-Process: Definition

In addition we require that

\[p_{ii}(h) = 1 - \lambda_i h + o(h), \quad \lambda_i > 0, \]

It is a statement about the regularity in time of the Markov chain; together with the obvious constraint that \(p_{jj}(0) = 1 \).

\[p_{ij}(h) = \lambda_{ij} h + o(h), \quad j \neq i. \]

It states that if the process is in state \(j \) at time \(t \) and a change occurs between \(t \) and \(t + h \), the process must have jumped to some state \(i \neq j \); \(\lambda_{ij} \) is the rate of switching from state \(i \) to state \(j \).
Q-Process: Basic Properties

- From the non-negativity and normalization condition of the probability, we have

\[\lambda_{ij} \geq 0, \quad \sum_{j=1, j \neq i}^{N} \lambda_{ij} = \lambda_i. \]
Q-Process: Basic Properties

- From the non-negativity and normalization condition of the probability, we have

\[\lambda_{ij} \geq 0, \quad \sum_{j=1, j \neq i}^{N} \lambda_{ij} = \lambda_i. \]

- The Markov property of the process requires the Chapman-Kolmogorov equation

\[p_{ij}(t + s) = \sum_{k=1}^{N} p_{ik}(t)p_{kj}(s). \]
Q-Process: Basic Properties

- From the non-negativity and normalization condition of the probability, we have

\[\lambda_{ij} \geq 0, \quad \sum_{j=1, j \neq i}^{N} \lambda_{ij} = \lambda_i. \]

- The Markov property of the process requires the Chapman-Kolmogorov equation

\[p_{ij}(t + s) = \sum_{k=1}^{N} p_{ik}(t)p_{kj}(s). \]

- Using matrix notation \(P(t) = (p_{ij}(t)) \), we can express the Chapman-Kolmogorov relation as

\[P(t + s) = P(t)P(s) = P(s)P(t). \]
Q-Process: Q-matrix

Similarly, if we define

$$Q = \lim_{h \to 0^+} h^{-1}(P(h) - I),$$

and denote $Q = (q_{ij})$, it can be stated as

$$q_{ii} = -\lambda_i, \quad q_{ij} = \lambda_{ij} \quad (i \neq j), \quad \sum_{j=1}^{N} q_{ij} = 0.$$

Q is called the generator of the Markov chain.
Since

\[
\frac{P(t + h) - P(t)}{h} = \frac{P(h) - I}{h} P(t)
\]

as \(s \to 0^+ \), we get

\[
\frac{dP(t)}{dt} = QP(t) = P(t)Q
\]
Q-Process: TPM

Since

\[
\frac{P(t + h) - P(t)}{h} = \frac{P(h) - I}{h} P(t)
\]

as \(s \to 0^+ \), we get

\[
\frac{dP(t)}{dt} = QP(t) = P(t)Q
\]

The solution of this equation is given by

\[
P(t) = e^{Qt} P(0) = e^{Qt},
\]

since \(P(0) = I \).
Next we discuss how the distribution of the Markov chain evolves in time.

Let $\nu(t)$ be the distribution of $X(t)$. Then

$$
\nu_j(t + dt) = \sum_{i \neq j} \nu_i(t)p_{ij}(dt) + \nu_j(t)p_{jj}(dt)
$$

$$
= \sum_{i \neq j} \nu_i(t)q_{ij}dt + \nu_j(t)(1 + q_{jj}dt) + o(dt)
$$

for infinitesimal dt.

Q-Process: Forward Kolmogorov Equation
Next we discuss how the distribution of the Markov chain evolves in time.

Let $\nu(t)$ be the distribution of $X(t)$. Then

$$
\nu_j(t + dt) = \sum_{i \neq j} \nu_i(t)p_{ij}(dt) + \nu_j(t)p_{jj}(dt)
$$

$$
= \sum_{i \neq j} \nu_i(t)q_{ij}dt + \nu_j(t)(1 + q_{jj}dt) + o(dt)
$$

for infinitesimal dt.

This gives

$$
\frac{d\nu(t)}{dt} = \nu(t)Q,
$$

which is called the forward Kolmogorov equation for the distribution.
Its solution can be given as

\[\nu_j(t) = \sum_{i=1}^{N} \nu_i(0)p_{ij}(t), \]

or, in matrix notation,

\[\nu(t) = \nu(0)e^{Qt}. \]
Similar as the Poisson process, we can consider the waiting time distribution for each state j,

$$
\mu_j(t) = \text{Prob}\{\tau \geq t | X(0) = j\}.
$$
Q-Process: Waiting Time Distribution

▶ Similar as the Poisson process, we can consider the waiting time distribution for each state j,

$$
\mu_j(t) = \text{Prob}\{\tau \geq t | X(0) = j\}.
$$

▶ The same procedure as previous section leads to

$$
\frac{d\mu_j(t)}{dt} = q_{jj}\mu_j(t), \quad \mu_j(0) = 1.
$$
Q-Process: Waiting Time Distribution

Similar as the Poisson process, we can consider the waiting time distribution for each state \(j \),

\[
\mu_j(t) = \text{Prob}\{\tau \geq t | X(0) = j\}.
\]

The same procedure as previous section leads to

\[
\frac{d\mu_j(t)}{dt} = q_{jj} \mu_j(t), \quad \mu_j(0) = 1.
\]

Thus the waiting time at state \(j \) is exponentially distributed with rate \(-q_{jj} = \sum_{k \neq j} q_{jk}\). From the memoryless property of exponential distribution, the waiting time can be counted from any starting point.
Q-Process: Conditional Transition Probability

- It is interesting to investigate the probability

\[p(\theta, j|0, i)d\theta := \text{Prob}\{\text{The jump time } \tau \text{ is in } [\theta, \theta + d\theta) \text{ and } X(\tau) = j \text{ given } X(0) = i\}. \]
Q-Process: Conditional Transition Probability

It is interesting to investigate the probability

\[p(\theta, j|0, i) d\theta := \text{Prob}\{ \text{The jump time } \tau \text{ is in } [\theta, \theta + d\theta) \}
\]

and \(X(\tau) = j \) given \(X(0) = i \} \).

We have

\[p(\theta, j|0, i) d\theta = \text{Prob}\{ \text{No jump occurs in } [0, \theta) \text{ given } X(0) = i \}
\]

\[\times \text{Prob}\{ \text{One jump occurs from } i \text{ to } j \text{ in } [\theta, \theta + d\theta) \}
\]

\[= \mu_i(\theta) q_{ij} d\theta = \exp(q_{ii}\theta) q_{ij} d\theta. \]
Q-Process: Conditional Transition Probability

- It is interesting to investigate the probability

\[p(\theta, j|0, i)\,d\theta := \text{Prob}\{\text{The jump time } \tau \text{ is in } [\theta, \theta + d\theta) \text{ and } X(\tau) = j \text{ given } X(0) = i\}. \]

- We have

\[p(\theta, j|0, i)\,d\theta = \text{Prob}\{\text{No jump occurs in } [0, \theta) \text{ given } X(0) = i\} \times \text{Prob}\{\text{One jump occurs from } i \text{ to } j \text{ in } [\theta, \theta + d\theta)\} \]
\[= \mu_i(\theta)q_{ij}\,d\theta = \exp(q_{ii}\theta)q_{ij}\,d\theta. \]

- Thus we obtain the marginal probability

\[\text{Prob}(X(\tau) = j|X(0) = i) = p(j|0, i) = -\frac{q_{ij}}{q_{ii}} = \frac{q_{ij}}{\sum_{j \neq i} q_{ij}} \]

where \(\tau \) is the waiting time. These results are particularly useful for the numerical simulation of the trajectories of the Q-process.
Q-Process: Jump Time

Define the **jump times** of \((X_t)_{t \geq 0}\)

\[
J_0 = 0, \quad J_{n+1} = \inf\{t : t \geq J_n, X_t \neq X_{J_n}\}, \quad n \in \mathbb{N}
\]

where we take the convention \(\inf \emptyset = \infty\), and **holding times**

\[
H_n = \begin{cases}
J_n - J_{n-1}, & \text{if } J_{n-1} < \infty, \\
\infty, & \text{otherwise.}
\end{cases}
\]

for \(n = 1, 2, \ldots\). We define \(X_\infty = X_{J_n}\) if \(J_{n+1} = \infty\). Define the **jump/embedded chain** induced by \(X_t\)

\[
Y_n = X_{J_n}, \quad n \in \mathbb{N}.
\]
From strong Markov property\(^1\) and the derivation of \(p(\theta, j|0, i)\), we know that the holding times \(H_1, H_2, \ldots\) are independent exponential random variables with parameters \(q_{Y_0}, q_{Y_1}, \ldots\), respectively, and the jump chain \(Y_n\) is a Markov chain with \(\tilde{Q}\) as the transition probability matrix, where \(\tilde{Q} = (\tilde{q}_{ij})\) defined as

\[
\tilde{q}_{ij} = \begin{cases}
q_{ij}/q_i, & \text{if } i \neq j \text{ and } q_i > 0, \\
0, & \text{if } i \neq j \text{ and } q_i = 0,
\end{cases}
\]

\[
\tilde{q}_{ii} = \begin{cases}
0, & \text{if } q_i > 0, \\
1, & \text{if } q_i = 0.
\end{cases}
\]

\(^1\)J.R. Norris, Markov Chains, CUP,1997
From strong Markov property\(^1\) and the derivation of \(p(\theta, j|0, i)\), we know that the holding times \(H_1, H_2, \ldots\) are independent exponential random variables with parameters \(q_{Y_0}, q_{Y_1}, \ldots\), respectively, and the jump chain \(Y_n\) is a Markov chain with \(\tilde{Q}\) as the transition probability matrix, where \(\tilde{Q} = (\tilde{q}_{ij})\) defined as

\[
\tilde{q}_{ij} = \begin{cases}
q_{ij}/q_i, & \text{if } i \neq j \text{ and } q_i > 0, \\
0, & \text{if } i \neq j \text{ and } q_i = 0,
\end{cases}
\]

\[
\tilde{q}_{ii} = \begin{cases}
0, & \text{if } q_i > 0, \\
1, & \text{if } q_i = 0.
\end{cases}
\]

It is called the jump matrix, and the corresponding Markov chain is called the embedded chain or jump chain of the original Q-process.

\(^1\)J.R. Norris, Markov Chains, CUP, 1997
It is natural to consider the invariant distribution for the Q-processes as in the discrete time Markov chains. From the forward Kolmogorov equation, the invariant distribution must satisfy
\[\pi Q = 0, \quad \pi \cdot 1^T = 1. \]

But to ensure the convergence \(\nu(t) \to \pi \), we need the following theorem on the finite state space.
Q-Process: Ergodic Theorem

Theorem (Convergence to equilibrium)

Suppose the matrix Q is irreducible with invariant distribution π, then for all states i, j we have

$$p_{ij}(t) \to \pi_j \text{ as } t \to \infty.$$
Q-Process: Ergodic Theorem

Theorem (Convergence to equilibrium)

Suppose the matrix Q is irreducible with invariant distribution π, then for all states i, j we have

$$p_{ij}(t) \to \pi_j \text{ as } t \to \infty.$$

Note that we do NOT need the primitive condition since in the continuous time case if $q_{ij} > 0$ we have for any $t > 0$

$$p_{ij}(t) \geq \mathbb{P}_i(J_1 \leq t, Y_1 = j, H_2 > t) = \int_0^t e^{-q_i u} q_{ij} du \cdot e^{-q_j t} = \frac{q_{ij}}{q_i} (1 - e^{-q_i t}) e^{-q_j t} > 0 \text{ for any } i.$$

For the general case, we have a transition chain such that $i \to k_1 \to \cdots \to k_m \to j$, and we take $\delta t = t/m$ and apply the above argument for each transition state pair. One obtains $p_{i,k_1}(\delta t) > 0, \ldots, p_{k_m,j}(\delta t) > 0$. This yields $p_{ij}(t) > 0$.
Similarly we also have the ergodic theorem

Theorem (Ergodic theorem)

Suppose the matrix Q is irreducible with invariant distribution π, then for any bounded function f we have

$$\frac{1}{t} \int_0^t f(X(s)) ds \to \langle f \rangle_\pi, \quad a.s.$$
Similarly we also have the ergodic theorem

Theorem (Ergodic theorem)

Suppose the matrix Q is irreducible with invariant distribution π, then for any bounded function f we have

$$\frac{1}{t} \int_0^t f(X(s)) ds \to \langle f \rangle_\pi, \quad \text{a.s.}$$

We should remark that the irreducibility condition is not enough to establish the above ergodic theorems in the countable state space case. We need the so-called positive recurrent condition in both theorems.