Lecture 2. Random Variables

Tiejun Li1,2

1School of Mathematical Sciences (SMS),
&
2Center for Machine Learning Research (CMLR),
Peking University,
Beijing 100871,
P.R. China
tieli@pku.edu.cn

Office: No. 1 Science Building, Room 1376E
Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma
Discrete Examples: Bernoulli distribution $\mathcal{B}er(p)$

We will first consider the elementary and intuitive aspects of probability here. In the discrete case, the function $\mathbb{P}(X)$ is called the probability mass function (pmf).

Bernoulli distribution $\mathcal{B}er(p)$.

- Bernoulli distribution:

 $\mathbb{P}(X) = \begin{cases} p, & X = 1, \\ q, & X = 0. \end{cases}$

 where $p > 0, q > 0, p + q = 1$.

 If $p = q = \frac{1}{2}$, it is the well-known fair-coin tossing game.

 The mean and variance are $E(X) = p$, $\text{Var}(X) = pq$.
Discrete Examples: Bernoulli distribution $\mathcal{B}er(p)$

We will first consider the elementary and intuitive aspects of probability here. In the discrete case, the function $\mathbb{P}(X)$ is called the probability mass function (pmf).

Bernoulli distribution $\mathcal{B}er(p)$.

- Bernoulli distribution:

 \[\mathbb{P}(X) = \begin{cases} p, & X = 1, \\ q, & X = 0. \end{cases} \]

 where $p > 0$, $q > 0$, $p + q = 1$.

- If $p = q = \frac{1}{2}$, it is the well-known fair-coin tossing game.
Discrete Examples: Bernoulli distribution $Ber(p)$

We will first consider the elementary and intuitive aspects of probability here. In the discrete case, the function $P(X)$ is called the probability mass function (pmf).

Bernoulli distribution $Ber(p)$.

- Bernoulli distribution:

$$P(X) = \begin{cases}
p, & X = 1,
q, & X = 0.
\end{cases}$$

where $p > 0, q > 0, p + q = 1$.

- If $p = q = \frac{1}{2}$, it is the well-known fair-coin tossing game.

- The mean and variance are

$$\mathbb{E}X = p, \text{Var}(X) = pq.$$
Discrete Examples: Categorical distribution $Cat(p)$

Categorical distribution $Cat(p)$.

- A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number r possible outcomes with probability p_1, p_2, \ldots, p_r, where

$$\sum_{i=1}^{r} p_i = 1, \quad 0 \leq p_i \leq 1, \quad i = 1, \ldots, r,$$
Discrete Examples: Categorical distribution $Cat(p)$

Categorical distribution $Cat(p)$.

- A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number r possible outcomes with probability p_1, p_2, \ldots, p_r, where

$$\sum_{i=1}^{r} p_i = 1, \quad 0 \leq p_i \leq 1, \quad i = 1, \ldots, r,$$

- Denote $X = e_k = (\delta_{kj})_{j=1:r}$ for $k = 1 : r$ instead of $X \in \{1, 2, \ldots, r\}$ if the outcome is k. And denote

$$X = (X_1, \ldots, X_r).$$
Discrete Examples: Categorical distribution $Cat(p)$

Categorical distribution $Cat(p)$.

- A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number r possible outcomes with probability p_1, p_2, \ldots, p_r, where

 \[\sum_{i=1}^{r} p_i = 1, \quad 0 \leq p_i \leq 1, \quad i = 1, \ldots, r, \]

- Denote $X = e_k = (\delta_{kj})_{j=1:r}$ for $k = 1 : r$ instead of $X \in \{1, 2, \ldots, r\}$ if the outcome is k. And denote

 \[X = (X_1, \ldots, X_r). \]

- The pmf is:

 \[\mathbb{P}(X = e_k) = p_k, \quad k \in \{1, 2, \ldots, r\} \]
Discrete Examples: Categorical distribution \(\text{Cat}(p) \)

Categorical distribution \(\text{Cat}(p) \).

- A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number \(r \) possible outcomes with probability \(p_1, p_2, \ldots, p_r \), where

\[
\sum_{i=1}^{r} p_i = 1, \quad 0 \leq p_i \leq 1, \quad i = 1, \ldots, r,
\]

- Denote \(X = e_k = (\delta_{kj})_{j=1:r} \) for \(k = 1 : r \) instead of \(X \in \{1, 2, \ldots, r\} \) if the outcome is \(k \). And denote

\[
X = (X_1, \ldots, X_r).
\]

- The pmf is:

\[
P(X = e_k) = p_k, \quad k \in \{1, 2, \ldots, r\}
\]

- The mean and variance are

\[
\mathbb{E}(X_i) = p_i, \quad \text{Var}(X_i) = p_i(1 - p_i).
\]
Discrete Examples: Binomial distribution $B(n, p)$

Binomial distribution $B(n, p)$:

- Consider n independent experiments of Bernoulli distribution X_k
Discrete Examples: Binomial distribution $B(n, p)$

Binomial distribution $B(n, p)$:

- Consider n independent experiments of Bernoulli distribution X_k
- A binomially distributed random variable X can be viewed as the sum of n independent Bernoulli trials X_k. Define

$$X := X_1 + \ldots + X_n$$
Discrete Examples: Binomial distribution $B(n, p)$

Binomial distribution $B(n, p)$:

- Consider n independent experiments of Bernoulli distribution X_k
- A binomially distributed random variable X can be viewed as the sum of n independent Bernoulli trials X_k. Define

$$X := X_1 + \ldots + X_n$$

- Then

$$\mathbb{P}(X = k) = \binom{n}{k} p^k q^{n-k}.$$
Discrete Examples: Binomial distribution $B(n, p)$

Binomial distribution $B(n, p)$:

- Consider n independent experiments of Bernoulli distribution X_k
- A binomially distributed random variable X can be viewed as the sum of n independent Bernoulli trials X_k. Define

\[X := X_1 + \ldots + X_n \]

- Then

\[\mathbb{P}(X = k) = \binom{n}{k} p^k q^{n-k}. \]

- The mean and variance are

\[\mathbb{E}X = np, \ Var(X) = npq. \]
Discrete Examples: Multinomial distribution $M(n, p)$

Multinomial distribution $M(n, p)$.

- A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter p.

The pmf of the multinomial distribution is:

$$P(X_1 = x_1, \ldots, X_r = x_r) = \frac{n!}{x_1! \cdots x_r!} p_1^{x_1} \cdots p_r^{x_r},$$

where $n = x_1 + \cdots + x_r$.

The mean, variance and covariance are

$$E(X_i) = np_i,$$

$$\text{Var}(X_i) = np_i(1 - p_i),$$

$$\text{Cov}(X_i, X_j) = -np_i p_j (i \neq j).$$
Discrete Examples: Multinomial distribution $M(n, p)$

Multinomial distribution $M(n, p)$.

- A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter p.

- Let X_i indicate the number of times the i-th outcome was observed over the n trials. Then

$$X = (X_1, \ldots, X_r).$$
Discrete Examples: Multinomial distribution $M(n, \mathbf{p})$

Multinomial distribution $M(n, \mathbf{p})$.

- A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter \mathbf{p}.
- Let X_i indicate the number of times the i-th outcome was observed over the n trials. Then

 $$X = (X_1, \ldots, X_r).$$

- The pmf of the multinomial distribution is:

 $$\mathbb{P}(X_1 = x_1, \ldots, X_r = x_r) = \frac{n!}{x_1! \cdots x_r!} p_1^{x_1} \cdots p_r^{x_r},$$

 where $n = x_1 + \cdots + x_r$.
Discrete Examples: Multinomial distribution $M(n, p)$

Multinomial distribution $M(n, p)$.

- A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter p.
- Let X_i indicate the number of times the i-th outcome was observed over the n trials. Then

$$X = (X_1, \ldots, X_r).$$

- The pmf of the multinomial distribution is:

$$\mathbb{P}(X_1 = x_1, \ldots, X_r = x_r) = \frac{n!}{x_1! \cdots x_r!} p_1^{x_1} \cdots p_r^{x_r},$$

where $n = x_1 + \cdots + x_r$.

- The mean, variance and covariance are $\mathbb{E}(X_i) = np_i$,

$$\text{Var}(X_i) = np_i(1 - p_i), \quad \text{Cov}(X_i, X_j) = -np_ip_j \ (i \neq j).$$
Discrete Examples: Poisson distribution $\mathcal{P}(\lambda)$

Poisson distribution $\mathcal{P}(\lambda)$.

- The number X of radiated particles in a fixed time τ obeys

$$
\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda},
$$

where λ is the average number of radiated particles each time.
Discrete Examples: Poisson distribution $\mathcal{P}(\lambda)$

Poisson distribution $\mathcal{P}(\lambda)$.

- The number X of radiated particles in a fixed time τ obeys

 $$
 \mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda},
 $$

 where λ is the average number of radiated particles each time.

- The mean and variance are

 $$
 \mathbb{E}X = \lambda, \text{Var}(X) = \lambda.
 $$
Discrete Examples: Poisson distribution $\mathcal{P}(\lambda)$

Poisson distribution $\mathcal{P}(\lambda)$.

- The number X of radiated particles in a fixed time τ obeys

$$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda},$$

where λ is the average number of radiated particles each time.

- The mean and variance are

$$\mathbb{E}X = \lambda, \ Var(X) = \lambda.$$

- Poisson distribution may be viewed as the limit of binomial distribution (the law of rare events)

$$\binom{n}{k} p^k q^{n-k} \rightarrow \frac{\lambda^k}{k!} e^{-\lambda} \quad (n \rightarrow \infty, np = \lambda).$$
Discrete Examples: Poisson distribution $\mathcal{P}(\lambda)$

- Poisson distribution can also describe the spatial distribution of randomly scattered points.

\[\mathbb{P}(X_A = n) = \frac{(\lambda \cdot \text{meas}(A))^n}{n!} e^{-\lambda \cdot \text{meas}(A)}. \]

A: a set in R^2,
$X_A(\omega)$: number of points in A.
λ: scattering density.
Continuous Examples: Uniform distribution $\mathcal{U}[0, 1]$

In continuous case, the function $p(x)$ is called the **probability density function** (pdf).

Uniform distribution $\mathcal{U}[0, 1]$:

- The pdf

\[p(x) = \begin{cases}
1 & \text{if } x \in [0, 1] \\
0 & \text{otherwise}
\end{cases} \]
Continuous Examples: Uniform distribution $\mathcal{U}[0, 1]$

In continuous case, the function $p(x)$ is called the probability density function (pdf).

Uniform distribution $\mathcal{U}[0, 1]$:

- The pdf

\[
p(x) = \begin{cases}
1 & \text{if } x \in [0, 1] \\
0 & \text{otherwise}
\end{cases}
\]

- The mean and variance are

\[
\mathbb{E}X = \frac{1}{2}, \text{Var}(X) = \frac{1}{12}.
\]
Continuous Examples: Exponential distribution: $\mathcal{E}xp(\lambda)$

Exponential distribution: $\mathcal{E}xp(\lambda)$

- The pdf with $(\lambda > 0)$

$$p(x) = \begin{cases}
0 & \text{if } x < 0 \\
\lambda e^{-\lambda x} & \text{if } x \geq 0
\end{cases}$$

- The mean and variance are $E_X = \frac{1}{\lambda}$, $\text{Var}(X) = \frac{1}{\lambda^2}$.

- Waiting time for continuous time Markov process also has exponential distribution, where λ is the rate of the process.
Continuous Examples: Exponential distribution: $\mathcal{E}xp(\lambda)$

Exponential distribution: $\mathcal{E}xp(\lambda)$
- The pdf with $(\lambda > 0)$

$$p(x) = \begin{cases}
0 & \text{if } x < 0 \\
\lambda e^{-\lambda x} & \text{if } x \geq 0
\end{cases}$$

- The mean and variance are

$$\mathbb{E}X = \frac{1}{\lambda}, \quad \text{Var}(X) = \frac{1}{\lambda^2}.$$
Continuous Examples: Exponential distribution: $\mathcal{E}xp(\lambda)$

Exponential distribution: $\mathcal{E}xp(\lambda)$

- The pdf with ($\lambda > 0$)

$$p(x) = \begin{cases}
0 & \text{if } x < 0 \\
\lambda e^{-\lambda x} & \text{if } x \geq 0
\end{cases}$$

- The mean and variance are

$$\mathbb{E}X = \frac{1}{\lambda}, \text{Var}(X) = \frac{1}{\lambda^2}.$$

- Waiting time for continuous time Markov process also has exponential distribution, where λ is the rate of the process.
Continuous Examples: Gaussian distribution $N(\mu, \Sigma)$

- Normal distribution (Gaussian distribution) ($N(0, 1)$):

$$p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

or more generally $N(\mu, \sigma)$

$$p(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where μ is the mean (expectation), σ^2 is the variance.
Continuous Examples: Gaussian distribution $N(\mu, \Sigma)$

- Normal distribution (Gaussian distribution) ($N(0, 1)$):

\[
p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}
\]

or more generally $N(\mu, \sigma)$

\[
p(x) = \frac{1}{\sqrt{2\pi} \sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

where μ is the mean (expectation), σ^2 is the variance.

- High dimensional case ($N(\mu, \Sigma^2)$)

\[
p(x) = \frac{1}{(2\pi)^{n/2} (\det \Sigma)^{1/2}} e^{-(x-\mu)^T \Sigma^{-1} (x-\mu)}
\]

where μ is the mean, Σ is the covariance matrix of X.
Continuous Examples: Gaussian distribution \(N(\mu, \Sigma) \)

- Normal distribution (Gaussian distribution) \((N(0, 1)) \):
 \[
p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}
\]

or more generally \(N(\mu, \sigma) \)

\[
p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

where \(\mu \) is the mean (expectation), \(\sigma^2 \) is the variance.

- High dimensional case \((N(\mu, \Sigma^2)) \)
 \[
p(x) = \frac{1}{(2\pi)^{n/2}(\det \Sigma)^{1/2}} e^{-(X-\mu)^T\Sigma^{-1}(X-\mu)}
\]

where \(\mu \) is the mean, \(\Sigma \) is the covariance matrix of \(X \).

- More general Gaussian distribution with \(\det \Sigma = 0 \)?
Remarks on Gaussian distribution

► In 1D case, the normal distribution $N(np, npq)$ may be viewed as the limit of the Binomial distribution $B(n, p)$ when n is large. This is the famous De Moivre-Laplace limit theorem. It is a special case of the central limit theorem (CLT). Notice that

$$B(n, p) - np \over \sqrt{npq} \to N(0, 1) \text{ as } n \to \infty.$$
Remarks on Gaussian distribution

In 1D case, the normal distribution $N(np, npq)$ may be viewed as the limit of the Binomial distribution $B(n, p)$ when n is large. This is the famous De Moivre-Laplace limit theorem. It is a special case of the central limit theorem (CLT). Notice that

$$\frac{B(n, p) - np}{\sqrt{npq}} \to N(0, 1) \text{ as } n \to \infty.$$

In 1D case, the normal distribution $N(\lambda, \lambda)$ may be viewed as the limit of the Poisson distribution $P(\lambda)$ when λ is large. Notice the simple fact that the sum of two independent $P(\lambda)$ and $P(\mu)$ is $P(\lambda + \mu)$ (why?), we can decompose $P(\lambda)$ into the sum of n i.i.d. $P(\lambda/n)$, we have

$$\frac{P(\lambda) - \lambda}{\sqrt{\lambda}} \to N(0, 1) \text{ when } \lambda \text{ is large.}$$

Question: What if $n \to \infty$?
Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma
Axiomatic Setup: Probability Space

- Sample space Ω: the set of all outcomes ω.

- Event space: σ-algebra \mathcal{F} is a collection of subsets of Ω:
 1. $\Omega \in \mathcal{F}$;
 2. If $A \in \mathcal{F}$, then $\overline{A} = \Omega \setminus A \in \mathcal{F}$;
 3. If $A_1, A_2, \ldots, A_n, \ldots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$.

(Ω, \mathcal{F}) is called a measurable space.

- Probability measure P:
 1. (Positive) For all $A \in \mathcal{F}$, $P(A) \geq 0$;
 2. (Countably additive) If $A_1, A_2, \ldots \in \mathcal{F}$ and they are disjoint, then $P\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} P(A_j)$;
 3. (Normalization) $P(\Omega) = 1$.

- Probability space — Triplet (Ω, \mathcal{F}, P)
Axiomatic Setup: Probability Space

- Sample space Ω: the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F}
 \mathcal{F} is a collection of subsets of Ω:

- Probability space — Triplet (Ω, \mathcal{F}, P)
Axiomatic Setup: Probability Space

- Sample space Ω: the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F}
 \mathcal{F} is a collection of subsets of Ω:
 1. $\Omega \in \mathcal{F}$;
Axiomatic Setup: Probability Space

- Sample space Ω: the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F}
 \mathcal{F} is a collection of subsets of Ω:
 1. $\Omega \in \mathcal{F}$;
 2. If $A \in \mathcal{F}$, then $\bar{A} = \Omega \setminus A \in \mathcal{F}$;

(Ω, \mathcal{F}, P) is called a measurable space.
Axiomatic Setup: Probability Space

- Sample space Ω: the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F}
 \mathcal{F} is a collection of subsets of Ω:
 1. $\Omega \in \mathcal{F}$;
 2. If $A \in \mathcal{F}$, then $\bar{A} = \Omega \setminus A \in \mathcal{F}$;
 3. If $A_1, A_2, \cdots, A_n, \cdots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$.

(Ω, \mathcal{F}) is called a measurable space.

- Probability measure P
 1. (Positive) $\forall A \in \mathcal{F}$, $P(A) \geq 0$;
 2. (Countably additive) If $A_1, A_2, \cdots \in \mathcal{F}$, and they are disjoint, then $P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$;
 3. (Normalization) $P(\Omega) = 1$.

- Probability space — Triplet (Ω, \mathcal{F}, P)
Axiomatic Setup: Probability Space

- Sample space Ω: the set of all outcomes ω.
- Event space: σ-algebra F
 F is a collection of subsets of Ω:
 1. $\Omega \in F$;
 2. If $A \in F$, then $\bar{A} = \Omega \setminus A \in F$;
 3. If $A_1, A_2, \cdots, A_n, \cdots \in F$, then $\bigcup_{j=1}^{\infty} A_j \in F$.

(Ω, F) is called a measurable space.
Axiomatic Setup: Probability Space

- Sample space Ω: the set of all outcomes ω.

- Event space: σ-algebra \mathcal{F}

 \mathcal{F} is a collection of subsets of Ω:

 1. $\Omega \in \mathcal{F}$;
 2. If $A \in \mathcal{F}$, then $\bar{A} = \Omega \setminus A \in \mathcal{F}$;
 3. If $A_1, A_2, \ldots, A_n, \ldots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$.

 (Ω, \mathcal{F}) is called a measurable space.

- Probability measure P
Axiomatic Setup: Probability Space

- Sample space Ω: the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F}
 \mathcal{F} is a collection of subsets of Ω:
 1. $\Omega \in \mathcal{F}$;
 2. If $A \in \mathcal{F}$, then $\bar{A} = \Omega \setminus A \in \mathcal{F}$;
 3. If $A_1, A_2, \ldots, A_n, \ldots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$.

(Ω, \mathcal{F}) is called a measurable space.

- Probability measure P
 1. (Positive) $\forall A \in \mathcal{F}, P(A) \geq 0$;
Axiomatic Setup: Probability Space

- **Sample space** Ω: the set of all outcomes ω.

- **Event space**: σ-algebra \mathcal{F}
 \mathcal{F} is a collection of subsets of Ω:
 1. $\Omega \in \mathcal{F}$;
 2. If $A \in \mathcal{F}$, then $\bar{A} = \Omega \setminus A \in \mathcal{F}$;
 3. If $A_1, A_2, \cdots, A_n, \cdots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$.

(Ω, \mathcal{F}) is called a measurable space.

- **Probability measure** P
 1. (Positive) $\forall A \in \mathcal{F}, P(A) \geq 0$;
 2. (Countably additive) If $A_1, A_2, \cdots \in \mathcal{F}$, and they are disjoint, then $P\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} P(A_j)$;
Axiomatic Setup: Probability Space

▶ Sample space Ω: the set of all outcomes ω.

▶ Event space: σ-algebra \mathcal{F}

\mathcal{F} is a collection of subsets of Ω:

1. $\Omega \in \mathcal{F}$;
2. If $A \in \mathcal{F}$, then $\bar{A} = \Omega \setminus A \in \mathcal{F}$;
3. If $A_1, A_2, \cdots, A_n, \cdots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$.

(Ω, \mathcal{F}) is called a measurable space.

▶ Probability measure P

1. (Positive) $\forall A \in \mathcal{F}, \, P(A) \geq 0$;
2. (Countably additive) If $A_1, A_2, \cdots \in \mathcal{F}$, and they are disjoint, then $P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$;
3. (Normalization) $\mathbb{P}(\Omega) = 1$.

Probability space — Triplet (Ω, \mathcal{F}, P)
Axiomatic Setup: Probability Space

▶ Sample space Ω: the set of all outcomes ω.

▶ Event space: σ-algebra \mathcal{F}
\mathcal{F} is a collection of subsets of Ω:
1. $\Omega \in \mathcal{F}$;
2. If $A \in \mathcal{F}$, then $\bar{A} = \Omega \setminus A \in \mathcal{F}$;
3. If $A_1, A_2, \cdots, A_n, \cdots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$.
(Ω, \mathcal{F}) is called a measurable space.

▶ Probability measure P
1. (Positive) $\forall A \in \mathcal{F}$, $P(A) \geq 0$;
2. (Countably additive) If $A_1, A_2, \cdots \in \mathcal{F}$, and they are disjoint, then $P\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} P(A_j)$;
3. (Normalization) $\mathbb{P}(\Omega) = 1$.

▶ Probability space — Triplet $(\Omega, \mathcal{F}, \mathbb{P})$
Radon-Nikodym Theorem

Theorem
Suppose μ is a σ-finite measure, ν is a signed measure on measurable space (Ω, \mathcal{F}). If ν is absolutely continuous w.r.t. μ, then there exists a measurable function f, such that for any $A \in \mathcal{F}$

$$\nu(A) = \int_A f(\omega) \mu(d\omega),$$

and f is unique in the μ-a.e. sense.

f is defined as the Radon-Nikodym derivative $d\nu/d\mu = f$.

For any $A \in \mathcal{F}$, if $\mu(A) = 0$, then $\nu(A) = 0$. It is usually denoted as $\nu \ll \mu$.
Random Variables

- Random variable: a measurable function $X : \Omega \to \mathbb{R}$.
Random Variables

- Random variable: a measurable function $X : \Omega \to \mathbb{R}$.
- Distribution (or law): a probability measure μ on \mathbb{R} defined for any set $B \subset \mathbb{R}$ by

$$\mu(B) = \text{Prob}(X \in B) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in B\}.$$
Random Variables

- Random variable: a measurable function \(X : \Omega \to \mathbb{R} \).
- Distribution (or law): a probability measure \(\mu \) on \(\mathbb{R} \) defined for any set \(B \subset \mathbb{R} \) by

 \[
 \mu(B) = \text{Prob}(X \in B) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in B\}.
 \]

- Probability density function (pdf): an integrable function \(p(x) \) on \(\mathbb{R} \) such that for any set \(B \subset \mathbb{R} \),

 \[
 \mu(B) = \int_B p(x) \, dx.
 \]
Random Variables

- Random variable: a measurable function $X : \Omega \rightarrow \mathbb{R}$.

- Distribution (or law): a probability measure μ on \mathbb{R} defined for any set $B \subset \mathbb{R}$ by

 $$\mu(B) = \text{Prob}(X \in B) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in B\}.$$

- Probability density function (pdf): an integrable function $p(x)$ on \mathbb{R} such that for any set $B \subset \mathbb{R}$,

 $$\mu(B) = \int_B p(x)dx.$$

- Mean (expectation):

 $$\mathbb{E}f(X) = \int_{\Omega} f(X(\omega))P(d\omega) = \int_{\mathbb{R}} f(x)d\mu(x) = \int_{\mathbb{R}} f(x)p(x)dx.$$
Random Variables

- **Random variable**: a measurable function $X : \Omega \rightarrow \mathbb{R}$.
- **Distribution (or law)**: a probability measure μ on \mathbb{R} defined for any set $B \subset \mathbb{R}$ by
 $$\mu(B) = \text{Prob}(X \in B) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in B\}.$$
- **Probability density function (pdf)**: an integrable function $p(x)$ on \mathbb{R} such that for any set $B \subset \mathbb{R}$,
 $$\mu(B) = \int_B p(x)dx.$$
- **Mean (expectation)**:
 $$\mathbb{E}f(X) = \int_{\Omega} f(X(\omega))P(d\omega) = \int_{\mathbb{R}} f(x)d\mu(x) = \int_{\mathbb{R}} f(x)p(x)dx.$$
- **Variance**:
 $$\text{Var}(X) = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$
Moments, Covariance, etc.

- p-th moment: $\mathbb{E}|X|^p$.
Moments, Covariance, etc.

- \(p \)-th moment: \(\mathbb{E}|X|^p \).
- Covariance:

\[
\text{Cov}(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y).
\]
Moments, Covariance, etc.

- p-th moment: $\mathbb{E}|X|^p$.
- Covariance:
 \[
 \text{Cov}(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y).
 \]
- Independence:
 \[
 \mathbb{E}f(X)g(Y) = \mathbb{E}f(X)\mathbb{E}g(Y).
 \]
 for all continuous functions f and g.

Notions of Convergence

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$, $\{X_n\}$ — a sequence of random variables, μ_n — the distribution of X_n. X — another random variable with distribution μ.

Definition (Almost sure convergence)

X_n converges to X almost surely as $n \to \infty$, $(X_n \to X, \text{a.s.})$ if

$$\mathbb{P}\{\omega \in \Omega, \ X_n(\omega) \to X(\omega)\} = 1$$
Notions of Convergence

Probability space \((\Omega, \mathcal{F}, \mathbb{P})\), \(\{X_n\}\) — a sequence of random variables, \(\mu_n\) — the distribution of \(X_n\). \(X\) — another random variable with distribution \(\mu\).

Definition (Almost sure convergence)
\(X_n\) converges to \(X\) almost surely as \(n \to \infty\), \((X_n \to X, \text{ a.s.})\) if

\[
\mathbb{P}\{\omega \in \Omega, \ X_n(\omega) \to X(\omega)\} = 1
\]

Definition (Convergence in probability)
\(X_n\) converges to \(X\) in probability if for any \(\epsilon > 0\),

\[
\mathbb{P}\{\omega |X_n(\omega) - X(\omega)| > \epsilon\} \to 0
\]

as \(n \to +\infty\).
Notions of Convergence

Definition (Convergence in distribution)

X_n converges to X in distribution ($X_n \xrightarrow{d} X$) (i.e. $\mu_n \rightarrow \mu$ or $\mu_n \xrightarrow{d} \mu$, weak convergence), if for any bounded continuous function f

$$\mathbb{E}f(X_n) \rightarrow \mathbb{E}f(X).$$
Notions of Convergence

Definition (Convergence in distribution)

X_n converges to X in distribution $(X_n \xrightarrow{d} X)$ (i.e. $\mu_n \rightarrow \mu$ or $\mu_n \xrightarrow{d} \mu$, weak convergence), if for any bounded continuous function f

$$\mathbb{E}f(X_n) \rightarrow \mathbb{E}f(X).$$

Definition (Convergence in L^p)

If $X_n, X \in L^p$, and

$$\mathbb{E}|X_n - X|^p \rightarrow 0.$$

If $p = 1$, that is convergence in mean; if $p = 2$, that is convergence in mean square.
Relation between different convergence concepts

Relation:

Almost sure convergence \(\iff\) Converge in probability \(\rightarrow\) Converge in distribution

\[\uparrow\]

\(L^p\) convergence
Conditional Expectation: Naive definition

Let X and Y be two discrete random variables with joint probability

$$p(i, j) = \mathbb{P}(X = i, Y = j).$$
Conditional Expectation: Naive definition

Let X and Y be two discrete random variables with joint probability

$$p(i, j) = \mathbb{P}(X = i, Y = j).$$

The *conditional probability* that $X = i$ given that $Y = j$ is given by

$$p(i|j) = \frac{p(i, j)}{\sum_i p(i, j)} = \frac{p(i, j)}{\mathbb{P}(Y = j)}$$

if $\sum_i p(i, j) > 0$ and conventionally taken to be zero if $\sum_i p(i, j) = 0$.
Let X and Y be two discrete random variables with joint probability
\[p(i, j) = \mathbb{P}(X = i, Y = j). \]

The conditional probability that $X = i$ given that $Y = j$ is given by
\[p(i|j) = \frac{p(i, j)}{\sum_i p(i, j)} = \frac{p(i, j)}{\mathbb{P}(Y = j)} \]
if $\sum_i p(i, j) > 0$ and conventionally taken to be zero if $\sum_i p(i, j) = 0$.

The natural definition of the conditional expectation of $f(X)$ given that $Y = j$ is
\[\mathbb{E}(f(X)|Y = j) = \sum_i f(i)p(i|j). \]
Conditional Expectation: Abstract definition

- The axiomatic definition of the conditional expectation $Z = E(X|G)$ is defined with respect to a sub-σ-algebra $G \subset \mathcal{F}$ as follows.
The axiomatic definition of the conditional expectation $Z = E(X|\mathcal{G})$ is defined with respect to a sub-σ-algebra $\mathcal{G} \subset \mathcal{F}$ as follows.

Definition (Conditional expectation)
For any random variable X with $\mathbb{E}|X| < \infty$, the conditional expectation Z of X given \mathcal{G} is defined as
The axiomatic definition of the conditional expectation \(Z = E(X|\mathcal{G}) \) is defined with respect to a sub-\(\sigma \)-algebra \(\mathcal{G} \subset \mathcal{F} \) as follows.

Definition (Conditional expectation)

For any random variable \(X \) with \(\mathbb{E}|X| < \infty \), the conditional expectation \(Z \) of \(X \) given \(\mathcal{G} \) is defined as

(i) \(Z \) is a random variable which is measurable with respect to \(\mathcal{G} \);
The axiomatic definition of the conditional expectation $Z = E(X|G)$ is defined with respect to a sub-σ-algebra $G \subset \mathcal{F}$ as follows.

Definition (Conditional expectation)

For any random variable X with $\mathbb{E}|X| < \infty$, the conditional expectation Z of X given G is defined as

(i) Z is a random variable which is measurable with respect to G;

(ii) for any set $A \in G$,

$$\int_A Z(\omega) \mathbb{P}(d\omega) = \int_A X(\omega) \mathbb{P}(d\omega).$$
The existence of $Z = E(X|\mathcal{G})$ comes from the Radon-Nikodym theorem by considering the measure μ on \mathcal{G} defined by $\mu(A) = \int_A X(\omega)P(d\omega)$ (see Billingsley: Probability and measure).
Conditional Expectation: Existence

- The existence of $Z = E(X|\mathcal{G})$ comes from the Radon-Nikodym theorem by considering the measure μ on \mathcal{G} defined by $\mu(A) = \int_A X(\omega)P(d\omega)$ (see Billingsley: Probability and measure).

- One can easily find that μ is absolutely continuous with respect to the measure $P|_{\mathcal{G}}$, the probability measure confined in \mathcal{G}. Thus Z exists and is unique up to the almost sure equivalence in $P|_{\mathcal{G}}$.
The existence of $Z = E(X|\mathcal{G})$ comes from the Radon-Nikodym theorem by considering the measure μ on \mathcal{G} defined by $\mu(A) = \int_A X(\omega) P(d\omega)$ (see Billingsley: Probability and measure).

One can easily find that μ is absolutely continuous with respect to the measure $P|_\mathcal{G}$, the probability measure confined in \mathcal{G}. Thus Z exists and is unique up to the almost sure equivalence in $P|_\mathcal{G}$.

For the conditional expectation of a random variable X with respect to another random variable Y, it is natural to define it as

$$\mathbb{E}(X|Y) := \mathbb{E}(X|\mathcal{G})$$

where \mathcal{G} is the σ-algebra $Y^{-1}(\mathcal{B})$ generated by Y.

Theorem (Properties of conditional expectation)

Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$, $a, b \in \mathbb{R}$. Then
Theorem (Properties of conditional expectation)

Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$, $a, b \in \mathbb{R}$. Then

(i) $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$
Theorem (Properties of conditional expectation)

Suppose X, Y are random variables with $E|X|, E|Y| < \infty$, $a, b \in \mathbb{R}$. Then

(i) $E(aX + bY|\mathcal{G}) = aE(X|\mathcal{G}) + bE(Y|\mathcal{G})$

(ii) $E(E(X|\mathcal{G})) = E(X)$
Conditional Expectation: Properties

Theorem (Properties of conditional expectation)

Suppose \(X, Y \) are random variables with \(\mathbb{E}|X|, \mathbb{E}|Y| < \infty \), \(a, b \in \mathbb{R} \). Then

(i) \(\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G}) \)

(ii) \(\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X) \)

(iii) \(\mathbb{E}(X|\mathcal{G}) = X \), if \(X \) is \(\mathcal{G} \)-measurable
Conditional Expectation: Properties

Theorem (Properties of conditional expectation)
Suppose \(X, Y \) are random variables with \(\mathbb{E}|X|, \mathbb{E}|Y| < \infty \), \(a, b \in \mathbb{R} \). Then

(i) \(\mathbb{E}(aX + bY|G) = a\mathbb{E}(X|G) + b\mathbb{E}(Y|G) \)

(ii) \(\mathbb{E}(\mathbb{E}(X|G)) = \mathbb{E}(X) \)

(iii) \(\mathbb{E}(X|G) = X \), if \(X \) is \(G \)-measurable

(iv) \(\mathbb{E}(X|G) = \mathbb{E}X \), if \(X \) is independent of \(G \)
Conditional Expectation: Properties

Theorem (Properties of conditional expectation)

Suppose \(X, Y \) are random variables with \(\mathbb{E}|X|, \mathbb{E}|Y| < \infty \), \(a, b \in \mathbb{R} \). Then

(i) \(\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G}) \)

(ii) \(\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X) \)

(iii) \(\mathbb{E}(X|\mathcal{G}) = X \), if \(X \) is \(\mathcal{G} \)-measurable

(iv) \(\mathbb{E}(X|\mathcal{G}) = \mathbb{E}X \), if \(X \) is independent of \(\mathcal{G} \)

(v) \(\mathbb{E}(XY|\mathcal{G}) = Y\mathbb{E}(X|\mathcal{G}) \), if \(Y \) is \(\mathcal{G} \)-measurable
Theorem (Properties of conditional expectation)

Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$, $a, b \in \mathbb{R}$. Then

(i) $\mathbb{E}(aX + bY | G) = a\mathbb{E}(X | G) + b\mathbb{E}(Y | G)$

(ii) $\mathbb{E}(\mathbb{E}(X | G)) = \mathbb{E}(X)$

(iii) $\mathbb{E}(X | G) = X$, if X is G-measurable

(iv) $\mathbb{E}(X | G) = \mathbb{E}X$, if X is independent of G

(v) $\mathbb{E}(XY | G) = Y\mathbb{E}(X | G)$, if Y is G-measurable

(vi) $\mathbb{E}(X | G) = \mathbb{E}(\mathbb{E}(X | H) | G)$ for the sub-σ-algebras $G \subset H$.

Lemma (Conditional Jensen’s inequality)

Let X be a random variable such that $\mathbb{E}|X| < \infty$ and $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function such that $\mathbb{E} |\phi(X)| < \infty$. Then

$$\mathbb{E}(\phi(X) | \mathcal{G}) \geq \phi(\mathbb{E}(X | \mathcal{G})).$$

The readers may be referred to (K.L. Chung: A course in probability theory) for the details of the proof.
To realize the equivalence between the abstract definition
\[\mathbb{E}(X|Y) := \mathbb{E}(X|\mathcal{G}) \]
and
\[\mathbb{E}(f(X)|Y = j) = \sum_i f(i)p(i|j) \]
when \(Y \) only takes finitely discrete values, we suppose the following decomposition

\[\Omega = \bigcup_{j=1}^{n} \Omega_j \]

and \(\Omega_j = \{ \omega : Y(\omega) = j \} \). Then the \(\sigma \)-algebra \(\mathcal{G} \) is simply the sets of all possible unions of \(\Omega_j \).
Conditional Expectation: Abstract vs Naive definition

To realize the equivalence between the abstract definition
\[E(X|Y) := E(X|G) \] and \[E(f(X)|Y = j) = \sum_i f(i)p(i|j) \]
when \(Y \) only takes finitely discrete values, we suppose the following decomposition

\[\Omega = \bigcup_{j=1}^{n} \Omega_j \]

and \(\Omega_j = \{\omega : Y(\omega) = j\} \). Then the \(\sigma \)-algebra \(G \) is simply the sets of all possible unions of \(\Omega_j \).

The measurability of conditional expectation \(E(X|Y) \) with respect to \(G \) means \(E(X|Y) \) takes constant on each \(\Omega_j \), which exactly corresponds to \(E(X|Y = j) \) as we will see.
Conditional Expectation: Abstract vs Naive definition

By definition, we have

\[\int_{\Omega_j} \mathbb{E}(X|Y) \mathbb{P}(d\omega) = \int_{\Omega_j} X(\omega) \mathbb{P}(d\omega) \]

which implies

\[\mathbb{E}(X|Y) = \frac{1}{\mathbb{P}(\Omega_j)} \int_{\Omega_j} X(\omega) \mathbb{P}(d\omega). \]

This is exactly \(\mathbb{E}(X|Y = j) \) when \(f(X) = X \) and \(X \) also takes discrete values.
Conditional Expectation: Optimal Approximation

The conditional expectation has the following important property as the optimal approximation in L^2 norm among all of the Y-measurable functions.

Proposition

Let $g(Y)$ be any measurable function of Y, then

$$\mathbb{E}(X - \mathbb{E}(X|Y))^2 \leq \mathbb{E}(X - g(Y))^2.$$
Conditional Expectation: Optimal Approximation

Proof.
We have

$$\mathbb{E}(X - g(Y))^2 = \mathbb{E}(X - E(X|Y))^2 + \mathbb{E}(E(X|Y) - g(Y))^2$$
$$+ 2\mathbb{E}\left[(X - E(X|Y))(E(X|Y) - g(Y))\right].$$

and

$$\mathbb{E}\left[(X - \mathbb{E}(X|Y))\mathbb{E}(X|Y) - g(Y))\right]$$
$$= \mathbb{E}\left[\mathbb{E}\left[(X - \mathbb{E}(X|Y))(E(X|Y) - g(Y))|Y\right]\right]$$
$$= \mathbb{E}\left[\mathbb{E}(X|Y) - \mathbb{E}(X|Y))(E(X|Y) - g(Y))\right] = 0$$

by properties (ii),(iii) and (v) in properties of conditional expectation. The proof is done.
Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma
The *characteristic function* of a random variable X or its distribution μ is defined as

$$f(\xi) = \mathbb{E}e^{i\xi X} = \int_{\mathbb{R}} e^{i\xi x} \mu(dx).$$
The characteristic function of a random variable X or its distribution μ is defined as

$$f(\xi) = \mathbb{E}e^{i\xi X} = \int_{\mathbb{R}} e^{i\xi x} \mu(dx).$$

Obviously, when X, Y are independent and has characteristic functions $f(\xi), g(\xi)$, then we have the characteristic function for $Z = X + Y$

$$h(\xi) = \mathbb{E}e^{i\xi Z} = \mathbb{E}e^{i\xi(X+Y)} = f(\xi)g(\xi).$$
Characteristic Function: Examples

The characteristic functions of some typical distributions are as below.

- Bernoulli distribution: \(f(\xi) = q + pe^{i\xi} \).

- Binomial distribution \(B(n, p) \): \(f(\xi) = (q + pe^{i\xi})^n \).

- Poisson distribution \(P(\lambda) \): \(f(\xi) = e^{\lambda(e^{i\xi} - 1)} \).

- Exponential distribution \(\text{Exp}(\lambda) \): \(f(\xi) = (1 - \lambda - i\xi)^{-1} \).

- Normal distribution \(N(\mu, \sigma^2) \): \(f(\xi) = \exp(i\mu\xi - \frac{\sigma^2}{2}\xi^2) \).
The characteristic functions of some typical distributions are as below.

- Bernoulli distribution: \(f(\xi) = q + pe^{i\xi} \).
- Binomial distribution \(B(n, p) \): \(f(\xi) = (q + pe^{i\xi})^n \).
The characteristic functions of some typical distributions are as below.

- **Bernoulli distribution**: \(f(\xi) = q + pe^{i\xi} \).
- **Binomial distribution** \(B(n, p) \): \(f(\xi) = (q + pe^{i\xi})^n \).
- **Poisson distribution** \(\mathcal{P}(\lambda) \): \(f(\xi) = e^{\lambda(e^{i\xi} - 1)} \).
The characteristic functions of some typical distributions are as below.

- **Bernoulli distribution**: \(f(\xi) = q + pe^{i\xi} \).
- **Binomial distribution** \(B(n,p) \): \(f(\xi) = (q + pe^{i\xi})^n \).
- **Poisson distribution** \(\mathcal{P}(\lambda) \): \(f(\xi) = e^{\lambda(e^{i\xi} - 1)} \).
- **Exponential distribution** \(\mathcal{E}xp(\lambda) \): \(f(\xi) = (1 - \lambda^{-1}i\xi)^{-1} \).
The characteristic functions of some typical distributions are as below.

- Bernoulli distribution: $f(\xi) = q + pe^{i\xi}$.
- Binomial distribution $B(n, p)$: $f(\xi) = (q + pe^{i\xi})^n$.
- Poisson distribution $\mathcal{P}(\lambda)$: $f(\xi) = e^{\lambda(e^{i\xi}-1)}$.
- Exponential distribution $\mathcal{E}xp(\lambda)$: $f(\xi) = (1 - \lambda^{-1}i\xi)^{-1}$.
- Normal distribution $N(\mu, \sigma^2)$: $f(\xi) = \exp\left(i\mu\xi - \frac{\sigma^2\xi^2}{2}\right)$.
Proposition

The characteristic function has the following properties:

1. \(\forall \xi \in \mathbb{R}, |f(\xi)| \leq 1 \), \(f(\xi) = f(-\xi) \), \(f(0) = 1 \);
2. \(f \) is uniformly continuous on \(\mathbb{R} \);
3. \(f(n) (0) = i^n E_X^n \) provided \(E|X|^n < \infty \).

Proof. The proof of statements 1 and 3 are straightforward. The second statement is valid by
\[
|f(\xi_1) - f(\xi_2)| = |E(e^{i\xi_1 X} - e^{i\xi_2 X})| = |E(e^{i\xi_1 X}(1 - e^{i(\xi_2 - \xi_1)X})| \\
\leq E|1 - e^{i(\xi_2 - \xi_1)X}|
\]
Dominated convergence theorem concludes the proof.
Proposition

The characteristic function has the following properties:

1. $\forall \xi \in \mathbb{R}, \ |f(\xi)| \leq 1$, $f(\xi) = f(-\xi)$, $f(0) = 1$;
Characteristic Function: Property

Proposition

The characteristic function has the following properties:

1. $\forall \xi \in \mathbb{R}, |f(\xi)| \leq 1, f(\xi) = f(-\xi), f(0) = 1$;
2. f is uniformly continuous on \mathbb{R}.
Proposition

The characteristic function has the following properties:

1. \(\forall \xi \in \mathbb{R}, \left| f(\xi) \right| \leq 1, f(\xi) = f(-\xi), f(0) = 1; \)
2. \(f \) is uniformly continuous on \(\mathbb{R}; \)
3. \(f^{(n)}(0) = i^n \mathbb{E}X^n \) provided \(\mathbb{E}|X|^n < \infty. \)
Proposition

The characteristic function has the following properties:

1. \(\forall \xi \in \mathbb{R}, \ |f(\xi)| \leq 1, \ f(\xi) = f(-\xi), \ f(0) = 1; \)
2. \(f \) is uniformly continuous on \(\mathbb{R}; \)
3. \(f^{(n)}(0) = i^n \mathbb{E}X^n \) provided \(\mathbb{E}|X|^n < \infty. \)

Proof.

The proof of statements 1 and 3 are straightforward. The second statement is valid by

\[
|f(\xi_1) - f(\xi_2)| = |\mathbb{E}(e^{i\xi_1 X} - e^{i\xi_2 X})| = |\mathbb{E}(e^{i\xi_1 X} (1 - e^{i(\xi_2-\xi_1)X}))|
\leq \mathbb{E}|1 - e^{i(\xi_2-\xi_1)X}|.
\]

Dominated convergence theorem concludes the proof. \(\square \)
Lévy’s continuity theorem

Theorem (Lévy’s continuity theorem)

Let \(\{\mu_n\}_{n \in \mathbb{N}} \) be a sequence of probability measures, and \(\{f_n\}_{n \in \mathbb{N}} \) be their corresponding characteristic functions.

Assume that

1. \(f_n \) converges everywhere on \(\mathbb{R} \) to a limiting function \(f \).
2. \(f \) is continuous at \(\xi = 0 \).

Then there exists a probability distribution \(\mu \) such that \(\mu_n \rightharpoonup \mu \).

Moreover, \(f \) is the characteristic function of \(\mu \).

Conversely, if \(\mu_n \rightharpoonup \mu \), where \(\mu \) is some probability distribution, then \(f_n \) converges to \(f \) uniformly in every finite interval, where \(f \) is the characteristic function of \(\mu \).

For a proof, see K.L. Chung: A course in probability theory.
Lévy’s continuity theorem

Theorem (Lévy’s continuity theorem)
Let \(\{\mu_n\}_{n \in \mathbb{N}} \) be a sequence of probability measures, and \(\{f_n\}_{n \in \mathbb{N}} \) be their corresponding characteristic functions. Assume that

1. \(f_n \) converges everywhere on \(\mathbb{R} \) to a limiting function \(f \).

Moreover, \(f \) is the characteristic function of \(\mu \). Conversely, if \(\mu_n \rightharpoonup \mu \) where \(\mu \) is some probability distribution, then \(f_n \) converges to \(f \) uniformly in every finite interval, where \(f \) is the characteristic function of \(\mu \).
Lévy’s continuity theorem

Theorem (Lévy’s continuity theorem)

Let \(\{ \mu_n \}_{n \in \mathbb{N}} \) be a sequence of probability measures, and \(\{ f_n \}_{n \in \mathbb{N}} \) be their corresponding characteristic functions. Assume that

1. \(f_n \) converges everywhere on \(\mathbb{R} \) to a limiting function \(f \).
2. \(f \) is continuous at \(\xi = 0 \).

Then there exists a probability distribution \(\mu \) such that \(\mu_n \xrightarrow{d} \mu \). Moreover, \(f \) is the characteristic function of \(\mu \).

Conversely, if \(\mu_n \xrightarrow{d} \mu \), where \(\mu \) is some probability distribution then \(f_n \) converges to \(f \) uniformly in every finite interval, where \(f \) is the characteristic function of \(\mu \).

For a proof, see K.L. Chung: A course in probability theory.
Lévy’s continuity theorem

Theorem (Lévy’s continuity theorem)

Let \(\{ \mu_n \}_{n \in \mathbb{N}} \) be a sequence of probability measures, and \(\{ f_n \}_{n \in \mathbb{N}} \) be their corresponding characteristic functions. Assume that

1. \(f_n \) converges everywhere on \(\mathbb{R} \) to a limiting function \(f \).
2. \(f \) is continuous at \(\xi = 0 \).

Then there exists a probability distribution \(\mu \) such that \(\mu_u \xrightarrow{d} \mu \). Moreover \(f \) is the characteristic function of \(\mu \).
Lévy’s continuity theorem

Theorem (Lévy’s continuity theorem)

Let \(\{\mu_n\}_{n \in \mathbb{N}} \) be a sequence of probability measures, and \(\{f_n\}_{n \in \mathbb{N}} \) be their corresponding characteristic functions. Assume that

1. \(f_n \) converges everywhere on \(\mathbb{R} \) to a limiting function \(f \).
2. \(f \) is continuous at \(\xi = 0 \).

Then there exists a probability distribution \(\mu \) such that \(\mu_n \xrightarrow{d} \mu \). Moreover \(f \) is the characteristic function of \(\mu \).

Conversely, if \(\mu_n \xrightarrow{d} \mu \), where \(\mu \) is some probability distribution then \(f_n \) converges to \(f \) uniformly in every finite interval, where \(f \) is the characteristic function of \(\mu \).

For a proof, see K.L. Chung: A course in probability theory.
Characteristic Function: Positive Semi-definite Function

As in Fourier transforms, one can also define the inverse transform

\[\rho(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\xi x} f(\xi) d\xi. \]

An interesting question arises as to when this gives the density of a probability measure. To answer this we define

Definition
A function \(f \) is called positive semi-definite if for any finite set of values \(\{\xi_1, \ldots, \xi_n\} \), \(n \in \mathbb{N} \), the matrix \((f(\xi_i - \xi_j))_{i,j=1}^n \) is positive semi-definite, i.e.

\[\sum_{i,j} f(\xi_i - \xi_j)v_i \bar{v}_j \geq 0, \]

for any \(v_1, \ldots, v_n \in \mathbb{C} \).
Bochner’s Theorem

Theorem (Bochner’s Theorem)

A function f is the characteristic function of a probability measure if and only if it is a positive semi-definite and continuous at 0 with $f(0) = 1$.

Proof. We only give the necessity part. Suppose f is a characteristic function, then

$$\sum_{i,j=1}^{n} f(\xi_i - \xi_j) v_i \overline{v_j} = \int \left| \sum_{i=1}^{n} v_i e^{i \xi_i x} \right|^2 \mu(dx) \geq 0.$$

The sufficiency part is difficult and the readers may be referred to (K.L. Chung: A course in probability theory).
Bochner’s Theorem

Theorem (Bochner’s Theorem)

A function f is the characteristic function of a probability measure if and only if it is a positive semi-definite and continuous at 0 with $f(0) = 1$.

Proof.
We only gives the necessity part. Suppose f is a characteristic function, then

$$
\sum_{i,j=1}^{n} f(\xi_i - \xi_j) v_i \bar{v}_j = \int_{\mathbb{R}} \left| \sum_{i=1}^{n} v_i e^{i\xi_i x} \right|^2 \mu(dx) \geq 0.
$$

The sufficiency part is difficult and the readers may be referred to (K.L. Chung: A course in probability theory).
Generating function

For discrete R.V. taking integer values, the generating function has the central importance

\[G(x) = \sum_{k=0}^{\infty} P(k) x^k. \]

One immediately has the formula:

\[P(k) = \frac{1}{k!} G^{(k)}(0). \]

Some generating functions:

- Bernoulli distribution: \(G(x) = q + px. \)
Generating function

For discrete R.V. taking integer values, the generating function has the central importance

\[G(x) = \sum_{k=0}^{\infty} P(k) x^k. \]

One immediately has the formula:

\[P(k) = \frac{1}{k!} G^{(k)}(x) \bigg|_{x=0}. \]

Some generating functions:

- Bernoulli distribution: \(G(x) = q + px. \)
- Binomial distribution: \(G(x) = (q + px)^n. \)
Generating function

For discrete R.V. taking integer values, the generating function has the central importance

$$G(x) = \sum_{k=0}^{\infty} P(k) x^k.$$

One immediately has the formula:

$$P(k) = \frac{1}{k!} G^{(k)}(x) \bigg|_{x=0}. $$

Some generating functions:

- Bernoulli distribution: $G(x) = q + px$.
- Binomial distribution: $G(x) = (q + px)^n$.
- Poisson distribution: $G(x) = e^{-\lambda} + \lambda x$.
Generating function

Definition
Define the convolution of two sequences \(\{a_k\}, \{b_k\} \) as \(\{c_k\} = \{a_k\} * \{b_k\} \), the components are defined as

\[
c_k = \sum_{j=0}^{k} a_j b_{k-j}.
\]
Generating function

Definition

Define the convolution of two sequences \(\{ a_k \}, \{ b_k \} \) as \(\{ c_k \} = \{ a_k \} \ast \{ b_k \}, \) the components are defined as

\[
c_k = \sum_{j=0}^{k} a_j b_{k-j}.
\]

Theorem

*Consider two independent R.V. \(X \) and \(Y \) with PMF

\[
P(X = j) = a_j, \quad P(Y = k) = b_k
\]

and \(\{ c_k \} = \{ a_k \} \ast \{ b_k \}. \) Suppose the generating functions are \(A(x), B(x) \) and \(C(x), \) respectively, then the generating function of \(X + Y \) is \(C(x). \)
Moment Generating Function

▶ The moment generating function of a random variable \(X \) is defined for all values of \(t \) by

\[
M(t) = \mathbb{E}e^{tX} = \begin{cases}
\sum_{x} p(x)e^{tx}, & X \text{ is discrete-valued} \\
\int_{\mathbb{R}} p(x)e^{tx} \, dx, & X \text{ is continuous}
\end{cases}
\]

provided that \(e^{tx} \) is integrable. It is obvious \(M(0) = 1 \).
Moment Generating Function

The moment generating function of a random variable X is defined for all values of t by

$$M(t) = \mathbb{E}e^{tx} = \begin{cases} \sum_x p(x)e^{tx}, & X \text{ is discrete-valued} \\ \int_{\mathbb{R}} p(x)e^{tx} dx, & X \text{ is continuous} \end{cases}$$

provided that e^{tx} is integrable. It is obvious $M(0) = 1$.

Once $M(t)$ can be defined, one can show $M(t) \in C^\infty$ in its domain and its relation to the nth moments

$$M^{(n)}(t) = \mathbb{E}(X^n e^{tx})$$

and $\mu_n := \mathbb{E}X^n = M^{(n)}(0), \ n \in \mathbb{N}.$

This gives

$$M(t) = \sum_{n=0}^{\infty} \mu_n \frac{t^n}{n!},$$

which tells why $M(t)$ is called the moment generating function.
Moment Generating Function: Property

Theorem
Denote $M_X(t)$, $M_Y(t)$ and $M_{X+Y}(t)$ the moment generating functions of random variables X, Y and $X + Y$, respectively. If X, Y are independent, we have

$$M_{X+Y}(t) = M_X(t)M_Y(t).$$

The proof is straightforward.
The following moment generating functions of typical random variables can be obtained by direct calculations.

(a) Binomial distribution: \(M(t) = (pe^t + 1 - p)^n \).
The following moment generating functions of typical random variables can be obtained by direct calculations.

(a) Binomial distribution: \(M(t) = (pe^t + 1 - p)^n \).

(b) Poisson distribution: \(M(t) = \exp[\lambda(e^t - 1)] \).
The following moment generating functions of typical random variables can be obtained by direct calculations.

(a) Binomial distribution: \(M(t) = (pe^t + 1 - p)^n \).

(b) Poisson distribution: \(M(t) = \exp[\lambda(e^t - 1)] \).

(c) Exponential distribution: \(M(t) = \lambda/(\lambda - t) \) for \(t < \lambda \).
The following moment generating functions of typical random variables can be obtained by direct calculations.

(a) Binomial distribution: \(M(t) = (pe^t + 1 - p)^n \).

(b) Poisson distribution: \(M(t) = \exp[\lambda(e^t - 1)] \).

(c) Exponential distribution: \(M(t) = \lambda/\left(\lambda - t\right) \) for \(t < \lambda \).

(d) Normal distribution \(N(\mu, \sigma^2) \): \(M(t) = \exp \left(\mu t + \frac{\sigma^2 t^2}{2}\right) \).
The cumulant generating function $K(t)$ is defined based on $M(t)$ by

$$K(t) = \ln M(t) = \ln \mathbb{E} e^{tX} = \sum_{n=1}^{\infty} \frac{\kappa_n t^n}{n!}.$$

With such definition, we have the cumulants $\kappa_0 = 0$ and

$$\kappa_n = K^{(n)}(0), \quad n \in \mathbb{N}.$$
Cumulants Generating Function

- The cumulant generating function $K(t)$ is defined based on $M(t)$ by

$$K(t) = \ln M(t) = \ln \mathbb{E}e^{tX} = \sum_{n=1}^{\infty} \frac{\kappa_n t^n}{n!}.$$

With such definition, we have the cumulants $\kappa_0 = 0$ and $\kappa_n = K^{(n)}(0), \quad n \in \mathbb{N}$.

- The moment and cumulant generating functions have explicit meaning in statistical physics, in which

$$Z(\beta) = \mathbb{E}e^{-\beta E}, \quad F(\beta) = -\beta^{-1} \ln Z(\beta)$$

are called partition function and Helmholtz free energy, respectively. They can be connected to M and K by

$$Z(\beta) = M_X(-\beta), \quad F(\beta) = -\beta^{-1}K_X(-\beta)$$

if X is taken as E, the energy of the system.
Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma
Let \(\{ A_n \} \) be a sequence of events, \(A_n \in \mathcal{F} \). Define

\[
\limsup_{n \to \infty} (A_n) = \{ \omega \in \Omega, \ \omega \in A_n \ \text{infinitely often (i.o.)} \}
\]

\[
= \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k
\]

Question: What is the set

\[
\liminf_{n \to \infty} (A_n) := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k
\]
Lemma (First Borel-Cantelli Lemma)

If \(\sum_{n=1}^{\infty} \mathbb{P}(A_n) < +\infty \), then

\[
\mathbb{P}(\limsup_{n \to \infty} A_n) = \mathbb{P}\{\omega : \omega \in A_n, \text{i.o.}\} = 0.
\]
First Borel-Cantelli Lemma

Lemma (First Borel-Cantelli Lemma)

If \(\sum_{n=1}^{\infty} P(A_n) < +\infty \), then

\[
P(\limsup_{n \to \infty} A_n) = P\{\omega : \omega \in A_n, \text{i.o.}\} = 0.
\]

Proof.
We have

\[
P\left\{ \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \right\} \leq P\left\{ \bigcup_{k=n}^{\infty} A_k \right\} \leq \sum_{k=n}^{\infty} P(A_k)
\]

for any \(n \), but the last term goes to 0, as \(n \to \infty \). \(\square \)
As an example of the application of this result, we prove

Proposition (BCL-Application)

Let \(\{X_n\} \) be a sequence of identically distributed (not necessarily independent) random variables, such that

\[
\mathbb{E}|X_n| < +\infty.
\]

Then

\[
\lim_{n \to \infty} \frac{X_n}{n} = 0 \quad \text{a.s.}
\]
Lemma (Chebyshev Inequality)

Let X be a random variable such that $\mathbb{E}|X|^k < +\infty$, for some integer k. Then

$$P\{|X| > \lambda\} \leq \frac{1}{\lambda^k} \mathbb{E}|X|^k$$

for any positive constant λ.

Proof. For any $\lambda > 0$,

$$\mathbb{E}|X|^k = \int_{-\infty}^{\infty} |x|^k d\mu \geq \int_{|X| \geq \lambda} |X|^k d\mu$$

$$\geq \lambda^k \int_{|X| \geq \lambda} d\mu = \lambda^k P\{|X| \geq \lambda\}.$$
Proof. For any $\epsilon > 0$, define

$$A_n = \{ \omega \in \Omega : \left| \frac{X_n(\omega)}{n} \right| > \epsilon \}$$

$$\sum_n P(A_n) = \sum_n P\{|X_n| > n\epsilon\}$$

$$= \sum_n \sum_{k=n} P\{k\epsilon < |X_n| < (k + 1)\epsilon\}$$

$$= \sum_k kP\{k\epsilon < |X_n| < (k + 1)\epsilon\}$$

$$\leq \frac{1}{\epsilon} \mathbb{E}|X| < +\infty$$
Therefore if we define

\[B_\epsilon = \{ \omega \in \Omega, \quad \omega \in A_n \text{ i.o.} \} \]

then \(P(B_\epsilon) = 0 \). Let \(B = \bigcup_{n=1}^{\infty} B_{\frac{1}{n}} \). Then \(P(B) = 0 \), and

\[\lim_{n \to \infty} \frac{X_n(\omega)}{n} = 0, \quad \text{if } \omega \notin B. \]

The proof is done.
Convergence in Probability implies A.S. Convergence in subsequence: Proof

Here we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume \(X = 0 \).
Convergence in Probability implies A.S. Convergence in subsequence: Proof

Here we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume $X = 0$.

Convergence in probability implies that for any k, we can choose subsequence X_{n_k} (n_k is increasing in k) such that

$$
\mathbb{P}(X_{n_k} \geq 1/k) \leq 1/2^k
$$
Convergence in Probability implies A.S. Convergence in subsequence: Proof

Here we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume $X = 0$.

- Convergence in probability implies that for any k, we can choose subsequence X_{n_k} (n_k is increasing in k) such that

$$\mathbb{P}(X_{n_k} \geq 1/k) \leq 1/2^k$$

- For any $\epsilon > 0$, we have

$$\sum_{k=1}^{\infty} \mathbb{P}(|X_{n_k}| \geq \epsilon) = \sum_{k=1}^{k_{\epsilon}} + \sum_{k=k_{\epsilon}}^{\infty} \mathbb{P}(|X_{n_k}| \geq \epsilon) < \infty, \quad 1/k_{\epsilon} \leq \epsilon$$
Convergence in Probability implies A.S. Convergence in subsequence: Proof

Here we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume $X = 0$.

- Convergence in probability implies that for any k, we can choose subsequence X_{n_k} (n_k is increasing in k) such that

$$
P(X_{n_k} \geq 1/k) \leq 1/2^k$$

- For any $\epsilon > 0$, we have

$$
\sum_{k=1}^{\infty} P(|X_{n_k}| \geq \epsilon) = \sum_{k=1}^{k_\epsilon} + \sum_{k=k_\epsilon}^{\infty} P(|X_{n_k}| \geq \epsilon) < \infty, \quad 1/k_\epsilon \leq \epsilon
$$

- From the 1st BCL lemma, we have

$$
P(|X_{n_k}| \geq \epsilon, i.o.) = 0 \quad \text{for any } \epsilon > 0$$
Convergence in Probability implies A.S. Convergence in subsequence: Proof

Here we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume $X = 0$.

- Convergence in probability implies that for any k, we can choose subsequence X_{n_k} (n_k is increasing in k) such that

 $$\mathbb{P}(X_{n_k} \geq 1/k) \leq 1/2^k$$

- For any $\epsilon > 0$, we have

 $$\sum_{k=1}^{\infty} \mathbb{P}(|X_{n_k}| \geq \epsilon) = \sum_{k=1}^{k_{\epsilon}} + \sum_{k=k_{\epsilon}}^{\infty} \mathbb{P}(|X_{n_k}| \geq \epsilon) < \infty, \quad 1/k_{\epsilon} \leq \epsilon$$

- From the 1st BCL lemma, we have

 $$\mathbb{P}(|X_{n_k}| \geq \epsilon, i.o.) = 0 \quad \text{for any } \epsilon > 0$$

- With similar argument as before, we have the almost sure convergence of $\{X_{n_k}\}$ to 0.
Second Borel-Cantelli Lemma

Lemma (Second Borel-Cantelli Lemma)

If $\sum_{n=1}^{\infty} P(A_n) = +\infty$, and A_n are mutually independent, then

$$P\{\omega \in \Omega, \omega \in A_n \text{ i.o.}\} = 1.$$