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A GENERAL CONVERGENCE RESULT FOR A FUNCTIONAL
RELATED TO THE THEORY OF HOMOGENIZATION*
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Abstract. The convergence, as ¢ |0, of the functional F,(¥) =IR~ u.(x)W(x, x/e) associated with a
given L? function u, with support in a fixed compact set is studied. The test functions ¥(x, y) are continuous
on RM xRN and periodic in y. A convergence theorem is proved under the weaker assumption that u,
remains in a bounded subset of L> Finally, the use of multiple-scale expansions in homogenization is
justified, and a new approach is proposed for the mathematical analysis of homogenization problems.
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1. Introduction. The mathematical analysis of homogenization problems for partial
differential equations (see [1], [9]) utilizes the functionals of the type

F.(¥)= I ue(x)‘I'(x, -E) dx (Q a bounded open set in R™).
Q

The function u, is, say, in L*(Q) and is (or depends on) the solution of a partial
differential equation on ) with coefficients e-periodic (i.e., periodic with period ¢ in
each variable). The test function ¥(x, y) is continuous on O xR" (Q denotes the
closure of Q) and, for fixed x, the function y -»¥(x, y) is periodic (with period 1 in
each variable).

Let us bear in mind that for such a function, i.e., ¥, the associated sequence
(¥9),~0, with ¥°(x) =V (x, x/¢) for x € Q, converges to the function

x->¥(x) ==J' W(x,y)dy in L*(Q)-weak as el0
Y

(see, e.g., [1]), where Y =10, 1[".

In view of convergence studies in the theory of homogenization two distinct
situations may be considered:

(i) The sequence (u,) is assumed to contain a subsequence, still denoted by (u,)
for simplicity, that converges strongly to a function u,in L*(Q) as £ | 0 (e.g., u. € H'(Q),
80 smooth, and (u, ) is bounded in H'(Q2)). Hence, the corresponding sequence (F,(¥))
converges to the integral In uo(x)¥(x) dx.

(ii) The more difficult situation, which we study here, is that in which the sequence
(u,) only remains in a bounded subset of L*(Q2). We may surely extract a weakly
convergent subsequence, but we do not have any classical argument that allows us to
pass to the limit in F, (V) for the corresponding subsequence. Indeed, for the conver-
gence of the scalar product of two sequences in L*(Q), we classically need strong
convergence for at least one of them.

Several aspects of this situation arise in homogenization. Let us point out two
particularly interesting aspects:

(1) u, is some derivative of a function v, (i.e., u, =dv./9x;) that is the solution
of a boundary value problem considered in the framework of homogenization, and
the sequence (v,) is bounded in H'(Q) (see § 6). In general, this is typical of the
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so-called regular homogenization problems; that is, the class of the homogenization
problems associated with a formal expansion (of the solution) of the type

(1.1) v.(x)= vo(x)+ev,(x,§> +5202(x,§> +oee,

where the leading term v,, which does not depend on the local variables y =x/¢,
“ignores” the local effects.

For the study of convergence, i.e., lim v, = v, as €0, which is one of the main
objects in homogenization, we possess a method, the so-called Energy Method (see
[1], [9]), that solves most of the problems of the above type. However, it does not
exhibit the weak limit of the gradient dv,/dx;,i=1,---, N (that is, concretely, the
local behaviour of v,), which is interesting from the physical point of view.

(2) u, is the solution of a boundary value problem whose formal analysis (in the
framework of homogenization) is based on an asymptotic expansion of the type

(1.2) u.(x)= uo(x, f) + euy (x, E) + 32u2<x, I) +oee
€ € €

with a leading term depending on the local variables y =x/e. The leading term is
affected by the local effects and, consequently, there is no hope of extracting a strongly
convergent subsequence from (u.). Here, the Energy Method becomes inoperative
and, to our knowledge, there is no systematic way of proving convergence for related
homogenization problems, referred to as singular homogenization problems (see [4],
[51, [7, Chaps. 7, 8] for typical examples of this). Although we do not consider that
question in this work, we believe the study of singular homogenization problems
requires an appropriate approach that should be based on an extensive analysis of
functionals of the type

F.(V¥) =J u, (x)‘F(x, f) dx.

Our basic result is the proof of a convergence theorem for the functional F,(¥) =
IRN u.(x)¥(x, x/€) dx (u, having its support in a fixed compact set) under the weaker
hypothesis that the sequence (u,) remains bounded in L*. There is no need to assume
the possibility of extracting a strongly convergent subsequence.

Next, based on the above result, we give a complete justification of the use of
multiple-scale asymptotic expansions (such as (1.1) or (1.2)) in the theory of homogeniz-
ation: Assuming that u, € L>(Q), with u, bounded in the L* norm, Theorem 2 gives
the leading-order approximation to u, (in (1.2)). If u, lies in H'(Q) and is bounded
in the H' norm, Theorem 3 gives the next-order approximation to u,. Theoretically,
the higher-order approximations are naturally given by similar theorems provided that
u, € H*(Q) with u, bounded, u, € H*(Q) with u, bounded, - - - ; however, that is quite
labourious.

Finally, we propose an alternative way of proving convergence in homogenization.
Our approach is carried out on a classical problem (to arrive at a correct understanding
of a method, we prefer to start with a classical example). Nevertheless, we anticipate
that its flexibility and its “spontaneity’” make it more adaptable for unusual problems
than the often very fastidious Energy Method. Indeed, the reader familiar with the
so-called natural multiple-scale asymptotic method [1] will easily realize that our
approach is nothing but its mathematical version. Furthermore, as we shall see in § 6,
our approach exhibits the local behaviour of the solution. This is not accessible to the
Energy Method, whose basic ingredient is strong convergence.
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This paper is organized as follows. In § 2 we present some general notation and
preliminaries. Section 3 is devoted to our basic result, the case of the whole space R™.
In § 4 we give a more pragmatic version (in view of the theory of homogenization) of
the above result, which takes into account more realistic test functions. In § 5 we prove
a convergence theorem for the gradient du,./dx;, i=1,---, N (i.e., for a functional
F,(¥) with du,/ax; in place of u.). In practice, such a result furnishes the next term
(i.e., uy(x, x/€) in (1.2)) in the asymptotic expansion of the solution u,, while the
leading term is given by the theorem in § 4. Thus, the use of multiple-scale asymptotic
expansions of the form (1.2) (or (1.1)) is rigorously justified in homogenization.

Finally, in § 6, we present a new approach for the mathematical analysis of
homogenization problems.

We will be concerned solely with vector spaces over R although our result and
arguments are still rigorously valid in the complex case—providing some minor
modifications are made. The only measure considered in this work is the Lebesgue
measure.

2. General notation and preliminaries. Let RY(NeN, N=1) be the N-
dimensional Euclidean space. Points in R" are denoted by x = (x,, - * -, x5 (the global
variables) or y =(y,, - -, yn) (the local variables related to periodicity). The cube

Y=10,1["=10,1[x- - -x]0, 1[ (N times)

is considered in the system of the local variables, with closure Y =[0, 1]".

By a Y-periodic function we mean a function on R" that is periodic with period
Y (i.e., with period 1 in each variable ¥i)-

Generally speaking, if E is a set (e.g., R™ or any open set in R"), we denote by
C(E) the space of continuous functions on E, by #(E) the space of those functions
in C(E) with compact supports (contained in E), and by @(E) the subspace of #(E)
made up of C* functions.

In connection with the periodic structure, let us introduce some specific spaces.

C,,(RN ) (or, for simplicity, C,) denotes the space of functions we C(RN), w
Y-periodic.

L3(RN) (or L}) the space of Y-periodic functions in Lj,.(R"), which is a Hilbert

space with the norm
1/2
lon=(] wrar)”
Y

H(R"; L}) the space of continuous functions on R" (the Euclidean space of the
variables x) with values in L} and having compact supports.

L*(R™; L}) the space of measurable functions u(x, y) on R¥ xR" such that for
almost all x the function y > u(x, y) belongs to L? and [~ |u(x, y)|* dx dy <co. We
endow this space with the norm

1/2
ull 2@ y) = [I N lu(x, y)|* dx dy] .
R XY

L*(R"; L2), thus equipped, is a Hilbert space.

Finally, %(R"; C,) denotes the space of continuous functions on R" with values
in C, and having compact supports. We provide the vector space ¥(R"; C,) with its
natural topology: the inductive limit topology determined by the spaces ¥k (R"; C,)
(K ranging over the compact subsets of R"), where

Hx (RY; C,)={¥eH(R"; C,); supp ¥ = K}
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is a Banach space with the norm
W]k =sup [¥(x)| == sup |¥(x,p)|
xeK (x,y)eIRNxRN
(note that C,, provided with the L norm, is a Banach space).

In § 3 we will need a very useful result from Bourbaki [2, Prop. 5, p.46]: Let
HRV)® C, denote the subset of ¥ (R"; C,) consisting of all functions of the form
Y, v®w (® denotes the tensor product), v (respectively, w) ranging over a finite subset
of #(R"N) (respectively, C,). Then ¥(R")® C, is dense in H(R"; C,).

Finally, for further needs, let us keep in mind the well-known result that asserts
that %(R"; C,) is dense in L*(R"; L3).

In the sequel we will put, for simplicity,

¥,=HRN; C,).

3. Basic result. A convergence theorem. In all that follows, ¢, with £ >0, denotes
a real sequence destined to tend to zero, and K, is a fixed compact set in R" (K, does
not depend on ¢). Next, we introduce L% (R"), the space of all functions in L*(R")
having their (compact) supports in K.

3.1. Statement of the theorem. Idea of the proof.
THEOREM 1. Let u, € LﬁO(RN ). Suppose that there exists a constant ¢ >0 such that

(3.1) lu.l|2=c for any e.

Then there exist a subsequence from ¢, still denoted by ¢ for simplicity, and a function
uo in L*(R"; L}) such that

3.2) J N us(x)\lf(x, f) dx»J N uo(x, y)¥(x, y) dx dy

as €0, for all ¥ in ¥%,.

Remark 1. Instead of the cube Y =10, 1[", if we consider a parallelepiped Y =
H,ﬁl 10, a;[(a; > 0), Theorem 1 remains valid provided the right-hand side of (3.2) is
multiplied by 1/|Y| (| Y| = measure of Y). ]

We now give the idea and the main steps of the proof. The first step is to show
that a subsequence (still denoted by & for simplicity) can be extracted from & such
that for w e C, the sequence u.w® converges in L*-weak as €| 0, where w®(x) = w(x/€).
Thus, given a function w in C,, there will exist z, in L*(R") such that, as £ 0,

(3.3) I uwev dx—>J 2,0 dx for all ve H(RN).
RN RN

Next, our task is to extend (3.3) (with the same subsequence ¢) to all functions
in ¥, (see § 2 for the definition of J,). Indeed, note that the integrand on the left of
(3.3) is nothing but u,(x)¥(x, x/ &) with ¥(x, y) = v(x)w(y). It is then reasonable to
hope that (3.3) could be generalized to all functions in J,. To this end, we first establish
that for any ¥ in J, a real number Fo(¥) exists such that

(3.4) I us(x)‘l'(x, -’f) dx > Fy(¥).
rN £
This will be obtained from (3.3), because ¥ (R™)® C, is dense in X, (see § 2).
Finally, the last step is devoted to the characterization of the right of (3.4).

3.2. First convergence result. Our goal in this section is to obtain (3.3) for any w
in C,. To begin, let us establish two elementary (but fundamental) lemmas.
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LEMMA 1. Let K, be the above compact set. Fix r>0 and set H=
{xeR"N; d(x, K,) = r}, where d denotes the Euclidean metric. Then for ¢ < &, (&, a suitable
constant) there exist a natural number n (depending on ) and a finite family e (Y + k;), 1 =
i=n, with k;e ZN (Z is the set of all integers) such that

(3.5) Ko< U e(Y+k)<H.
i=1

Proof. For arbitrarily fixed &, we may express R" (the space of the variables x)
as the union of all the (Y +k), ke Z". Since K, is compact, a finite family (Y + k;),
i=1,- -, n, exists such that K, intersects each (Y +k;) and K, is contained in their
union.

Now, for each i(1=i=n), let xee(Y+k). Then d(x Ky=
d(x, e(Y+k)NK,)=diam e(Y + k;) = € diam Y (diam denotes the diameter). Hence,
by putting g, =r/diam Y it follows that for £ < &, the union of the sets (Y +k;) is
contained in H, which completes the proof. a

LEMMA 2. There exists a constant c,> 0 such that for € < g, (&, is the constant in

Lemma 1) we have
j u(x)w(-’f> dx
rN €

for all uin L (R™) and all win L.
Proof. Let ue Ly (R"), we L;. By Hélder’s inequality we have

x x 2 1/2
oGt [ ]

Next, by the preceding lemma, let e(Y+k;) (1=i=n) be a finite family satisfying

(3.5) for £ <g,. Then
2 n
Jl Ol =t [, ()
Ko € i=1 Je(y+ky) €

By change of variable, x = e(y + k;), and use of periodicity we have

2
j w(z) dx=¢"N j |w(y)|? dy.
e(Y+k;) £ Y

= collull 2wl v

2
dx.

It follows that

2
[ @) @e=ernimiioon,
Ko 2

But, thanks to (3.5) we have e "'n =meas U|_, (Y +k;) =meas H (note that n depends
on ¢), from which the conclusion follows (with, e.g., co=(meas H)"/?). 0
Remark 2. For € < ¢, we have

J. 1)

As an immediate consequence of Lemma 2, we have the following proposition,
which plays an essential role throughout the rest of this section.

2
dx=ci|wlixy, VYwelL2. 0
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ProposITION 1. Let fe Lk (R") (f may or may not depend on ¢). Then for ¢ <&,
a unique function f, € L,z, can be assigned to f such that

| rom(Z)ax=] romma vwinss
rRY Y
TAREERT

Remark 3. The correspondence f- f, defined above is linear. 0

We are now in a position to prove the main result in this section. First, we must
give some notation used frequently in the sequel.

Given w in Lf, we denote by w® the e-periodic function in L. (R") defined by

(3.6) wi(x)= w(f).
£
Also, if ¥ € ¥, we put
(3.7) Ve (x) =\I'(x, f)

It is clear that ¥* € #(R"). Moreover, if the support of ¥ is contained in K (a compact
subset of R™), then the support of ¥* lies in K for any «.

The aim now is to prove the following proposition.

PrOPOSITION 2. Under the assumptions of Theorem 1, a subsequence (still denoted
by €) can be extracted from & such that for any w in C, (w independent of ¢ ), the sequence
u,w*® converges in L*-weak as ¢ 0.

Proof. (i) We begin by fixing a (nontrivial) function « in @(R"), a independent
of &. Next, fix x in R" and consider the function s - f(s) = a(x — s)u,(s), which belongs
to L}o(RN ). By Proposition 1 there exists, for € < g, a unique function y - z,(x, y) in
L} such that for any w in L} we have

J L a(x=s)u(s)w*(s) ds=j z.(x, y)w(y) dy,

that is,

(3.8) [(uew®) * a](x) = L z.(x, y)w(y) dy,

where * denotes the convolution product.
Moreover, again by Proposition 1, we have

1/2
3.9) 2. (%, 2y = CO[LN la(x —s)u.(s) ds] .

Observe that the function (u,w*) * a lies in D(R" ) and has its support in a compact
set that does not depend on &.

Thus, by (3.8) (valid for all x) we assign to u, (for £ <g,) a unique function
x->z.(x) [i.e, x> z(x, )] from R to L2, with (3.9).

(ii) For further needs we now study a few useful properties of the function z,
thus constructed. To summarize, let us show that z, € L*(R"; L2). It suffices to check
that z, € #(R™; L2) (see § 2 for notation). Clearly the function z, has compact support;
then it remains to show continuity. For this, fix x in R™. Let heR". Consider the
function s > [a(x+h—s)—a(x —s)]u.(s), which lies in L% (R"). If we replace in (i)
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the function s > a(x —s)u,(s) by the above function, the associated analogue of z,(x)
is, according to the above process, exactly z.(x+h)—z,(x) (see Remark 3). Hence,

1/2
|ze(x+h) =z, (x)|| L2(v) = CO[JRN la(x+h—s5)—a(x—s)u.(s)] ds] ,

which is the analogue of (3.9). Observing that the right-hand side is majorized by
cco sup; |a(x+h—s)—a(x—s)| (c is the constant in Theorem 1) and, furthermore, a
being uniformly continuous on R™, we deduce that ||z, (x+ h) — z.(x)|| 12y) = c|h|, for
all heR", which shows continuity.

Thus, z, € L*(R™; L}). Furthermore, by (3.9) we have

(3.10) ”Ze ||L2(RNXY)§C (C>0) VE<80

(where the constant ¢ does not depend on ¢).

(iii) Finally, by (3.10) we can extract a subsequence from ¢, still denoted by &,
such that z, >z in L*(R"; L?)-weak as ¢ | 0. Therefore, for each ve %(R") and each
we L) we have

LN . z(x, y)w(y)v(x) dx dy > I

RN x

. z(x, y)w(y)v(x) dx dy,

so that, using (3.8) combined with Fubini’s theorem, we have

(3.11) J N [(u,w®) * a](x)v(x) dx—»J N z(x, y)w(y)v(x) dx dy.

R XY

From now on, £ denotes exclusively the subsequence extracted above. By (3.11)
we finally show that for each w in C,, the sequence u,w*® converges weakly in L*(R")
as €0 (that is, ¢ is the desired subsequence in Proposition 2). For this purpose, let
w be arbitrarily fixed in C,. Since w*® € L™, we have u,w*® € L?. Furthermore, we evidently
have ||u,w®|| 2= c (¢>0), for all &. Therefore, we can extract &' from & such that

(3.12) u.w® >z, in L*-weak as&']0,

so that, the transformation v - v * a being continuous from L? into itself,
J [(u,w®) * a]odx—> J (z, * @)vdx
rY rY
for all ve ¥ (R"). By comparison with (3.11) we necessarily have
(3.13) (2, * a)(x) =j z(x, y)w(y) dy a.e.in R
Y
Now, since w is the same function as in (3.12), let &¢” be another subsequence

from & such that u,.w® - z), in L>-weak as £"} 0. Following the above process once
more, we obtain

(3.14) (zl, * a)(x) =J‘ z(x, y)w(y) dy a.e.in RN

By subtracting (3.14) from (3.13) we have
(3.15) (zl,—z,)*a=0

from which it follows that z,, = z,. Indeed the distributions (represented by the L’
functions) e, z|, — z,, (respectively) have compact supports, i.e., they lie in €'(R"), the
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subspace of @'(R™) formed of distributions having compact supports. But, since the
vector space €'(R") endowed with the convolution product is an algebra without zero
divisor (see [8]), (3.15) implies z),—z, =0.

We have just established that for any subsequence &' such that u, w® converges
weakly in L?, the corresponding limit does not depend on &'. That is, the sequence
u,w* converges weakly in L>. The proof is complete. 0

3.3. Extension of the first convergence result. Here and throughout the rest of § 3,
¢ denotes the subsequence involved in Proposition 2. Then, by that proposition, a
unique function z, € L? is assigned to each w in C, such that (3.3) holds. In other
words, if we put

(3.16) W(x, y)=v(x)w(y) for ve ¥(R")and weC,

and Fo(‘lf)=jR~ z,vdx, we have [g~v u, ¥ dx-> Fy(¥) for any ¥ in X, of the form
(3.16) (see (3.7) for the definition of ¥*). This property is, clearly, what we call the
first (or primitive) convergence result.

The aim in this section is then to extend the above property to all of J,.

LEMMA 3. Let ¥ be fixed in ¥, (¥ independent of ). Then the sequence ¢~
fgn u.¥° dx is Cauchy.

Proof. Let ¥ e %,. Let > 0. Since the set (RV)® C, is dense in ¥, (see §2),
there exists some ¥, in ¥,, ¥, =Y., u:®w,[ve HRN), w; € C,], with I finite, such
that the supports of both ¥ and ¥, lie in a fixed compact set K <R" that depends
only on ¥, and

(3.17) sup ||\1f,,(x)—~1f(x)||w§5”—
xeR™ c

where c is the constant in (3.1).
On the other hand, we evidently have for all ¢
(3.18) S%I)V W5 (x) =¥ (x)|= sup ¥, (x)—¥(x)| L=
xX€ xeR

Now, consider ¢,, &,, destined to decrease independently. By a routine technique
we have

J u, ¥ dx —J u, W dx
RN RN

=

+

J u, (V2 —V¥72) dx J u, (V5 —¥) dx
rN rN

+ U u, Vo dx -—J' u,, V52 dx
rN RN
But (3.17) combines with (3.18) to give

=

fori=1,2.

J U, (U5~ W) dx
RN

N3

Hence

J u, e dx—J u, 'V dx §n+U u, V2 dx—f u, Vo dx
RN N RN IRN

R
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Now, thanks to Proposition 2 we observe that for v in #(R") and w in C, the sequence
e [g™ u,ow®dx is Cauchy. Therefore, since In"’ u ¥ dx=y,, IRN u,ow;, the
sequence & > [pv 4, V¢ dx is Cauchy as a finite sum of Cauchy sequences. So we have
[fav e, Y5 dx —fon u, Vo dx|>0 as & )0 and &, 0, and the conclusion follows from
the arbitrariness of 7. 0

This brings us to one of the central preliminary convergence results in this work.

ProposITION 3. For any ¥ e ¥, (V independent of €) there exists a unique real
number Fo(V) such that

j u Ve dx-> Fy(¥) asel0.
IRN

3.4. End of the proof. Characterization of F,. The aim in this section is to show
that the above transformation ¥ - Fo('¥) is the restriction to J, of a continuous linear
form on L*(R"; Lf,). More precisely, we must check that there exists a unique u, in
L*(R™; L?) such that

Fy(¥) = J uo(x, y)¥(x,y) dxdy VYV in ¥,
RV xY

Since ¥, is dense in LA RV, Lf,) and the transformation ¥ » Fy(W¥) is linear, it suffices
to establish that there exists a constant ¢ >0 such that

(3.19) [Fo(W)|=c|¥| 2@ <y) VYV in J,.

In this connection, fix ¥ in %, (¥ independent of £). Then |fg~ u, ¥°dx|=
([, ¥°|* dx)"/? for all &, where c is the constant on the right of (3.1).
By Proposition 3 and the fundamental property

J [we|? dx—>J [W(x,y)*dxdy asel0 (see§l),
Ko Kox Y

assertion (3.19) follows immediately. The proof is complete. 0
Remark 4. The function u, has its support in the set K,xR" (or K,, if u, is
regarded as a function from R" to L}).

4. The leading-order approximation. A convergence theorem. In what follows,
denotes a bounded open set in the Euclidean space R™ (of the variables x,, - - -, xx), Q
independent of e. We denote by 9({); C,) [respectively, H ()] the set of all restrictions
to Q of functions in %, [respectively, ¥(R")]. We also introduce the space L*(Q; L}),
which is a Hilbert space with the norm

1/2
||“||L2(axv)=[ [ lu(x,J')lzdxdy] .
QxyY

The aim in this section is to establish the following theorem.
THEOREM 2. Let u, € L*(Q)). Suppose that there exists a constant ¢ >0 such that

(4.1) " U, ”LZ(_Q) =c¢ Ve

Then a subsequence (still denoted by €) can be extracted from e such that, letting ¢ |0,

(4.2) J u, e dx—>J uy(x, y)¥(x, y) dxdy V¥
a

Qxy
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in #(Q; C,), where uge L*(Q; L?). Moreover,

(4.3) J u,ow® dx—»J uo(x, y)v(x)w(y) dxdy Vv
Q

QxyY

in #(Q) and all win L},

Proof. Property (4.2) is straightforward by Theorem 1 and Remark 4. As for (4.3),
we begin by taking in (4.2) test functions of the form ¥(x, y)=v(x)w(y) with ve
H(Q), we C,. We obtain as £0,

(4.4) J u.ow’ dx»J uo(x, y)o(x)w(y) dx dy
Q QxyY

for all ve #(Q) and all we C,. _
Next, we must extend (4.4) to all functions w in Lf,. Fix v in %(Q)) and w in Lf,.
Let (w,) be a sequence from C, (dense subspace of L?) such that w,~>w in L} as

n - oo, Utilizing the fact that the transformation z - z° is continuous linear from L}
to L*(Q) (see Remark 2), we have

(4.5) lwr—wllL20) = col|lwn — Wl 12(y) VN, Ve<eg,

(co and g, are the constants in Lemma 2 with K,=Q).
Now we write

J u,ow* dx — I uyvw dx dy
Q oxy

=J u,v(w® —wy) dx+J uyv(w, —w) dx dy
Q

Qxy

+ J’ u.ow;, dx — J uyvw, dx dy
Q QxY

and estimate each of the first two integrals on the right-hand side separately (use (4.5)).
This yields

J u. ow’® dx—-J uyvw dx dy’
(¢} oxy

(4.6)
J u,ow;, dx — J uovw, dx dy
Q Qxy

=c|wa— w2+

for all n and all £ <g, (where ¢, is constant with respect to both £ and n).

Finally, let n > 0. Choose in (4.6) the natural number n so that ¢,||w, — w| 2(y) = 7.
Then letting € | 0 and using (4.4), it follows that the limit of the left-hand side of (4.6)
is bounded from above by 7. The desired conclusion then results from the arbitrariness
of .

Remark 5. Let u, be as in Theorem 2. First, let us observe that, by weak compact-
ness, we may assume that in addition to (4.2) and (4.3) in Theorem 2, the subsequence
¢ satisfies the following property.

There exists u € L>(Q) such that u, - u in L*(Q)-weak. Next, taking w =1 in (4.3)
we easily obtain u(x) =, uy(x, y) dy (u is the mean value of u,). It follows that u is
(uniquely) expressible in the form

uO(xa y) = u(x) + aO(x’ J’) With J' ﬂO(xa J’) dy = O'
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So assume there is a subsequence from (u,) that converges strongly in L*(Q) as
€ 0. Then an easy computation yields i, = 0; that is, the leading term u, in (1.2) does
not depend on the local variables y. In other words, if the leading term depends on
y, i.e., 1, # 0, then (u,) never contains a strongly convergent subsequence (see § 1).

5. The next-order approximation. A convergence theorem.

5.1. Notation and preliminaries. We denote by C; the subspace of C, formed of
C* functions, H, the subspace of L’ formed of functions w such that aw/ay, € L? for
i=1,---, N (the derivatives obviously being taken in the distribution sense).

We provide H), with the norm
1/2
)
L2(Y)
which makes it a Hilbert space.
Sometimes it is more convenient to consider, instead of H,, its closed subspace

wdy=0}

aw

= +
Pl = (w1t £ |22

i=1

1

ﬂ’z—{weH‘

r

R

JY
on which the norm

ow

N 2 1/2
w 1 = ——)
o= |2, )

is equivalent to the above Hj-norm.

We will need the following lemma.

LEmMMA 4. Let f=(f),fie LX(1=i=N). Assume that ¥, [, fw;dy=0 for all
w=(w,) in (C3)" such that divw =0 (where divw = Z, 1aw i/3y:). Then there exists a
unique function q € H,/R such that f,=8q/3y, fori=1,---, N. 0

Lemma 4 is the “periodic version” of the well-known result concerning the
solvability of the equation grad q = f for f given in (L.)" (see, e.g., [10]). See, e.g.,
[6, Appendix] for the proof.

5.2. A convergence theorem (next-order approximation). We are now in a position
to prove the main result in this section. In what follows, ) denotes a smooth bounded
open set in R™ (Q independent of €). As in the preceding sections, & (¢ >0) denotes
a sequence tending to zero.

THEOREM 3. Let u, € H'(Q). Suppose that there exists a constant ¢ >0 such that

(5.1) ”ue"Hl(n)éc VS.
Then a subsequence (still denoted by &) can be extracted from & such that, as €0,
(5.2) u, > u in H'(Q)-weak,

(5.3) L} zzt vdx~> Lx\/ [—a;- (x)+ - (x y)] Y(y)v(x) dxdy,

i=1, -+, N; forall ¥ in L} and all v in %(Q), where u,e L*(Q; H}/R).
Proof. By virtue of (5.1) we can extract a subsequence such that (5.2) holds.
Moreover, by Theorem 2 there exists z; € L*(Q; L,z,), 1=i= N, such that

(5.4) Ia"e udx»J 2(x, y)¥(y)o(x) dxdy as el0
Q 0X; axy

for all ¥ in L? and all v in %(Q).
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It remains to show that there exists u, € L>(Q; H ,‘,/ R) such that

0
26 y) = () +2 (x,y) for i=1,+++, N,

ox; 0y,
So let ¥ = (V) be a vector function in (C‘,’,")N satisfying div ¥ = 0. Then for v in 2(Q)
we have

N

s I e e dx = —
i=1 Jq 0X;

By Leibniz’s formula and the fact that div ¥ = 0 (note that Zfil oV /ax; =1/ e(div¥)*®)
it follows that

N J
J u,— (¥iv) dx.
-1Ja 90X

N | ou. N v
ZJ ‘vadx=—2j u, Vi —dx.
i=1Jo dXx; i=1Jo 9X;

By the Rellich theorem we may assume that the above subsequence & satisfies the
further property

u.~>u in L*(Q)-strong,

so that, letting £} 0 and recalling (5.4), we obtain

N

s L ) [z.(x, y)—f;‘%(x>]wi<y>v(x> dxdy =0

i=1

for all ¥ e (C)™, div¥ =0, and all ve D(Q). Hence we have for almost all x € Q

N

¥ JY[z,'(x,y)—gf(x)]‘lfi(y)dy=0 for ¥ e (CY)™, div¥ =0.

i=1
It follows by Lemma 4 that there exists a function u, from ( to H :,/ R such that

0 d
(5.5) z,~(x,')-——-y-(x)=u—1(x-)- ae. in Q(i=1,---, N).
ax; ay,
Finally, from (5.5) we can easily show (e.g., by Lusin’s characterization [3]) that
u, is a measurable function from Q to H,/R (obtained from appropriate norm defined
in § 5.1). Furthermore, again by (5.5) we have

J lur(x) |5t (vy/m dx < oo
0

and the conclusion follows. O

6. A new approach in the theory of homogenization. Classically, the mathematical
analysis of homogenization problems proceeds in two steps [1]. The first step, which
is formal, derives, for example, from two-scale asymptotic expansions of the form

X
ue(x)zuo(x,y)+5“1(x,Y)+'", y=—£_’

(6.1) s
Ug, Uy, *+, Y-periodic in y.

More precisely, we postulate that the solution u, of a given problem (associated
with a partial differential equation with coefficients e-periodic) is similar to (6.1). Next,
introducing (6.1) into the given problem yields a sequence of problems that determine
Ug, Uy, * "
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The second step consists of rigorously proving the convergence of the preceding
homogenization process, i.e., we must find some suitable topology in order that
lim u,. = u, as € » 0. This validates the above formal calculations.

In this last section we propose an alternative approach. More precisely, we
introduce a new asymptotic method for the mathematical analysis of homogenization
problems. The method is quite straightforward. There is no need to postulate the
existence of the functions u,, 4, in (6.1), since by Theorems 2 (or 1) and 3 such
functions are available for a suitable subsequence from e.

Our approach is illustrated by a regular homogenization problem. Nevertheless,
the basic ideas can easily be extended to problems of the singular type.

6.1. Setting of the problem. In all that follows, unless otherwise specified, the
summation convention is used.

Let Q be a smooth bounded open set in R™ (the space of the variables x;, * - -, xy)
with boundary 9Q. Let a; (1=1,j= N) be given functions defined on R™ (the space
of the variables y,, - - -, yn) and subject to the following conditions:

(6.2) a;€ L*, a; Y-periodic, a;= a;.
There exists @ >0 such that the following holds for almost all y:
(6.3) a;(»)égz alel” VE=(£)eRY

(where the summation convention is utilized) with |£2=Y " | £
Finally, let fe L*(Q), and for each £ >0 let u, be defined by

u, € H'(Q),

(6.4) ~—59—(az

X;

e OUe
5
3X;

>=f in Q,

u.=0 on o

where aj(x) = a;(x/¢) (see (3.6)).

Clearly, from (6.2) (the first assumption) and (6.3), we see (6.4) uniquely deter-
mines u,.

Our aim is to find lim u, as £ 0. In other words, we must study the homogenization
problem associated with (6.4). Note that this problem has been solved in [1], where
the results of the formal analysis were made rigorous by applying the Energy Method.
As mentioned in § 1, we propose an alternative approach that should be more flexible
and thus more adaptable for the study of unusual problems.

6.2. Description of the method. First, observe that u,, the solution of (6.4), satisfies

£ H(I)Q,
(6.5) e & Hl)

du, 9
I a5 —de=I fodx Vve HY(Q).
o = 0x; 9x; Q

Next we estimate ||u, || ). Taking the particular test function v = u, and using
the boundedness and the coerciveness (from (6.3)) of the bilinear form in (6.5), we
obtain

”u,;”H‘(Q)§C(C>O) Ve.
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Hence, the hypotheses of Theorem 3 are fulfilled. We can extract a subsequence still
denoted by ¢ for simplicity such that

(6.6) u,~»u in Hy(Q)-weak as £l0

and, for all ¥ e L2, ve #(Q),

ou, ou oy
(6.7) L X; vdxany [8x ()45 o, “(x, y)]«lr(y)u(x) dx dy,

j=1,-"+,N,

where u, € L*(Q; H}/R).

Derivation of the local problem. In (6.5) we take test functions of the form v = ew®¢
with we H}, ¢ € D(Q). Then, noting that ow®/ax; =1/e(8w/ay;)°, where of course
(aw/ay;)?(x) =aw/ay;(x/ &), we are led to

ow du, _o¢
dx+ E—Lwt—dx= ‘¢ dx.
Jnayax (ay.) pdxte Jn ayaxj v 9x; x=e Jnfw ¢ dx

Now we propose passing to the limit as £} 0. It is easy to check that both the
second term on the left and the term on the right tend to zero. Hence,

ou,
La ax( y) ¢ dx-0.

On the other hand, choose in (6.7) ¥ = a;;(dw/dy;) (summation) with we H »- By
the above result we are finally led to

L ) ,,(y)[—< y+2h e y)]—(y>¢(x) dxdy=0

for all we H), and all ¢ € 2(Q). Hence the following holds for almost every x in Q:

(6.8) J .,(y)[—( )+a_( y)]—(y)dy 0 VweH,.

Equation (6.8) is exactly that obtained by the formal method using multiple-scale
asymptotic expansions (see [1]). It associates with the relation u,(x,-)e H :,/ R to give
the so-called local problem, which permits us to express u, in terms of u. Evidently
u, satisfies, for fixed x,

1

ul(x$ : ) € 'ﬁp—’
(6.9)

1
I uau’(x ) y———(x)J wdy Vwey—”,
y 9y 9y; a y Oy R
which is an elliptic variational problem for u,(x, - ), admitting one and only one solution.
We should stress that, contrary to the classical method, the resolution of the above
problem does not concern us since u; has been constructed in Theorem 3. We only
observe that u, is unique (i.e., independent of the subsequence extracted above) as
soon as u is well determined.
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Now we calculate u, in terms of u. Following [1], let x/ (j=1, - - -, N) be defined
by

. H,
X’G'—
(6.10) X’ H
iy’ aw ow
X 9w 4 2y wwe=L,
jyakhayh Yk v Iyaklayk y ywe R

Then, from the preceding remarks, we see that u, is given by

(6.11) (% ) === (W)

Indeed, the function on the right-hand side is the solution of (6.9).
Remark 6. It is not difficult to verify that the equation in (6.10) can be written
under the form

(6.12) a(x) -y, w)=0 VYweH,/R

where a(-,-) is the bilinear form that figures in (6.10), and y;(1=j= N) are the
coordinate functions. a
Derivation of the global (or limit) problem. The point now is to derive the boundary

value problem satisfied by the global limit u. This is straightforward. Choose in (6.7)
the particular function ¥ = g, and in place of the v’s consider the derivatives ov/dx;,
with ve 2(Q). Hence, summing over i, j on both sides of (6.7) and using (6.5) yields

8u,

J ,,(y)[ (x)+ ——(x y)]—(x) dxdy = J Sodx,
QxyY
which by (6.11) becomes

- axj Jdu dv

i ih d - d = d

L} (al Iyah3Yh y) 9X; 0X; x Infv x

where d; = [, a;(y) dy. But it is easy to check that

. ax’ ;

d; —J aihgﬁ dy=-a(y, X’ -y

Y Vh

On the other hand, by (6.12) we have easily that —a(y;, ¥’ =) =a(x' =y, X' =)
(note that the form a(-, -) is symmetric). From all that we deduce the problem for u:

ue HyQ),
(6.13)
ou v ;
J;: q;i a% 3% dx = Lfv dx VYve HyQ),
where
(6.14) g5 =alx' =y, X’ = ).

The constants g; are the so-called homogenized coefficients. They satisfy the
ellipticity condition

gié&Z clél(c>0) VeEeRN (see [1])
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so that u is uniquely determined by (6.13). Consequently, the subsequence ¢ in (6.6)
and (6.7) may be replaced by the whole sequence from which it was extracted.
Thus, we have proved the following homogenization theorem.
THEOREM 4. For each £ >0 let u, be the solution of the boundary value problem
(6.4). Then, as €0,

u,~>u in Hy(Q)-weak,

u ou d
JWevdxe(I -——vdx)J Y — (ye—x") dy,
L o%, Lo VY5, (re—x") dy.

j=1,-+, N, for all ¥e L} and all ve ¥(Q), where u is the solution of the boundary

value problem
3 u
——g,—)=f inQ
Bx;(qjaxj) f in

(6.15)

u=0 on 39,

q; given by (6.14), and x“(k=1,---, N) given by (6.10).
Remark 7. The usual homogenization theorem [1], [9] does not involve (6.15).
This property obviously follows from (6.7) and (6.11).

6.3. Concluding remarks. We have just proposed a new asymptotic method for
the mathematical analysis of homogenization problems. The method is straightforward
and quite natural. Note that, although we have chosen a problem of the regular type
for a detailed analysis, our approach is essentially based on Theorem 1, which requires
only the weaker assumption that u, remains bounded in L’ So it is reasonable to
assume the above idea can be successfully extended to a more general situation involving
problems of the singular type.
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