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A GENERAL CONVERGENCE RESULT FOR A FUNCTIONAL
RELATED TO THE THEORY OF HOMOGENIZATION*

GABRIEL NGUETSENG"

Abstract. The convergence, as e $0, of the functional F()=aN u(x)(x,x/e) associated with a
given L function u with support in a fixed compact set is studied. The test functions (x, y) are continuous
on R rv x RN and periodic in y. A convergence theorem is proved under the weaker assumption that u
remains in a bounded subset of L2. Finally, the use of multiple-scale expansions in homogenization is
justified, and a new approach is proposed for the mathematical analysis of homogenization problems.
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1. Introduction. The mathematical analysis of homogenization problems for partial
differential equations (see [1], [9]) utilizes the functionals of the type

F(q)=l,u(x)qtx,) dx(f abounded open set in N).

The function u is, say, in L2(O) and is (or depends on) the solution of a partial
differential equation on f with coefficients e-periodic (i.e., periodic with period e in
each variable). The test function (x,y) is continuous on l)xN ( denotes the
closure of f) and, for fixed x, the function y (x, y) is periodic (with period 1 in
each variable).

Let us bear in mind that for such a function, i.e., , the associated sequence
()>o, with (x)=(x,x/e) for x, converges to the function

x - @(x) f (x, y) dy in L2(ll)-weak
Y

as e,O

(see, e.g., 1]), where Y- ]0, 1[ N.
In view of convergence studies in the theory of homogenization two distinct

situations may be considered"
(i) The sequence (u) is assumed to contain a subsequence, still denoted by (u)

for simplicity, that converges strongly to a function Uo in L2() as e , 0 (e.g., u H(II),
0f smooth, and (u) is bounded in H(I’I)). Hence, the corresponding sequence (F())
converges to the integral Uo(X)(x) dx.

(ii) The more difficult situation, which we study here, is that in which the sequence
(u) only remains in a bounded subset of L:(f). We may surely extract a weakly
convergent subsequence, but we do not have any classical argument that allows us to
pass to the limit in F(V) for the corresponding subsequence. Indeed, for the conver-
gence of the scalar product of two sequences in L2([), we classically need strong
convergence for at least one of them.

Several aspects of this situation arise in homogenization. Let us point out two
particularly interesting aspects:

(1) u is some derivative of a function v (i.e., u =Ov/Ox) that is the solution
of a boundary value problem considered in the framework of homogenization, and
the sequence (v) is bounded in H(fl) (see 6). In general, this is typical of the
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WEAK CONVERGENCE AND HOMOGENIZATION 609

so-called regular homogenization problems; that is, the class of the homogenization
problems associated with a formal expansion (of the solution) of the type

(1.1)

where the leading term Vo, which does not depend on the local variables y-x/e,
"ignores" the local effects.

For the study of convergence, i.e., lim v v0 as e $ 0, which is one of the main
objects in homogenization, we possess a method, the so-called Energy Method (see
[i], [9]), that solves most of the problems of the above type. However, it does not
exhibit the weak limit of the gradient Ov/Oxi, i- 1,..., N (that is, concretely, the
local behaviour of v), which is interesting from the physical point of view.

(2) u is the solution of a boundary value problem whose formal analysis (in the
framework of homogenization) is based on an asymptotic expansion of the type

with a leading term depending on the local variables y x/e. The leading term is
affected by the local effects and, consequently, there is no hope of extracting a strongly
convergent subsequence from (u). Here, the Energy Method becomes inoperative
and, to our knowledge, there is no systematic way of proving convergence for related
homogenization problems, referred to as singular homogenization problems (see [4],
[5], [7, Chaps. 7, 8] for typical examples of this). Although we do not consider that
question in this work, we believe the study of singular homogenization problems
requires an appropriate approach that should be based on an extensive analysis of
functionals of the type

Our basic result is the proof of a convergence theorem for the functional F()
aN u(x)(x, x/e) dx (u having its support in a fixed compact set) under the weaker
hypothesis that the sequence (u) remains bounded in L2. There is no need to assume
the possibility of extracting a strongly convergent subsequence.

Next, based on the above result, we give a complete justification of the use of
multiple-scale asymptotic expansions (such as 1.1 or (1.2)) in the theory ofhomogeniz-
ation: Assuming that u L2(fl), with u bounded in the L2 norm, Theorem 2 gives
the leading-order approximation to u (in (1.2)). If u lies in HI(fl) and is bounded
in the H norm, Theorem 3 gives the next-order approximation to u. Theoretically,
the higher-order approximations are naturally given by similar theorems provided that
u H2() with u bounded, u H3() with u bounded,.. however, that is quite
labourious.

Finally, we propose an alternative way of proving convergence in homogenization.
Our approach is carried out on a classical problem (to arrive at a correct understanding
of a method, we prefer to start with a classical example). Nevertheless, we anticipate
that its flexibility and its "spontaneity" make it more adaptable for unusual problems
than the often very fastidious Energy Method. Indeed, the reader familiar with the
so-called natural multiple-scale asymptotic method [1] will easily realize that our
approach is nothing but its mathematical version. Furthermore, as we shall see in 6,
our approach exhibits the local behaviour of the solution. This is not accessible to the
Energy Method, whose basic ingredient is strong convergence.
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610 GABRIEL NGUETSENG

This paper is organized as follows. In 2 we present some general notation and
preliminaries. Section 3 is devoted to our basic result, the case of the whole space RN.
In 4 we give a more pragmatic version (in view of the theory of homogenization) of
the above result, which takes into account more realistic test functions, in 5 we prove
a convergence theorem for the gradient Ou/Oxi, i= 1,..., N (i.e., for a functional
F() with Ou/Oxi in place of u). In practice, such a result furnishes the next term
(i.e., Ul(X,X/e) in (1.2)) in the asymptotic expansion of the solution u, while the
leading term is given by the theorem in 4. Thus, the use of multiple-scale asymptotic
expansions of the form (1.2) (or (1.1)) is rigorously justified in homogenization.

Finally, in 6, we present a new approach for the mathematical analysis of
homogenization problems.

We will be concerned solely with vector spaces over R although our result and
arguments are still rigorously valid in the complex case--providing some minor
modifications are made. The only measure considered in this work is the Lebesgue
measure.

2. General notation and preliminaries. Let ON(Nc,N->I) be the N-
dimensional Euclidean space. Points inN are denoted by x (xl, , x) (the global
variables) or y- (Yl,"" ", Y) (the local variables related to periodicity). The cube

Y=]0,1[=]0,1[x...x]0,1[ (Ntimes)

is considered in the system of the local variables, with closure ’-[0, 1]s.
By a Y-periodic function we mean a function on N that is periodic with period

Y (i.e., with period 1 in each variable yi).
Generally speaking, if E is a set (e.g., or any open set in Rv), we denote by

C(E) the space of continuous functions on E, by J[(E) the space of those functions
in C(E) with compact suppos (contained in E), and by (E) the subspace of [(E)
made up of C functions.

In connection with the periodic structure, let us introduce some specific spaces.
Cp() (or, for simplicity, Cp) denotes the space of functions w C(), w

Y-periodic.
L(s) (or L) the space of Y-periodic functions in Lo(), which is a Hilbe

space with the norm

w w[ dy
Y

Y{(IN; L2p) the space of continuous functions on (the Euclidean space of the
variables x) with values in Lp and having compact supports.

L:( :Lp) the space of measurable functions u(x, y) on l xN such that for
almost all x the function y --> u(x, y) belongs to L, and [.R" Y lu(x, y)12 dx dy <. We
endow this space with the norm

1/2

lu(x, y)12 dx dy

L2(RN Lp), thus equipped, is a Hilbert space.
Finally, y((N Cp) denotes the space of continuous functions on with values

in Cp and having compact supports. We provide the vector space Y’(N; Cp) with its
natural topology: the inductive limit topology determined by the spaces {r (N; Cp)
(K ranging over the compact subsets of [N), where

{:(’, Cp) { c (’, Cp)’, supp K}
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WEAK CONVERGENCE AND HOMOGENIZATION 611

is a Banach space with the norm

I1 11 sup sup
xK (x,y)N xlN

(note that Cp, provided with the L norm, is a Banach space).
In 3 we will need a very useful result from Bourbaki [2, Prop. 5, p. 46]: Let

Y(N)(R)Cp denote the subset of ff{(s; Cp) consisting of all functions of the form
v@ w (@ denotes the tensor product), v (respectively, w) ranging over a finite subset

of () (respectively, Cp). Then {(S)@Cp is dense in ff{(; Cp).
Finally, for fuher needs, let us keep in mind the well-known result that asses

that ff{(; Cp) is dense in L2(; L).
In the sequel we will put, for simplicity,

c.).
3. Basic result. A convergence theorem. In all that follows, e, with e > 0, denotes

a real sequence destined to tend to zero, and Ko is a fixed compact set in N (Ko does
not depend on e). Next, we introduce L:o(), the space of all functions in L:Z(N)
having their (compact) supports in Ko.

3.1. Statement of the theorem. Idea of the proof.
THEOREM 1. Let u L2Ko(RN). Suppose that there exists a constant c > 0 such that

(3.1) Ilu[It.2--< c for any e.

Then there exist a subsequencefrom e, still denoted by efor simplicity, and afunction
Uo in L2(IN; Lp) such that

(3.2) Iau(x)(x,)dxIaN Y
Uo(x,y)(x,y)dxdy

as e 0, for all in
Remark 1. Instead of the cube Y ]0, 1[ u, if we consider a parallelepiped Y

s ]0, ai[(ai>0), Theorem 1 remains valid provided the right-hand side of (3.2) is
multiplied by 1/I YI (1YI measure of Y).

We now give the idea and the main steps of the proof. The first step is to show
that a subsequence (still denoted by e for simplicity) can be extracted from e such
that for w Cp the sequence uw converges in L2-weak as e $ 0, where w (x) w(x/e).
Thus, given a function w in Cp, there will exist Zw in L2(R) such that, as e + 0,

(3.3) f uwvdx zwvdx for all

Next, our task is to extend (3.3) (with the same subsequence e) to all functions
in yCp (see 2 for the definition of Y’p). Indeed, note that the integrand on the left of
(3.3) is nothing but u(x)(x, x/e) with (x, y)= v(x)w(y). It is then reasonable to
hope that (3.3) could be generalized to all functions in Yfp. To this end, we first establish
that for any in Y{p a real number Fo() exists such that

This will be obtained from (3.3), because Y(N)(R)Cp is dense in Y(p (see 2).
Finally, the last step is devoted to the characterization of the right of (3.4).

3.2. First convergence result. Our goal in this section is to obtain (3.3) for any w
in Cp. To begin, let us establish two elementary (but fundamental) lemmas.
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612 GABRIEL NGUETSENG

LEMMA 1. Let Ko be the above compact set. Fix r>0 and set H=
{x RN’, d(x, Ko) < r}, where d denotes the Euclidean metric. Thenfor e < eo (eo a suitable
constant) there exist a natural number n (depending on e and afinitefamily e Y+ ki), 1 <-_
i<= n, with ki 7IN (7/ is the set of all integers) such that

(3.5) Ko c e( + k,) H.
i=l

Proof. For arbitrarily fixed e, we may express RN (the space of the variables x)
as the union of all the e "+ k), k 7/N. Since Ko is compact, a finite family e "+ k),

1, , n, exists such that Ko intersects each e( Y+ ki) and Ko is contained in their
union.

Now, for each i(l<-i<-n), let xe(Y+ki). Then d(x, Ko)<=
d (x, e( Y+ k) f’) Ko) -< diam e( Y+ k) e diam Y (diam denotes the diameter). Hence,
by putting eo r/diam Y it follows that for e < eo the union of the sets e(Y+ k) is
contained in H, which completes the proof.

LEMMA 2. There exists a constant Co> 0 such that for e < eo (eo is the constant in
Lemma 1) we have

for all u in LEro(R) and all w in Lp.
2Proof. Let u L:0(Rs), w Lp. By H61der’s inequality we have

u(x)w dx _-<llull = w dx

Next, by the preceding lemma, let e(Y+ k) (1 =< i=< n) be a finite family satisfying
(3.5) for e < eo. Then

IKo i=1 (Y+ki)

2

By change of variable, x e(y + k), and use of periodicity we have

Ie( Y+ki)
dx e I w(y)l dy.

Y

It follows that

IKo 2

But, thanks to (3.5) we have en =meas (.J
i=1 e( ’+ k)=<meas H (note that n depends

on e), from which the conclusion follows (with, e.g., Co (meas H)l/2).
Remark 2. For e < eo we have

IKo 2

dx Vw L.

As an immediate consequence of Lemma 2, we have the following proposition,
which plays an essential role throughout the rest of this section.
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WEAK CONVERGENCE AND HOMOGENIZATION 613

PROPOSITION 1. Letf Lo(RN) (fmay or may not depend on e). Then for e < Co,
a unique function f LEp can be assigned to f such that

f(x)w dx= f(y)w(y) dy Vw in Lp,
y

Remark 3. The correspondence ff defined above is linear.
We are now in a position to prove the main result in this section. First, we must

give some notation used frequently in the sequel.
Given w in L we denote by w the e-periodic function in Lo(u) defined by

(3.6) w(x) w().
Also, if p we put

(3.7) ’(x) (x, ).
It is clear that yt.(v). Moreover, if the support of is contained in K (a compact
subset of ), then the support of lies in K for any e.

The aim now is to prove the following proposition.
PROPOSITION 2. Under the assumptions of Theorem 1, a subsequence (still denoted

by e) can be extractedfrom e such thatfor any w in Cp w independent ofe), the sequence
uw converges in L2-weak as e , O.

Proof (i) We begin by fixing a (nontrivial) function a in ([u), a independent
of e. Next, fix x inu and consider the function s -->f(s) a(x- s)u(s), which belongs
to L:o(l u). By Proposition there exists, for e < Co, a unique function y --> z (x, y) in

L such that for any w in L we have

that is,

a(x-s)u(s)w(s) ds= I z(x, y)w(y) dy,
y

(3.8) [(uw) * a](x)= | z(x, y)w(y) dy,
Y

where denotes the convolution product.
Moreover, again by Proposition 1, we have

(3.9) IIz (x, <c0 l (x-s)u (s)l= ds

Observe that the function (uw) a lies in () and has its suppo in a compact
set that does not depend on e.

Thus, by (3.8) (valid for all x) we assign to u (for e < Co) a unique function
2x z(x) [i.e., x z(x,. )] from u to Lp, with (3.9).

(ii) For fuher needs we now study a few useful propeies of the function z
thus constructed. To summarize, let us show that z L2( u’, L). It suffices to check
that z (u; L) (see 2 for notation). Clearly the function z has compact suppo;
then it remains to show continuity. For this, fix x in u. Let h. Consider the
function s [a(x + h s) a(x- s)]u(s), which lies in Lo(U). If we replace in (i)
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614 GABRIEL NGUETSENG

the function s a (x s)u (s) by the above function, the associated analogue of z (x)
is, according to the above process, exactly z(x+h)-z(x) (see Remark 3). Hence,

I[z(x+h)-z(x)llL2(y)<-_Co ,[a(x+h-s)-a(x-s)12lu(s)]2ds
which is the analogue of (3.9). Observing that the right-hand side is majorized by
CCo sup ]a(x+ h-s)-o(x-s)] (c is the constant in Theorem 1) and, fuahermore, a

being uniformly continuous on s, we deduce that IIz(x+ h)-z(x)ll=( clhl, for
all h , which shows continuity.

Thus, z L2(; L). Fuhermore, by (3.9) we have

(3.10) z =( c (c > 0) < o
(where the constant c does not depend on e).

(iii) Finally, by (3.10) we can extract a subsequence from e, still denoted by e,
such that z z in L2(s’, L)-weak as e0. Therefore, for each v ff{(s) and each
w L we have

e(x,y)w(y)v(x)dxdyz(x,y,w(y)v(x)dxdy,g
so that, using (3.8) combined with Fubini’s theorem, we have

From now on, e denotes exclusively the subsequence extracted above. By (3.11)
we finally show that for each w in C, the sequence uw converges weakly in L(N)
as e 0 (that is, e is the desired subsequence in Proposition 2). For this purpose, let
w be arbitrarily fixed in C. Since w e L, we have uw e L. Fuhermore, we evidently
have I1 I1 c (c > 0), for all e. Therefore, we can extract e’ from e such that

(3.12) u,w’ z in L-weak as e’0,

so that, the transformation v v * being continuous from L into itself,

I [(u’w’)*a]vdx f (Zw *a)

for all vY{(u). By comparison with (3.11) we necessarily have

(3.13) (Zw * a)(x)= [ z(x, y)w(y) dy a.e. in

Now, since w is the same function as in (3.12), let e" be another subsequence
from e such that u,,w" z in LZ-weak as e"+0. Following the above process once
more, we obtain

(3.14) (z a)(x)= f z(x, y)w(y) dy a.e. in

By subtracting (3.14) from (3.13) we have

(3.5) (z-Zw),=o

from which it follows that z Zw. Indeed the distributions (represented by the L
functions) a, z-Zw (respectively) have compact suppoas, i.e., they lie in ’(u), the
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WEAK CONVERGENCE AND HOMOGENIZATION 615

subspace of ’(RN) formed of distributions having compact supports. But, since the
vector space ,(RN) endowed with the convolution product is an algebra without zero
divisor (see [8]), (3.15) implies Z’w-Zw =0.

We have just established that for any subsequence e’ such that u,w’ converges
weakly in L2, the corresponding limit does not depend on e’. That is, the sequence
uw converges weakly in L2. The proof is complete. []

3.3. Extension of the first convergence result. Here and throughout the rest of 3,
e denotes the subsequence involved in Proposition 2. Then, by that proposition, a
unique function Zw L:z is assigned to each w in Cp such that (3.3) holds. In other
words, if we put

(3.16) (x, y) v(x)w(y) for V fff(N) and w Cp

and Fo()= zwvdx, we have n udxFo() for any in Y(p of the form
(3.16) (see (3.7) for the definition of ’). This property is, clearly, what we call the
first (or primitive) convergence result.

The aim in this section is then to extend the above property to all of Y{p.
LEMMA 3. Let be fixed in ?Tfp ( independent of e). Then the sequence e-

au dx is Cauchy.
Proof Let Y{p. Let r/>0. Since the set Y{(RN)(R)Cp is dense in Y(p (see 2),

there exists some , in Y{p, , =. v(R)w [v y{(RN), w Cp], with I finite, such
that the supports of both and , lie in a fixed compact set K = RN that depends
only on , and

(3.17) suaP
where c is the constant in (3.1).

On the other hand, we evidently have for all e

(3.18) sup I(x)-(x)l sup II(x)-(x)ll.

Now, consider el, e2, destined to decrease independently. By a routine technique
we have

Uete dx

U,aI .
But (3.17) combines with (3.18) to give

l’ u.(xlt;’-’) dx

Hence

2 dx

-_<- for i= 1, 2.

u2qt2 dx-
[N

elIelr/ dx
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616 GABRIEL NGUETSENG

Now, thanks to Proposition 2 we observe that for v in ’/’(RN) and w in Cp the sequence
eaN uvwdx is Cauchy. Therefore, since aNUdx=Y,,RNUV,WT, the
sequence e jan u, dx is Cauchy as a finite sum of Cauchy sequences. So we have, dx[ 0 as el , 0 and e2, 0, and the conclusion follows from
the arbitrariness of r/.

This brings us to one of the central preliminary convergence results in this work.
PROPOSrrION 3. For any 7(p ( independent of e) there exists a unique real

number Fo() such that

as 0.

3.4. End of the proof. Characterization of Fo. The aim in this section is to show
that the above transformation -> Fo() is the restriction to ’/’p of a continuous linear
form on L2(RN ’-L,). More precisely, we must check that there exists a unique Uo in
L2(R’, L2p) such that

Fo() f Uo(X, y)(x, y) dx dy V in ff{p.
Ny

Since /’p is dense in L(; L2p) and the transformation Fo() is linear, it suffices
to establish that there exists a constant c > 0 such that

(3.19) IFo()l =< cll]]t.,aN Y V in ’/’p.

In this connection, fix in Y’p ( independent of e). Then dx] 
c($o I,1= dx)/ for all e, where c is the constant on the right of (3.1).

By Proposition 3 and the fundamental property

Ko Kox Y
I (x, Y)[ dx dy as e $0 (see 1),

assertion (3.19) follows immediately. The proof is complete. I-!
Remark 4. The function Uo has its support in the set KoxS (or Ko, if Uo is

regarded as a function from R to L).
4. The leading-order approximation. A convergence theorem. In what follows,

denotes a bounded open set in the Euclidean spaceN (of the variables x, , x), ll
independent of e. We denote by 7/’(fl; C,) [respectively, fff()] the set of all restrictions
to of functions in ff{p [respectively, {()]. We also introduce the space L2(O; L),
which is a Hilbe space with the norm

[[u[l,) lu(x, y)l= dxdy

The aim in this section is to establish the following theorem.
THEOREM 2. Let u L2(I). Suppose that there exists a constant c > 0 such that

(4.1)

(4.2)

Then a subsequence (still denoted by e) can be extractedfrom e such that, letting e $ 0,

u,t dx --, uo(x, y),t,(x, y) dx @
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WEAK CONVERGENCE AND HOMOGENIZATION 617

in 0f(l); Cp), where Uo L2(I-I; L2p). Moreover,

(4.3) uvw dx--> Uo(X, y)v(x)w(y) dx dy Iv
1 xY

2in ?K(II) and all w in Lp.
Proof Property (4.2) is straightforward by Theorem 1 and Remark 4. As for (4.3),

we begin by taking in (4.2) test functions of the form (x, y)= v(x)w(y) with v
Y((12), w Cp. We obtain as e $ 0,

(4.4) u,vw dx --> Ia Uo(X, y)v(x)w(y) dx dy
xY

for all v Y{(fl) and all w Cp.
2 2Next, we must extend (4.4) to all functions w in Lp. Fix v in Y’(I)) and w in Lp.

Let (wn) be a sequence from Cp (dense subspace of L2p) such that w,--> w in L2p as
2n--> oz. Utilizing the fact that the transformation z--> z is continuous linear from Lp

to L2(12) (see Remark 2), we have

(4.5) IIwZ- CollW -
(Co and eo are the constants in Lemma 2 with Ko l-l).

Now we write

Ve<eo

(4.6)

and estimate each of the first two integrals on the right-hand side separately (use (4.5)).
This yields

IJe VWe dx Ii Y
UoVW dx dy

UeVWe dx InY UoVW. dx dy

for all n and all e < eo (where c is constant with respect to both e and n).
Finally, let r/> 0. Choose in (4.6) the natural number n so that ClllW,-

Then letting e $ 0 and using (4.4), it follows that the limit of the left-hand side of (4.6)
is bounded from above by r/. The desired conclusion then results from the arbitrariness
of .

Remark 5. Let u be as in Theorem 2. First, let us observe that, by weak compact-
ness, we may assume that in addition to (4.2) and (4.3) in Theorem 2, the subsequence
e satisfies the following property.

There exists u e L(fl) such that u --> u in L2(fl)-weak. Next, taking w 1 in (4.3)
we easily obtain u(x)=y Uo(X, y) dy (u is the mean value of Uo). It follows that Uo is
(uniquely) expressible in the form

Uo(X, y) u(x) + o(X, y) with f o(X, y) dy O.
Y

f. uvw dx f. UoVW dx dy

-w,) dx+ UoV(W, w) dxdy
xY

+ f. uevw. dx f. r
Uovw. dx dy
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618 GABRIEL NGUETSENG

So assume there is a subsequence from (u) that converges strongly in L2(-) as
e $ 0. Then an easy computation yields o-0; that is, the leading term Uo in (1.2) does
not depend on the local variables y. In other words, if the leading term depends on
y, i.e., to 0, then (u) never contains a strongly convergent subsequence (see 1).

5. The next-order approximation. A convergence theorem.
5.1. Notation and preliminaries. We denote by C the subspace of Cp formed of

C functions, Hp the subspace of L2p formed of functions w such that Ow/Oy, L2p for
1,. ., N (the derivatives obviously being taken in the distribution sense).
We provide H with the norm

Ilwll,,’(  Ilwll  (  +
Lz(y)

which makes it a Hilbert space.
Sometimes it is more convenient to consider, instead of H, its closed subspace

1.eH, wdy=O

on which the norm

i-- L2(Y)

is equivalent to the above H-norm.
We will need the following lemma.

N
fiwi dy 0 for allLEMMA 4. Let f=(f),fL2p(l<-i<-N). Assume that i=Y

w=(wi) in (C)N such that div w-0 (where div w= Ow/Oyi). Then there exists a
unique function q Hlp/R such that f Oq/Oy for 1,. , N.

Lemma 4 is the "periodic version" of the well-known result concerning the
solvability of the equation grad q =f for f given in (Loc) N (see, e.g., [10]). See, e.g.,
[6, Appendix] for the proof.

5.2. A convergence theorem (next-order approximation). We are now in a position
to prove the main result in this section. In what follows, denotes a smooth bounded
open set in R (f independent of e). As in the preceding sections, e (e > 0) denotes
a sequence tending to zero.

THEOREM 3. Let u H(f). Suppose that there exists a constant c > 0 such that

(5.1)

Then a subsequence (still denoted by e) can be extracted from e such that, as e $ 0,

(5.2) u --> u in H(fl)-weak,

(5.3) Ouvdx--> (x)+ (x, (ylv(x) dxdy,
OXi Y

Y

i= 1,’.., N; for all in L2p and all v in Y{(,), where u L2(fl; Hp/).
Proof By virtue of (5.1) we can extract a subsequence such that (5.2) holds.

Moreover, by Theorem 2 there exists z L2(fl; L), 1-< N, such that

(5.4) Ouvdx z(x,y)(y)v(x) dxdy as e0
OXi xv

2for all in Lp and all v in X().
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WEAK CONVERGENCE AND HOMOGENIZATION 619

It remains to show that there exists U E L2(; Hp/I) such that

zi(x, y)=xi (X) (x, y) fori=l,...,N.

So let () be a vector function in (C) satisfying div 0. Then for v in (fl)
we have

NBy Leibniz’s formula and the fact that div =0 (note that E= O/Ox 1/e(div ))
it follows that

i=l OXi

By the Rellich theorem we may assume that the above subsequence e satisfies the
fuher propeay

u, u in L2()-strong,
so that, letting e $0 and recalling (5.4), we obtain

i=l xY

for all e (C), dive=0, and all ve N(). Hence we have for almost all xe

,.= z(x, y)- (x) *(y) dy 0 for * e (C), div * 0.

It follows by Lemma 4 that there exists a function u from to H/N such that

Ou OUl(X)
a.e. ina(i=l,.’.,N).(5.5 

Finally, from (5.5) we can easily show (e.g., by Lusin’s characterization [3]) that
u is a measurable function from to H/N (obtained from appropriate norm defined
in 5.1). Furthermore, again by (5.5) we have

and the conclusion follows.

6. A new approach in the theory of homogenization. Classically, the mathematical
analysis of homogenization problems proceeds in two steps [1]. The first step, which
is formal, derives, for example, from two-scale asymptotic expansions of the form

X
u(x)= uo(x, y) + eu(x, y) +. y=-,

E
(6.1)

Uo, U,-’’, Y-periodic in y.

More precisely, we postulate that the solution u of a given problem (associated
with a partial differential equation with coefficients e-periodic) is similar to (6.1). Next,
introducing (6.1) into the given problem yields a sequence of problems that determine
/’/0, /’/1,
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620 GABRIEL NGUETSENG

The second step consists of rigorously proving the convergence of the preceding
homogenization process, i.e., we must find some suitable topology in order that
lim u u0 as e 0. This validates the above formal calculations.

In this last section we propose an alternative approach. More precisely, we
introduce a new asymptotic method for the mathematical analysis of homogenization
problems. The method is quite straightforward. There is no need to postulate the
existence of the functions Uo, ul in (6.1), since by Theorems 2 (or 1) and 3 such
functions are available for a suitable subsequence from e.

Our approach is illustrated by a regular homogenization problem. Nevertheless,
the basic ideas can easily be extended to problems of the singular type.

6.1. Setting of the problem. In all that follows, unless otherwise specified, the
summation convention is used.

Let 12 be a smooth bounded open set in RN (the space of the variables xl, , XN)
with boundary 0f. Let aij (1-<_ i,j <= N) be given functions defined on RN (the space
of the variables Yl," , YN) and subject to the following conditions:

(6.2) au L, au Y-periodic, au aj.

There exists a > 0 such that the following holds for almost all y"

(6.3) a(y): _-> c [:1 V:= ()

(where the summation convention is utilized) with
Finally, let f L2(f), and for each e >0 let u be defined by

ue nl(),

(6.4)
0 (Ouau =f in f
Ox Oxj /

u 0 on 01

where a(x)=au(x/e) (see (3.6)).
Clearly, from (6.2) (the first assumption) and (6.3), we see (6.4) uniquely deter-

mines u.
Our aim is to find lim u as e $ 0. In other words, we must study the homogenization

problem associated with (6.4). Note that this problem has been solved in [1], where
the results of the formal analysis were made rigorous by applying the Energy Method.
As mentioned in 1, we propose an alternative approach that should be more flexible
and thus more adaptable for the study of unusual problems.

6.2. Description of the method. First, observe that u, the solution of (6.4), satisfies

(6.5)
uH(f),

dx= Inj’zdx Vve H(,.Q).

Next we estimate [lu Taking the particular test function v u and using
the boundedness and the coerciveness (from (6.3)) of the bilinear form in (6.5), we
obtainD
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WEAK CONVERGENCE AND HOMOGENIZATION 621

Hence, the hypotheses of Theorem 3 are fulfilled. We can extract a subsequence still
denoted by e for simplicity such that

(6.6) uu inHo(f)-weak ase$0

and, for all W L, v Y{(I)),

(6.7)
Ou.vdx (x)
Ox y +-y (x, y) (y)v(x) dx dy,

j=l,’’ ",N,

where u L2(f; HIp/R).
Derivation ofthe local problem. In (6.5) we take test functions of the form v ew%h

with wHp, (fl). Then, noting that Ow/Oxi=l/e(Ow/Oyi), where of course
(Ow/Oy,)(x)=Ow/Oyi(x/e), we are led to

Ia u--- () Ia u--- w 4’ dx e Iafw4’ dx"a ij
Oxj

49 dx + e a Ox Oxi

Now we propose passing to the limit as e 0. It is easy to check that both the
second term on the left and the term on the right tend to zero. Hence,

a Ox
CdxO.

On the other hand, choose in (6.7) ao(Ow/Oyi) (summation) with w e H. By
the above result we are finally led to

v
a(Y)

Ou

(x)+-y (x, y) (y)(x) dx dy 0

for all w Hp and all fi(l-l). Hence the following holds for almost every x in f"

(6.8) f [ (x) +Ou, lOWY (x,y) (y) dy=O VweHp.

Equation (6.8) is exactly that obtained by the formal method using multiple-scale
asymptotic expansions (see 1 ]). It associates with the relation u(x, ) Hp/l to give
the so-called local problem, which permits us to express u in terms of u. Evidently
u satisfies, for fixed x,

(6.9)

.)

ou f ow
-Oxj (X)

Y
ao dy Vw e,l

which is an elliptic variational problem for u(x, ), admitting one and only one solution.
We should stress that, contrary to the classical method, the resolution of the above

problem does not concern us since u has been constructed in Theorem 3. We only
observe that u is unique (i.e., independent of the subsequence extracted above) as
soon as u is well determined.
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622 GABRIEL NGUETSENG

by

(6.10)

Now we calculate u in terms of u. Following [1], let X (j 1,. ., N) be defined

f OX Ow
akh

V Oyh Oyk

Ow Hp
dy= ady Vw.

y Oyk

Then, from the preceding remarks, we see that u is given by

(6.11) u(x, y)= -Oxj (x)xJ(Y)"

Indeed, the function on the right-hand side is the solution of (6.9).
Remark 6. It is not difficult to verify that the equation in (6.10) can be written

under the form

(6.12) a(x y, w)=0 Vw Hlp/R

where a(.,.) is the bilinear form that figures in (6.10), and yj( l <-j <- N) are the
coordinate functions.

Derivation ofthe global (or limit) problem. The point now is to derive the boundary
value problem satisfied by the global limit u. This is straightforward. Choose in (6.7)
the particular function ai, and in place of the v’s consider the derivatives Ov/Oxi,
with v 2(fl). Hence, summing over i,j on both sides of (6.7) and using (6.5) yields

I aj(y) [ Ox (X) +OUl ] Ov

Y -y X, y -xi X dx dy fv dx,

which by (6.11) becomes

tij aih
OX------ dy O__U_U O___v dx fv dx

where , g ao(y) dy. But it is easy to check that

a, a,, dy a (y,. x y).
Y Oyh

On the other hand, by (6.12) we have easily that -a(yi, x-yj)=a(x’-Y,,X-y)
(note that the form a(.,. is symmetric). From all that we deduce the problem for u:

uH(),
(6.13) Ia Ou o_ ax= I.fvax VvH(),qo

Oxj Ox

where

(6.14) q a(x’-Y,, XJ- y).

The constants q are the so-called homogenized coefficients. They satisfy the
ellipticity condition

qiji >- cll=(c > 0) v Rv (see [1])
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WEAK CONVERGENCE AND HOMOGENIZATION 623

SO that u is uniquely determined by (6.13). Consequently, the subsequence e in (6.6)
and (6.7) may be replaced by the whole sequence from which it was extracted.

Thus, we have proved the following homogenization theorem.
THEOREM 4. For each e > 0 let u be the solution of the boundary value problem

(6.4). Then, as e $ O,

(6.15)

j 1,..., N, for all q L2p and all v {(), where u is the solution of the boundary
value problem

Oxi
qij f in f

u =0 on

qo given by (6.14), and xk(k 1,’’ ", N) given by (6.10).
Remark 7. The usual homogenization theorem [1], [9] does not involve (6.15).

This property obviously follows from (6.7) and (6.11).

6.3. Concluding remarks. We have just proposed a new asymptotic method for
the mathematical analysis of homogenization problems. The method is straightforward
and quite natural. Note that, although we have chosen a problem of the regular type
for a detailed analysis, our approach is essentially based on Theorem 1, which requires
only the weaker assumption that u remains bounded in L2. So it is reasonable to
assume the above idea can be successfully extended to a more general situation involving
problems of the singular type.
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