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HETEROGENEOUS MULTISCALE METHODS
FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS

BJORN ENGQUIST AND YEN-HSI TSAI

Abstract. The heterogeneous multiscale methods (HMM) is a general frame-
work for the numerical approximation of multiscale problems. It is here devel-
oped for ordinary differential equations containing different time scales. Sta-
bility and convergence results for the proposed HMM methods are presented
together with numerical tests. The analysis covers some existing methods and
the new algorithms that are based on higher-order estimates of the effective
force by kernels satisfying certain moment conditions and regularity proper-
ties. These new methods have superior computational complexity compared
to traditional methods for stiff problems with oscillatory solutions.

1. Introduction

We consider stiff ordinary differential equations (ODEs)

(1.1)
duε

dt
= fε(uε, t),

where uε : R
+ �→ R

d, and assume that the eigenvalues λ
(j)
ε (t) of the Jacobian of fε

satisfy the following conditions for t ≥ 0: 1) Reλ(j)
ε ≤ C1, 1 ≤ j ≤ d; 2) there is

k0 ≥ 1 such that |λ(j)
ε | ≤ C2, for 1 ≤ j ≤ k0 ≤ d and C3 ≤ ε|λ(j)

ε | ≤ C4, for k0 <

j ≤ d; here C1,C2, C3, and C4 are constants; 3) minj1,j2 |λ
(j1)
ε (t)−λ

(j2)
ε (t)| > ρ > 0,

j1 ≤ k0 and j2 > k0.
A linear equation of this sort can be written as

(1.2)
duε

dt
= Aε(t)uε + φ(t),

where

Aε(t) = S(t)
(

ε−1AI(t) 0
0 AII(t)

)
S−1(t),

S, S−1, AI and AII are bounded independent of ε, |σ(AI
ε )| > δ > 0, Re(σ(AI

ε )) ≤ 0,
and |dφ/dt| is bounded independent of ε.

We will also consider the nonlinear model system uε(t) = (x(t), y(t)) that takes
the form:

(1.3)
{

εẋ = fI(x, y, t),
ẏ = fII(x, y, t),
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1708 BJORN ENGQUIST AND YEN-HSI TSAI

where fI and fII are smooth functions. We call y the slow variable of the system.

1.1. Description of methods. The numerical methods that we shall discuss in
this paper are devised under the HMM (Heterogeneous Multiscale Methods) frame-
work [6]. We first present the general structure of the proposed methods and then
relate them to other existing work.

Assume that there exists an “effective” system

(1.4)
d

dt
U = f̄(U, t),

that is derived from (1.1) as ε converges to 0, such that the partial derivatives
of f̄ are bounded independent of ε. Our methods construct solutions to (1.4) by
evaluating the right-hand side of (1.4) “on the fly” via numerical solutions to (1.1).
The explicit form of f̄ is not used in the algorithm, and the precise definition for
(1.4) may depend on the explicit forms of (1.1) and on different applications.

For example, in the linear constant coefficient cases of (1.2), if

AI =
(

−α 0
0 iβ

)
, α > 0, β ∈ R\{0},

and
AII = γ,

then

f̄ = S

⎛
⎝ 0 0 0

0 0 0
0 0 γ

⎞
⎠ S−1 + S

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ S−1φ(t).

In nonlinear examples, the “effective” equations may come from averaging [1],
[2]. In the examples discussed in this paper, U has the same dimension as uε,
and its components are the strong or weak limits of those of uε. In more general
settings, U does not have to be in the same space as uε.

A generic HMM method is described by the scheme (macro-solver) used to solve
(1.4) for U , and another scheme (micro-solver) used to solve (1.1) for evaluating
the missing data; i.e., the effective force f̄ . This structure is best illustrated by
Figure 1.1: the upper directed axis represents the grid imposed by the macro-
solver to hold the values of U , and the lower axis contains the finer grids on which
the solutions of (1.1) are constructed by the micro-solver, with initial conditions
uε,n(tn) determined from the grid values of U . The downward pointing arrows
symbolize the determination of uε,n(tn) from U at tn. The upward pointing arrows
relate the evaluation of f̄ to the time history of microscale variables uε,n(t) and the
forces fε(uε,n(t)) that are obtained from each micro-grid on the bottom axes. This
evaluation is accomplished through averaging with a compactly supported kernel
K. We present the theory of kernels in Section 2.

A basic algorithm can be summarized by the following steps:
(1) Force estimation:

(a) At T = tn, u0 = Un.
(b) Solve

duε,n

dt
= fε(uε,n, t), uε,n(tn) = u0,

for t ∈ [tn, tn + η].
(c) Averaging: f̄(tn) ∼ f̃(tn) = K ∗ fε(uε,n).
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T=tn+1T=tn

T=tn tn+η

1(a)

1(b)

1(c)

Step 2

Figure 1.1. A basic HMM ode solver schematics

(2) Evolve the macro variables: compute Un+1 at T = tn+1 using {U j}n
j=0 and

{f̃(tj)}n
j=0.

(3) Repeat.
As an example, a generic HMM multistep method can be arranged in the following
form:

(1.5) a0U
n+a1U

n−1+· · ·+akUn−k = H(b0f̃(Un)+b1f̃(Un−1)+· · ·+bk f̃(Un−k)),

where f̃ is computed by

(1.6) f̃(Un, tn) =
2m∑
j=0

hK(tn, tj)fε(Sh(tn, tjn)Un, tjn),

where tjn = tn + jh, and Sh(t0, t1) is the discrete solution operator defined by the
micro-solver. Here, as well as in the remainder of this paper, we use H and h for
the discrete time steps used in the macro- and micro-grid respectively.

In Sections 2 and 3, we will see that an HMM scheme can be analyzed system-
atically by examining the evaluations of the scheme on the macroscale grid

dU

dt
= f̄(U, t).

The local error of the macroscale scheme contains the local truncation error of the
macro-solver (Step 2) and the numerical and analytical errors of Step 1, i.e., the
local error E = Emacro + EHMM , where

EHMM = |f̄(Un, tn) −H(fε, U
n, tn)|,

and H(fε, U
n, tn) denotes Step 1 of the algorithm. At the end of Section 3, we will

show the complexity of an HMM scheme through balancing Emacro and EHMM .
We call a method HMM-X-y if X-method is used in Step 2 and y-method is

used in Step 1(b). Therefore, HMM-FE-rk4 is a method that uses forward Euler as
macro-solver and a fourth-order Runge-Kutta method for micro-solver. In Section
3, we will present a few standard HMM schemes and discuss their stability in detail.

1.2. Generalizations. We notice from the basic algorithm above that f̄ is ap-
proximated at tn, which is the beginning time of each fine scale calculation in Step
1(b). In Section 2, we show that it is possible to select a kernel K so that f̄ is
approximated at time tn + δt∗. This is a key feature of our proposed algorithm. In
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1710 BJORN ENGQUIST AND YEN-HSI TSAI

many examples of this paper, we choose a kernel that is symmetric with respect
to the center of its support and use δt∗ = η/2. The algorithm of [11] is similar
to the case in which the Dirac delta function is used as the averaging kernel and
f̄ is evaluated at tn + η. We remind the reader that η denotes the length of each
evolution performed in Step 1(b).

Here, we present a more complete algorithmic description below:

(1) Force estimation:
(a) Reconstruction: at T = tn, u0 = RUn.
(b) Solve

duε,n

dt
= fε(uε,n, t), uε,n(tn) = u0,

for t ∈ [tn, tn + η].
(c) Averaging:

(i) Estimate force:

f̄(tn + δt∗) ∼ f̃(tn + δt∗) = K ∗ fε(uε,n).

(ii) Compression:

U∗ = Q[uε,n].

(2) Evolve the macro variables: compute Un+1 at T = tn+1 using {U j}n
j=0,

{f̃(tn)}n
j=0 and U∗, f̄(tn + δt∗).

(3) Repeat.

Notice that Step 1(a) and Step 1(c) are changed a bit from the previous section. In
this paper, the reconstruction operator R will be taken to be the identity operator,
i.e. RUn = Un, and the compression Q[uε,n] = uε,n(tn + δt∗). In [32], we apply the
HMM ODE methods to a class of specific problems for which R is no longer the
identity operator.

There is a benefit in evaluating f̄ at the center of each microscopic evaluation;
it makes it possible to use a symmetric kernel that typically yields more accurate
approximations to the averages. In many problems, such as the ones involving
Hamiltonian systems, it is possible to evolve the given microscopic equation back-
ward in time. In Step 1(b), one can instead obtain uε,n in [tn − η/2, tn + η/2] and
compute f̃ at T = tn. Figure 1.2 illustrates the structure of two such schemes.

In the rest of this paper, we will refer to the steps of the algorithms described in
this subsection.

δt
*

T=tn t +ηn

{

Step 1(c)

(a)

t +η/2nT=tnt −η/2n

Step 1(c)

(b)

Figure 1.2. HMM ode solver schematics.
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1.3. Related work. A detailed review of numerical methods for stiff problems can
be found in the books of Wanner et al [13, 14], and in a review paper [29].

There are essentially two types of stiff problems for which the solutions vary
on the ε time scale (λ(j)

ε = O(ε−1)): one is dissipative with rapid transients
(Reλ(j)

ε < 0) and the other is oscillatory in nature (Reλ(j)
ε = 0). There are two

standard approaches to such problems — numerical approximations and analytic
techniques. Analytical techniques, such as perturbation and homogenization meth-
ods, typically require extensive algebraic manipulations and suffer from a limited
applicability. Our focus will be on numerical approximation methods to which the
main challenges come from the cost associated with maintaining the accuracy and
stability of the approximation schemes for a time interval independent of ε. In
the following, we first briefly review the common methods related to each type of
problem and compare their computational complexities to that of HMM methods.
Finally, we comment on some other approaches that are not easily categorized.

Problems in the first class (Reλ(j)
ε < 0) include, for example, chemical reactions

systems. Implicit methods, such as BDF (backward difference formula) and IRK
(implicit Runge-Kutta), are among the conventional choice of numerical solutions.
There are also special explicit methods with variable step sizes that are designed
to optimize the computation for special types of problems. In [21], Lebedev and
Finogenov proposed an iterative method with variable time steps for dissipative
systems whose eigenvalues cannot be separated into disjoint groups of different
scales. Similar methods can also be found in, e.g., [4] and recently in [11] by Gear
and Kevrekidis for stiff dissipative systems whose eigenvalues are well separated
into two groups. The latter is called the projective integrator method and has been
a source of inspiration for part of our present work.

Many problems in atmospheric science [17], molecular dynamics, biology, celes-
tial mechanics, and circuit simulations fall into the oscillatory class. The complexity
of explicit methods such as the Runge-Kutta or Leapfrog methods requires a step
size of order ε for stability. Hence computing a solution of (1.1) to the final time
T1 requires at least order ε−1 operations. Implicit methods such as IRK or BDF
can achieve optimal complexity for stiff dissipative problems since the ε order step
sizes are only required at transients. However, when these methods are applied to
oscillatory problems, typically convergence requires O(ε−1) time steps.

The methods developed in this paper offer solutions to the oscillatory problems
as well as the dissipative ones. The gain in computational complexity emerges when
the cost of evaluating f̄ (i.e., the total time duration for each micro-evolution at
the lower axes in Figure 1.1) is bounded above by Cε−α for some α < 1. We first
notice that, structurally, our proposed algorithms share similarities to the multi-
revolutionary methods [10, 12, 24], or the quasi-envelope method [28]. In these
methods, f̄ is estimated by following the oscillations for a few periods. However,
these methods are not adequate for problems with unknown periodicity of oscil-
lations that consist of more than one frequency. We shall see in this paper that
the proposed methods do not require precise information of the periodicities of
oscillations, but nevertheless give accurate estimation of f . This comes from our
time-averaging approach with smooth kernels.

The idea of averaging of the forces or the solutions is closely related to some
perturbation techniques; see, e.g., [1, 2]. Computationally, averaging approaches
appeared in many places, e.g., in [27, 34] and [25, 26], and recently in [9] and [22].
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1712 BJORN ENGQUIST AND YEN-HSI TSAI

We present an averaging theory that includes the known moment conditions and
some additional “stiffness reducing” properties of the kernels that result in efficient
computations. In this paper, we develop a theory for which kernels should be used
in the evaluation of f̄ , and how long and how accurate each microscale evolution
should be for a given class of equations, so that the proposed methods become
more computationally efficient and flexible than the other conventional ones. We
study the stability, convergence and complexity of our algorithms. Typically, the
computational complexity for an HMM scheme is O(ε−γH−1) where γ < 1 and H
is the step size for the macroscale variable U .

The HMM technique can also be related to the operator splitting schemes used
in meteorology [3] or to the mollified impulse scheme for Hamiltonian dynamics [9].
Some might even find a resemblance to the multirate methods, e.g. [10] and [22].
However, in these methods, the stiffness that comes from the large eigenvalues is still
resolved in time intervals independent of ε, and thus their computational complexity
is still formally O(ε−1). We point out, however, that some of these methods could
be adopted as micro-solvers under our proposed methods in appropriate contexts.

Recently, Iserles [15] analyzed the accumulation of global error and showed that
a class of “modified Magnus methods” permits larger time steps and exhibits good
long-term behavior for a class of highly oscillatory linear systems. There are also
methods that prepare the initial data such that the effect of the stiffness will not
appear in the solutions. Kreiss wrote a series of papers on stiff ODE systems;
see [18, 19, 20]. These results can be summarized by the “bounded derivative
principle”. However, in many common situations, initial values are given and the
bounded derivative principle cannot be applied.

In the context of solving systems with the unique invariant manifold, the HMM
schemes prepare the initial data naturally as a passive calculation to the effective
force estimation. It is also clear that the method of [11] can also be interpreted
as a scheme that benefits from the bounded derivative principle by following the
transients to project onto the slow manifold.

Finally, for certain classes of singularly perturbed systems, hybrid analytic/
numerical methods [30, 31] and [33] have been proposed using related techniques.
In these methods, an asymptotic expansion in the orders of ε is generated so that
each coefficient is the sum of a slowly-varying function and an oscillating one. The
oscillating part is solved analytically for efficiency.

We point out that our averaging approach is not directly applicable to stochastic
equations. Instead, multiple realizations might be used to speed up the convergence.
We refer the readers to the work of [8, 23] and [7]. There is also a related paper on
the analysis of heterogeneous multiscale methods for ODEs by Weinan E [5]. We
should also point out here that one can generalize the HMM construct to systems
with more than one scale. However, we will restrict our attention to systems with
two scales in this paper.

The rest of this paper is structured as follows. In Section 2, we describe the
framework of our proposed methods, including the theory related to using com-
pactly supported kernels for effective force estimation. In Section 3, we start with
a stability analysis of the simplest HMM ODE schemes for stiff dissipative and
oscillatory problems. This is followed by a more detailed exposition of two major
types of higher-order variants of the simple HMM ODE schemes, namely, the ones
that are built from Runge-Kutta methods and those from linear multistep methods.
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Section 4 contains numerical results of some model problems. These numerical re-
sults confirm the theoretical results that we obtained in Sections 2 and 3. Finally, in
the last section, we summarize this paper and also discuss some additional aspects
of our methods.

2. Approximation of effective force

2.1. Estimation of the effective force. After Step 1(b), uε,n is a known func-
tion, and so we simplify our notation on the forces in this section by writing fε(t)
instead of fε(uε,n(t), t).

In our formulation, we need to estimate the effective force locally at a point
using the microscale data (Step 1(b)-(d)). Motivated by the analytic averaging
techniques, see e.g. [1, 2], we hypothesize that the effective force of a system of
interest can be defined by

f̄(t) = lim
δ−→0

[
lim

ε−→0

1
δ

∫ t+δ

t

fε(τ )dτ

]
.

We assume that f̄ is slowly varying in the sense that

| dp

dtp
f̄(t)| ≤ C for 0 ≤ p ≤ s

for some constant C independent of ε. Our goal in this section is to show that
time averaging using a kernel Kp,q

η , defined below, with η = η(ε) −→ 0 as ε −→ 0
converges to f̄ :

(2.1) Kp,q
η ∗ fε = Kp,q

η ∗
(
f̄ + gε(t)

)
−→ f̄ as ε −→ 0.

In many situations, fε or gε assumes special forms such as fε(t) = fε(t, t/ε) that
are periodic in the second variable. For example,

duε

dt
= fε(uε, t) =

i

ε
λuε + φ(t)

has solution

uε(t) = eiε−1λt(u0 +
∫ t

0

e−iε−1λsφ(s)ds).

The force fε(t) = fε(u, t) = i
ελuε + φ(t) is of the form fε(t, t/ε). In this case, we

define

f̄(t) =
∫ 1

0

f(t, s)ds

and

gε(t) = g(t,
t

ε
) = fε − f̄(t).

In this part of the paper, we show (2.1) in the cases that gε vanishes exponentially
or oscillates at frequencies proportional to ε−1.

We will use K
p,q to denote the kernel space discussed in this paper. K ∈ K

p,q(I)
if K ∈ Cq

c (R) with supp(K) = I , and∫
R

K(t)trdt =

{
1, r = 0;
0, 1 ≤ r ≤ p.
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1714 BJORN ENGQUIST AND YEN-HSI TSAI

Furthermore, we will use Kη(t) to denote the scaling of K:

Kη(t) :=
1
η
K(

t

η
).

For convenience, we will also use Kp,q to denote a function in K
p,q(I).

In the following proofs, we assume that supp(K) = [−1, 1]. However, it is clear
that the proofs are also valid for the other case.

Notation 2.1. We use the notation f [s](t) for the sth order integral of f from 0 with
a constant that is specified from case to case:

g[s]
ε (t) =

∫ t

0

g[s−1]
ε (y)dy + Cs.

Also, we will use f (s)(t) to denote dsf/dts. In particular, f [0](t) = f (0)(t) = f(t).
The following well-known results show that with suitable kernels, the Kη ∗ f̄

approximate f̄ well.

Lemma 2.2. The following are well-known results.
(1) For any f ∈ W∞,p(R), K ∈ K

s,q,

(2.2) |Kη ∗ f(t) − f(t)| ≤ Cfηmax(p,s+1).

(2) Let g ∈ C(R). Then for any K ∈ K
p,q , ε > 0,

(2.3) |Kη ∗ g(·/ε)| ≤ (
ε

η
)q||g[q]||∞||K||W 1,q .

(3) If |g(t0, t)| ≤ g0 exp(t0− t) for t0 ≤ t ≤ T , then for any K ∈ K
p,q([−1, 0])∩

Cq
c ([−1,−ζ0]) for some 0 ≤ ζ0 ≤ 1, then

|Kη ∗ g(t0, ·/ε)(t0)| ≤ C0

(
ε

η

)q

e−ζ0/ε||K||W 1,q .

(4) If g ∈ C(R) such that g(t + α) = g(t),
∫ α

0
g(t)dt = 0, for some α > 0 and

|g(t)| ≤ C for all 0 < ε < ε0, then for any K ∈ K
p,q and ε > 0,

|Kη ∗ g(·/ε)(t)| ≤ Ĉ · αq

(
ε

η

)q

||K||W 1,q .

Proof. We omit the first two well known facts.
(3) Define g[j](t0, t) =

∫ t

t0
g[j−1](t0, τ )dτ for j = 1, 2, 3, . . . . Then |g(t0, t/ε)[j]| ≤

g0ε
j exp(t0 − t/ε) for t0 ≤ s/ε ≤ T. Hence, by (2), we have the desired estimate.
(4) Define g[j](t) =

∫ t

0
g[j−1](s)ds − α−1

∫ α

0

∫ t

0
g[j−1](s)dsdt, for j = 1, 2, 3, . . . .

We have that g[j](t + a) − g[j](t) = 0 is a periodic function with zero average and
since ∣∣∣g[1](t)

∣∣∣ =

∣∣∣∣∣α−1

∫ α

0

∫ t

0

g(s)dsdt̄ − α−1

∫ α

0

∫ t̄

0

g(s)dsdt̄

∣∣∣∣∣
=

∣∣∣∣α−1

∫ α

0

∫ t

t̄

g(s)dsdt

∣∣∣∣
≤ αC,

by induction, we have |g[j](t)| ≤ αjC. Hence, induction by parts yields the desired
estimate. �
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We first investigate the dissipative case for which we average with a nonsymmet-
ric kernel in K

p,q([−1, 0]). The following theorem shows that this approach lessens
the stiffness.

Theorem 2.3. Let fε(t) = f̄(t) + g(t0, t/ε), where |g(t0, s)| ≤ C0 exp(t0 − s) for
0 ≤ t ≤ T . For any K ∈ K

p,q([−1, 0]) ∩ Cq
c ([−1,−ζ0]) for some 0 ≤ ζ0 ≤ 1, then

there exist constants C1and C2, independent of ε and η, such that

E = |Kη ∗ fε(t) − f̄(t)| ≤ C1η
p + C2

(
ε

η

)q

e−ζ0η/ε||K||W 1,q .

In the rest of this section, we concentrate on the oscillatory case.

Lemma 2.4. If g(t, s) = a(t)b(s), where b(s + α) = b(s),
∫ s+α

s
b(τ )dτ = 0, for

some α > 0, and a ∈ Cq(R) and ||a(q)||∞ ≤ M , then for any K ∈ K
p,q,

|Kη ∗ g(·, ·/ε)(t)| ≤ Cαq(
ε

η
)q max

0≤r≤q
||a(r)||∞||K||W 1,q .

Proof. Let K̃η(t, s) = η−1K((t−s)/η)a(s). Then K̃(·, s) ∈ Cq
c (R) and has the same

support as K. We apply integration by parts by treating K̃ as our new kernel:

|Kη ∗ g(·, ·/ε)(t)| =
∣∣∣∣
∫

K̃η(t, s)b(s/ε)ds

∣∣∣∣ ≤ εq

∫ ∣∣∣K̃(q)
η (t, s)b[q](s/ε)

∣∣∣ ds.

Here, b[q] are constructed in the same way as g[q] in the proof for item (4) in Lemma
2.2. Assuming that η < 1,∫ ∣∣∣∣ ∂q

∂yq
K̃η(t, s)

∣∣∣∣ ds =
∫ ∣∣∣∣∣

q∑
r=0

(
q
r

)
(−1

η
)r 1

η
K(r)(

t − s

η
)a(q−r)(s)

∣∣∣∣∣ ds

≤ C̃

ηq
||a||W∞,q ||K||W 1,q .

||b[q]||∞ is bounded the same way as in Lemma 2.2. The estimate follows. �

Theorem 2.5. Let f(t, s) be a 1-periodic function in the second variable whose
derivative ∂rf(t, s)/∂tr is continuous and bounded by Cf for r = 0, . . . , σ + 1, and
σ > 0. Denote fε(t) = f(t, t/ε) and define

f̄(t) =
∫ 1

0

f(t, s)ds

and
g(t,

t

ε
) = fε − f̄(t).

Then for any K ∈ K
p,q ,

Kη ∗ (fε − f̄)(t) = C1||K||W 1,q(
ε

η
)q + C2η

σ+1.

Proof. Note that
∫ 1

0
g(t, s)ds =

∫ 1

0
(f(t, s) − f̄(t))ds = 0 and ∂k

∂tk g(t, s + 1) =
∂k

∂tk g(t, s) for k = 0, 1, . . . , σ. Define, for each k = 1, 2, . . . , σ,

∂k

∂tk
g[j](t, s) =

∫ s

0

∂k

∂tk
g[j−1](t, s̃)ds̃ −

∫ 1

0

∫ τ

0

∂k

∂tk
g[j−1](t, s)dsdτ,

for j = 1, 2, 3, . . . . Then | ∂k

∂tk g[j](t, s)| ≤ Cf due to the periodicity of ∂k

∂tk g(t, s) in s.
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Grouping the Taylor expansion of g(t, s), Kη ∗ g(·, ·
ε )(t) can be written as the

sum of I1 + I2, where

I1 =
σ∑

k=0

1
η

∫ t+η

t−η

K(
t − s

η
)
(t − s)k

k!
∂k

∂tk
g(t,

s

ε
)ds

and

I2 =
1
η

∫ t+η

t−η

∫ t

s

K(
t − s

η
)
(t − ξ)σ

σ!
∂σ+1

∂tσ+1
g(ξ,

s

ε
)dξds.

Then, by Lemma 2.4,

|I1| ≤ C̃1

(
ε

η

)q

max
0≤k≤σ

sup
t

sup
s

| ∂k

∂tk
g[q](t, s)| ||K||W 1,q

σ∑
k=1

ηk

k!

and

|I2| ≤ C̃2
(η)σ+1

(σ + 1)!
sup

t
sup

s
| ∂σ+1

∂tσ+1
g(t, s)| ||K||L1 .

Hence, we can find C1 and C2 such that

Kη ∗ (fε − f̄)(t) = C1||K||W 1,q(
ε

η
)q + C2η

σ+1.

�

Remark 2.6. If fε(t) = f(t, a(t)/ε), f(t, s) periodic in s, and 0 < C1 ≤ |a′(t)| ≤ C2,
we can obtain similar bounds by the above procedures.

Hence, we have the estimate for the oscillatory case:

Theorem 2.7. Let fε(t) = f(t, t/ε), where f(t, s) is 1-periodic in the second vari-
able and ∂rf(t, s)/∂tr is continuous for r = 0, . . . , p − 1. For any K ∈ K

p,q there
exists constants C1and C2, independent of ε and η, such that

E = |Kη ∗ fε(t) − f̄(t)| ≤ C1η
p + C2(

ε

η
)q.

Furthermore, the error is minimized if η is chosen to scale with εq/(p+q).

In the scheme illustrated by Figure 1.1, a nonsymmetric kernel should be used
to evaluate f at the beginning of each microscale evolution. The subfigures (a) and
(b) in Figure 2.1 show the graph of such a kernel. On the contrary, in the schemes
in Figure 1.2, one can use a symmetric kernel to estimate f at the center of the
time interval of each microscale evolution. A typical symmetric kernel is shown in
the subfigure (c) of Figure 2.1. Most of the numerical examples of this paper are
obtained from using the exponential kernel Kexp ∈ K

1,∞([−1, 1]) :

(2.4) Kexp(t) = C0χ[−1,1](t) exp(5/(t2 − 1)),
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Figure 2.1. (a) An example of an asymmetric kernel in
K

2,3([−1, 0]). (b) A shifted kernel in K
1,2([−1, 0]) for dissipative

systems. (c) An example of a symmetric kernel in K
2,3([−1, 1]).

with C0 adjusted so that ||Kexp||L1(R) = 1. Another commonly used kernel is

Kcos(t) =
1
2
χ[−1,1](t)(1 + cos(πt)).

Figure 2.2 demonstrates the residuals of using Kexp
0.1 and Kcos

0.1 for averaging yn =
cos(tn/ε), tn = n ∗ 2πε/11.
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10
3

10
−10

10
−5

Figure 2.2. Averaging yn = cos(tn/ε), tn = n ∗ 2πε/11, 0 ≤ tn ≤
η. The horizontal axis is 1/ε. The circled data points are averages
obtained by Kexp

0.1 with respect to different ε’s, and crosses represent
data points obtained by using Kcos

0.1 . The line without crosses or
circles is the graph of Cε for some C, adjusted so that the line
lies in its current location. The dashed line indicates second-order
accuracy with respect to η.

3. Analysis of the HMM schemes

In the previous section, we presented the building blocks of an HMM scheme
and the theory of averaging using a special class of kernels. In this section, we show
various properties of the HMM schemes, including convergence.

We have to define what we mean by convergence such that it makes sense for very
stiff problems (ε 	 H). For a given ε > 0, all well-known methods will converge as
the stepsize H → 0 and there is no difference between stiff and nonstiff problems.
Therefore, we define the limiting error E:

E = max
n

( lim
H→0

( sup
0<ε<ε0(H)

|U(tn) − Un|)),

with tn = nH, ε0(H)/H → 0 as H → 0.
We commence with linear systems. We remind the readers that in many of

the dissipative cases analyzed below, since the reconstruction operator R and the
compression operator Q are the identities, there is no difference in uε and U after
the transient. Thus we will use uε,n to denote the approximation of uε (and hence
U) at tn. So in the following presentation, our notation will reflect this fact.

3.1. Linear systems. We first discuss the properties of the HMM schemes for
linear constant coefficient equations; i.e., A(t) is a constant matrix A in (1.2).

The HMM operations for force evaluation in combination with the Runge-Kutta
schemes or Linear Multisteps schemes commute with the diagonalizer S and S−1.
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Take an HMM-LMM-rk scheme for example, and for simplicity, assume that φ(t) =
0 in (1.2). The force evaluation at tn is

f̃(Un, tn) =
2m∑
j=0

hK(tn, tj)(I + p(hAε))juε,n

= S

2m∑
j=0

hK(tn, tj)(I + p(hΛε))jS−1uε,n.

With wn = S−1uε,n, and Wn representing the macro variable (as U to uε,n), the
original system is equivalent to w′ = Λεw = gε(w), and the force evaluation can be
rewritten as

f̃(Un, tn) = S

2m∑
j=0

hK(tn, tj)(I + p(hΛε))jwn = Sg̃(Wn, tn).

Therefore, the HMM-LMM-rk scheme takes the form

k∑
j=0

akSWn−j = H

k∑
l=0

blSg̃(Wn−l)(Wn−l).

With the assumption that S is independent of ε, the HMM solution for W is then
equivalent to S−1U . Hence, it suffices to investigate the stability and convergence
issues by looking at the fully diagonalized system

duε

dt
= λ(j)

ε uε,

for every λ
(j)
ε is an eigenvalue of Aε.

We present the stability and convergence properties of some basic HMM schemes
built upon Runge-Kutta or Linear Multistep Methods.

3.1.1. Dissipative systems. We consider the case where λ
(j)
ε < 0 and the stiff com-

ponents decay with exponential factors in the ε scale; i.e., the solution is attracted
to the invariant manifold in the ε time scale. The bounded derivative principle [20]
applies to this case, and one can prepare the initial data so that the fast scale is
never excited. To prepare the initial data, one can simply evolve the solution uε for
a small time duration η so that uε is sufficiently close to or on the invariant manifold.
Thus for the one-step HMM method, one can set t∗ = η in Step 1 of the Algorithm
presented in Section 2, and simply take the values of f̄(tn+η) = fε(uε(tn+η), tn+η);
i.e., the kernel K is the Dirac-δ function concentrated at η. Notice that one-step
methods are particularly convenient for these problems, since U(tn+η) = uε(tn+η),
and the solution uε is actually also obtained at tlk = t0 + k(η + H) + lh, 0 ≤ l ≤ µ,
with η = mh. Hence, we will present the following theorems only in uε instead of
switching between U and uε.

When a linear multistep method is adopted as the macro-solver, uε(t0) cannot
be used directly as the initial values. Instead, one should prepare the initial value
by Quε = K̃ ∗ uε(t0), with K̃ ∈ K

p,q
η depicted in Figure 2.1(b).

The following theorem shows the convergence of one-step HMM-RK-rk methods
in the original variable uε.
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Theorem 3.1. Let uε(t) be the analytical solution for (1.2) with Aε(t) ≡ Aε, and
let uε,n be the approximation at tn computed by an HMM-RK-rk scheme:

uε,n+1 = (I + P (HAε))(I + P (hAε))muε,n, uε,0 = uε(t0).

Assume that the Runge-Kutta scheme used is an s-stage, s′-order accurate scheme;
i.e., P (z) is an s-degree polynomial in z.

Then for fixed H and ε0, ε0 < H, there is a constant Cmicro, dependent on the
micro-solver, and n0 > 0 such that for n ≥ n0,

|uε,n − uε(tn)| ≤ Hs′

if

(1) ρ = |1 + P (h/ε)| < 1,
(2) η = mh < H,
(3)

m ≥ | log(Cmicro + Cmicro maxj |Hλ
(j)
ε |s)

| log ρ| ≥ log Cmicro

| log ρ| + s
maxj | log Hλ

(j)
ε |

| log ρ| ,

(4)

hs′ ≤ 1
Cmicro

εs+s′+1Hs′+1en0(H+η)/ε

η(εs + Hs)
.

Proof. As we argued earlier, it suffices to show the convergence of the scheme on
the fully decoupled equations. Therefore, we prove our theorem for the case:

u′
ε = −ε−1uε + φ(t).

Define (uε,n)l = (I + P (hAε))luε,n, and the error En
l = uε(tn + lh)− (uε,n)l, where

tn = t0 + n(H + η), and En = En
0 = uε(tn) − uε,n. Then

En
l+1 = (I + P (−h/ε))En

l + rn
l ,

where rn
l is the local truncation error of the scheme at tln. Let Qh = (I + P (−h/ε))

and QH = (I + P (−H/ε)). Then we have

En
m = (Qh)mEn

0 +
m−1∑
l=0

(Qh)m−l−1rn
l

and

En+1 = (QH)(Qh)mEn + En
HMM + Rn,

where En
HMM = QH

∑m−1
l=0 (Qh)m−l−1rn

l can be considered as the local error com-
mitted by our HMM scheme at each macrostep, and Rn is the local truncation
error for the step from tmn to tmn + H. Furthermore, let QHMM = (QH)(Qh)m and
assume E0 = 0. Then we have

(3.1) En+1 =
n∑

j=0

Qn−j
HMM (Ej

HMM + Rj).
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The local truncation errors are bounded by |rn
l | ≤ Cr · (h/ε)s′+1 exp(−(nH + nη +

lh)/ε), |Rn| ≤ CR(H/ε)s′+1 exp(−(nH + nη)/ε), and

|En
HMM | ≤ ||QH ||

m−1∑
l=0

||Qm−l−1
h || |rn

l |

≤ Cr
hs′+1

εs′+1
e−n(H+η)/ε||QH ||

m−1∑
l=0

||Qh||m−l−1e−lh/ε.

We would like to show that when h, η, and H satisfy certain conditions, ||En+1|| ≤
Hs′

; i.e., we need to bound
n∑

j=0

||QHMM ||n−j(|Ej
HMM | + |Rj |).

It suffices to require that ||QHMM ||k ≤ 1, |Ek
HMM | ≤ Hs′+1, and |Rk| ≤ Hs′+1

for 0 ≤ k ≤ n. However, we require, additionally, the stability conditions for the
micro-solver:

ρ = |1 + P (−h/ε)| < 1,

and the HMM scheme:

|I + P (−H/ε)| |I + P (−h/ε)|m ≤ 1.

A sufficient condition for |Rk| ≤ Hs′+1 is

n(H + η) ≥ max(log
1

CR
, s′ + 1) ε(1 + | log ε|) = n0.

For an s-stage Runge-Kutta method, P is a polynomial of degree s. There
is a positive constant Cmicro depending on P such that |1 + P (−H/ε)| ≤
Cmicro(1 + |H/ε|s), and the condition on the number of microsteps needed is esti-
mated by

m ≥ | log(Cmicro + Cmicro|H/ε|s)
| log ρ| ≥ log Cmicro

| log ρ| + s
| log H/ε|
| log ρ| .

|Ek
HMM | ≤ Hs′+1 implies

|1 + P (−H/ε)| hs′
η

εs′+1
e−n(H+η)/ε ≤ Hs′+1,

leading to

hs′
≤ 1

Cmicro

εs+s′+1Hs′+1en(H+η)/ε

η(εs + Hs)
. �

We now turn to HMM-multistep schemes. Again, we consider the model linear
system (1.2). Since effective force estimation, i.e. Step 1, commutes with matrix
multiplications, we may simply consider the scalar case fε(uε) = λεuε. The effective
force f̄(Un) is estimated by a kernel using accurate microscale data obtained near
tn :

f̄(Un) = λhΣkKη(tn − tk)((uε,n)k + O(|λεh|p
′
).

In fact, (uε,n)k = Un exp(λε · kh), and

f̄(Un) = λΣkhKη(tn − tkn)(eλεkhUn + O(|λεh|p
′
)

= λUnA(K, λε, η, h) + O(|λεh|min(α,p′)),
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where α depends on the quadrature, and A(K, λε, η, h) denotes the weighted average
of exp(λεkh), 0 ≤ kh ≤ η. Hence, Equation (1.5) becomes

a0U
n + a1U

n−1 + · · · + akUn−k = λHA(K, λε, η, h)(b0U
n + b1U

n−1 + · · ·

+ bkUn−k + O(|λεh|min(α,p′))).

Therefore, for stability, we need the root conditions for

(a0 − λHA(K, λε, η, h)b0)zk + · · · + (ak − λHA(K, λε, η, h)bk) = 0;

i.e., |z| ≤ 1 for a non-multiple root and |z| < 1 for a multiple root. A(K, λε, η, h)
can be estimated by the results in Section 2.1.

3.1.2. Dissipative systems with variable coefficients. We consider variable coeffi-
cient systems (1.2) with φ(t) = 0.

Theorem 3.2. For fixed H and 0 < ε < ε0 < H, the HMM-FE-fe scheme

uε,n+1 = (I + HAε(tn + η))Πm−1
j=0 (I + hAε(tn + jh))uε,n

is stable if h and n satisfy

C(ε0 + C̃H) · (1 − C̃
h

ε
)n · hn

εn+1
≤ 1,

for some constant C. Here λ
(j)
ε (t) are the eigenvalues of Aε and satisfy

max
j,t∈[0,T ]

|λ(j)
ε (t)| < C̃ε−1.

Proof. To simplify our notation, we will use An,k and Sn,k to denote Aε(tn + kh)
and S(tn + kh), and An,k = Sn,kΛn,kS−1

n,k. For k ≤ m − 1,

(uε,n)k+1 = Sn,k(I + hΛn,k)S−1
n,kSn,k−1(I + hΛn,k−1)S−1

n,k−1 · · ·
Sn,0(I + hΛn,0)S−1

n,0(uε,n)0.

Hence,

||(uε,n)k+1|| ≤ Πk
j=0||I + hΛn,j || · Πk

l=1||S−1
n,l Sn,l−1|| · (||Sk|| ||S0||).

We know that the columns of Sn,j consist of the right eigenvectors of An,j . Using
the mean value theorem, we can write

Sn,j−1 = Sn,j − hBn,j .

By the perturbation theory of linear operators, see e.g. [16],

Bn,j = (bl1l2) =
{

ãl1l2/(λ(l1)
ε − λ

(l2)
ε ), if l1 �= l2,

0, if l1 = l2,

where λ
(j)
ε are the eigenvalues of Aε(tn + jh). Under the hypotheses on the eigen-

values,

Bk = ε−1B̃k = ε−1

(
B11 B12

B21 B22

)
and B22 is a (d− k0)× (d− k0) matrix of O(1), while B11, B12 and B21 are of O(ε)
and

||S−1
i Si−1|| = ||S−1

i (Si − ε−1hB̃i)||
= ||I − ε−1hS−1

i B̃i||
≤ Const d h/ε.
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Our chosen HMM-FE-fe scheme, in particular, can be written as

ym+1 = (I + HAε(tm))Πm−1
j=0 (I + hAε(tm + jh))y0.

Now if hλ(t) is always inside the regions of absolute stability for the forward
Euler scheme, i.e., h maxj,t∈[0,T ] |λ(j)

ε (t)| = C̃h/ε < 1, then we have

||ym+1|| ≤ Const ||I + HA(tm+1)|| · (1 − C̃h/ε)m · Πm−1
i=0 ||S−1

i Si−1||

≤ Const (1 + C̃H/ε) · (1 − C̃h/ε)m · hm

εm
.

Hence we have proved that HMM-FE-fe is stable if

C(ε0 + C̃H) · (1 − C̃h/ε)m · hm

εm+1
≤ 1

for all 0 < ε ≤ ε0. �
3.1.3. Oscillatory systems. Define D+φj := (φj+1−φj)/h, D−φj := (φj −φj−1)/h,
and the discrete semi-norm for the grid function: ||D−φ||h :=

∑m
j=0 |D−φj |h. The

following lemma shows the property of effective force estimation in a discrete setting
(this is in parallel to Lemma 2.2).

Lemma 3.3. Let gj = (1 + P (ih/ε))j = D+Gj , G0 = 0 and P (z) =
∑s

ν=1 cνzν .
Let w = {wj ∈ R : wj = 0 for j ≤ 0 or j ≥ m}, and CP = max1≤ν≤s |cν |. Then

(3.2) |
m∑

j=0

wjgjh| ≤ Cpε(1 +
h2

ε2
)m/2||D−w||h.

In particular, if wj = K(−jh/η)/η corresponds to the grid values of the kernel Kη,
then |D−wj | ≤ η−2||K ′||∞ where η = mh, and if 0 < h/ε < ρ0 < 1, then

(3.3) |
m∑

j=0

wjgjh| ≤ Cp
ε

η
exp(ηhε−2/2)||K ′||∞.

Proof. This is an application of summation by parts. We have
∑m

j=0 wjgjh =∑m
j=0 wj(Gj+1 − Gj) = −

∑m
j=0 D−wjGjh. Since Gn+1 = Gn + hgn = (Gn−1 +

hgn−1) + hgn · · · =
∑n

j=0 gjh, G0 = 0,
m∑

j=0

wjgjh =
m∑

j=0

D−wjGjh = h2
m∑

j=0

D−wj
(1 + P (ih/ε))j+1

P (ih/ε)
.

With the hypothesis that 0 < h/ε < 1, there is a constant Cp depending only on
the polynomial P such that

|1 + P (ih/ε)|m ≤ Cp(1 + h2ε−2)m/2.

Hence we have (3.2). In particular, if wj = Kη(−jh), then

|D−wj | =

∣∣∣∣∣1η
(

K(−jh
η ) − K(−(j−1)h

η )

h

)∣∣∣∣∣ ≤ η−2||K ′||∞.

With mh = η,

|
m∑

j=0

wjgjh| ≤ Cp
ε

η
exp(ηhε−2/2)||K ′||∞.

�
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The following stability result is a direct consequence of the above lemma.

Theorem 3.4. Consider HMM-FE-rk methods with uniform macroscale step:

Un+1 = (1 + H

m∑
j=0

hK̃n
j (1 + P (

ih

ε
))j)Un,

where K̃j
n

= K( tn−jh
mh ) is the discretization of the kernel used, and P (z) =∑s

ν=1 cνzν is the polynomial corresponding to the Runge-Kutta scheme. Set CRK =
max1≤ν≤s |cν |. For fixed H, ε, if h is chosen such that 0 < h/ε < 1 and η = mh,
m > 2, then

|Un+1| ≤ exp(CRKnH
ε

η
eηhε−2/2)|U0|.

The reason that we choose m > 2 is to reflect our true algorithm. If we choose
m = 1, for example, the kernel used in our force evaluation is not resolved at all. In
fact, the boundary conditions will result in the “summation” to be zero. In a later
part of this section, we will analyze a model nonlinear problem. There, we will
estimate how far the discrete operations approximate the continuum-level HMM
operations such as convolution with a kernel.

We see that in this coarse estimate from the discrete scheme, the kernel estima-
tion lessens the amplification factor from exp(H2ε−2/2) to exp(H ε

η exp(ηhε−2/2)).
(We omit the constants here for convenience.) We also remark that the same esti-
mate holds (with a different constant, of course) if a variable time step HMM-FE-rk
is used.

Theorem 3.5. HMM-LF-fe for u′ = iε−1u is

(3.4) Uk+1 = Uk−1 + 2H

m∑
j=0

hK̃j(1 +
ih

ε
)jUk.

Fix q > 0, for any given H, ε, T = nH, if η = mh < C0ε
1/q, and h < C1ε

2−1/q,
then there is a constant C̃ independent of η and h such that

|Uk| ≤ exp(C̃hε1−1/qT ),

for 1 ≤ k ≤ n.

Proof. Direct calculations involving summation by parts show

Uk+1 = Uk−1 + 2HhUk
m∑

j=0

D−K̃j
−(1 + ih/ε)j

ih/ε
h

= Uk−1 + 2εhHUk
m∑

j=0

D−K̃j(1 + h2ε−2)j/2ei jθ,

where (1 + h2ε−2)1/2 exp(iθ) = (1 + ihε−1).
Let γm =

∑m
j=0 D−K̃j(1+h2ε−2)j/2 exp(i jθ) and ρ = εhH > 0. The character-

istic roots for (3.4) are z = ργm ± (1 + ρ2γ2
m)1/2 and |z| ≤ e2ρ|γm|. From Lemma

3.3, we have |γm| ≤ ||K ′||∞(1 + h2ε−2)m/2/η. Therefore,

|z|n ≤ exp(2
ε

η
h(1 + h2ε−2)m/2||K ′||∞T ).
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By the hypotheses, h = C2ε
2−1/q, (1 + h2ε−2)m ≤ exp(ηhε−2) ≤ C4, and

|z|n ≤ exp(C̃hε1−1/qT ). �

Remark 3.6. The factor ε1−1/q in the estimate above shows the discrete averaging
effect.

3.2. Nonlinear systems. Our main focus has been to discuss the HMM technique
for stiff ODEs in general and to develop the convergence theory for linear problems.
In this section, we shall briefly consider nonlinear problems and start with a simple
class of systems. The purpose is to present examples for which it is easy to see how
HMM methods converge but for which the standard ODE methods for stiff problems
do not work. After the analysis, we shall also give numerical approximations of more
general nonlinear systems.

3.2.1. Simple analytical examples. A simple class of systems has the form

(3.5)

{
x′ = f I

ε (x, y, t) = iε−1x + fI(x, y, t),
y′ = f II(x, y, t),

with initial conditions x(0) = x0 and y(0) = y0, and Lipschitz continuous functions
fI and fII .

Let us first give an example for which the implicit Euler method does not con-
verge.

Example 3.7. Our first example to show that HMM schemes converge as ε → 0 is{
ẋ = iε−1x
ẏ = |x|2 ,

(
x0

y0

)
=

(
1
0

)
,

whose solution is {
x = eiε−1t,
y = t.

In this case, we know that the effective force of the system is

f̄ =
(

0
1

)
.

A typical HMM solution is{
Xn+1 = C

(
ε
η

)q

eiε−1τn ,

Y n+1 = tn,

with τn �= tn, and tn = nH.
A typical stiff implicit method resembles the Implicit Euler scheme which will

generate the solution {
xn+1 = (1 − iH/ε)xn,
yn+1 = yn + H|xn+1|2.

As ε → 0,

xn →
{

1, n = 0,
0, n ≥ 1,

and
yn → 0.

(xn, yn) is apparently a wrong solution.
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Notice that the trapezoidal rule works for the above example, but fails for slightly
more nonlinear examples.

Example 3.8. {
ẋ = iε−1x
ẏ = |x2 − 1|2 ,

(
x0

y0

)
=

(
1
0

)
,

whose solution is {
x = eiε−1t,

y = t
2π

∫ 2π

0
(2 − 2 cos θ)dθ.

However, the trapezoidal rule, in the limit of ε → 0, will give xn = 1 or −1, and
yn = 0.

We point out here a situation in which the simple HMM constructions, though
stable, do not yield correct results.

Example 3.9. Consider (3.5). Let uε = (x, y) solve (3.5) with fI ≡ 1 and x(0) =
x0, and let ûε = (x̂, ŷ) solve (3.5) with fI(x̂, ŷ, t) = x̂ and x̂(0) = x0.1 Note that
under the settings on fI , x(t), x̂(t) is independent of y(t) and ŷ(t).

One can write down the explicit forms of uε and ûε:{
xε(t) = eit/ε(x0 − εi) + εi,

x̂ε(t) = x0e
teit/ε.

Therefore, we know that as ε → 0, both x and x̃ converge weakly to 0 as well
as φ1 and φ2. Let Un = (Xn, Y n) and Ûn = (X̂n, Ŷ n) denote the corresponding
macroscopic variables constructed by an HMM scheme. At a given time step, the
direct averaging strategy (Step 1, with the identity operator as the reconstruction
operator R) proposed earlier will approximate the weak limit of φ1 and φ2 and yield
in the limit Xn = X̂n = x0.

If the quantity |x| is needed in the equation for y, e.g. if fII(x, y, t) = |x|2,
then the proposed HMM schemes do not converge, since Step 1 evaluates f̃II(tn) =
|X̂n| ≡ x0. However, f̄II = |x̂|2 = |x0|2e2t.

3.2.2. Model nonlinear oscillatory example. Let uε = (xε, yε) be the solution in
t ∈ [t0, T1] for

(3.6)

{
d
dtxε = i

εxε + f I(xε, yε),
d
dtyε = fII(xε, yε),

with initial conditions uε(t0) = u0 = (x0, y0). Let xε = eiε−1twε. Then (wε, vε)
solves the following system:

(3.7)

{
d
dtwε = e−iε−1tfI(eiε−1twε, vε),
d
dtvε = fII(eiε−1twε, vε),

with initial conditions wε(t0) = x0 and vε(t0) = y0.
We define the averaged force

(3.8)

{
f̄ I(x, y) = 1

2π

∫ 2π

0
e−iθfI(eiθx, y)dθ,

f̄II(x, y) = 1
2π

∫ 2π

0
fII(eiθx, y)dθ.

1This equation does not fall into the class of linear systems that we considered in the previous
section.
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Denote (w̄, v̄) as the solution for

(3.9)

{
d
dt w̄ = f̄ I(w̄, v̄),
d
dt v̄ = ḡII(w̄, v̄),

with initial conditions w̄(t0) = u0 and v̄(t0) = v0.
In the following discussion, we will assume that fI and fII are smooth and

bounded. However, most of the analysis carries over under a more relaxed condition
that fI and fII are Lipschitz continuous. We notice that 0 < ε ≤ ε0, there is a
time T1 and a constant M such that the family of solutions (wε, vε) to (3.7) exists
and is bounded uniformly by M ; i.e., |wε(t)| + |vε(t)| ≤ M for all t ∈ [t0, T1]
and for all ε ∈ (0, ε0]; hence |xε(t)| + |yε(t)| ≤ M . This can be established from
the construction of solutions through Picard’s iterations. Hence, given Lipschitz
continuous functions f and g, we also obtain a bound on the maximal values of
|fI(x, y)| and |fII(x, y)| as long as |x| + |y| ≤ M . Hence, in the remainder of this
section, we will just assume that f I and fII are bounded functions.

Theorem 3.10. There exists T ′ and a constant C such that for t0 ≤ t ≤ T ′,
|wε − w̄| + |vε − v̄| ≤ Cε.

Proof. From basic existence theory, due to the smoothness assumption of fI and
fII , and consequently f̄I and f̄II , ∃T ′ > t0 such that both (wε, vε) and (w̄, v̄) exist
in [t0, T ′].

We bound the differences w̄ − wε and v̄ − vε for t ∈ [t0, T ′]. Let L̄ be a pos-
itive constant such that |f̄I(x1, y1) − f̄II(x2, y2)| ≤ L̄(|x1 − x2| + |y1 − y2|) and
|f̄II(x1, y1) − ḡ(x2, y2)| ≤ L̄(|x1 − x2| + |y1 − y2|). Then

|w̄(t) − wε(t)| = |
∫ t

t0

f̄I(w̄(τ ), v̄(τ )) − e−iτ/εfI(eiτ/εwε(τ ), vε(τ ))dτ |

= |
∫ t

t0

f̄I(w̄(τ ), v̄(τ )) − f̄I(wε(τ ), vε(τ ))dτ |

+ |
∫ t

t0

f̄I(wε(τ ), vε(τ )) − e−iτ/εfI(eiτ/εwε(τ ), vε(τ ))dτ |

≤ (t − t0)L̄ sup
τ∈[t0,T̄ ]

(|w̄(τ ) − wε(τ )| + |v̄(τ ) − vε(τ )|) + I1,

where I1 = |
∫ t

t0
f̄I(wε(τ ), vε(τ )) − e−iτ/εfI(eiτ/εwε(τ ), vε(τ ))dτ |. We shall show

that 0 ≤ I1 ≤ Cε for some constant C.
Due to the periodicity of exp(iτ/ε), we can write down the above integrals as

sums of averages:

∫ t

t0

e−iτ/εfI(eiτ/εwε(τ ), vε(τ ))dτ

=
n∑

i=0

∫ ti+2πε

ti

e−it/εfI(eit/εwε(ti), vε(ti))dt + Ri + Iε, 0 ≤ t − tn ≤ 2πε,
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where Iε =
∫ t

tn
eiτ/εf(e−iτ/εwε(τ ), vε(τ ))dτ ,

Ri =
∫ ti+2πε

ti

e−it/ε
(
fI(eit/εwε(t), vε(t)) − fI(eit/εwε(ti), vε(ti))

)
dt,

tn∑
i=0

|Ri| ≤
tn∑

i=0

2πL̄||f ||∞ε2 ≤ 2πL̄T ′||f ||∞ε,

and |Iε| ≤ ε||f ||∞.
The main summation

n∑
i=0

∫ ti+2πε

ti

e−it/εf(e−it/εwε(ti), vε(ti))dt

=
n∑

i=0

ε

∫ 2π

0

e−iθf(eiθwε(ti), vε(ti))dθ

=
n∑

i=0

2πε · 1
2π

∫ 2π

0

e−iθf(eiθwε(ti), vε(ti))dθ

is a Riemann sum of
∫ t

t0
f̄(wε, vε)dτ. Hence I1 ≤ CI1ε.

Similarly, ∫ t

t0

fII(eiτ/εwε(τ ), vε(τ ))dτ

=
n∑

i=0

∫ ti+2πε

ti

fII(eit/εwε(ti), vε(ti))dt + R̃i + IIε,

with
∑tn

i=0 |R̃i| ≤ εC3 and |IIε| ≤ εC4, and
n∑

i=0

∫ ti+2πε

ti

fII(eit/εwε(ti), vε(ti))dt

is a Riemann sum for
∫ t

t0
f̄II(wε, vε)dτ.

Therefore, for t0 ≤ t ≤ T ′, I1 + I2 ≤ Cε for some constant C. �

In the remainder of this section, we assume that the function fI in (3.6) has the
property:

fI(x, y, t) = fI(eiθx, y, t), ∀θ ∈ R.

The following lemma shows how well a kernel in K
p,q([−1, 0]) estimates the effective

forces if given the exact data. For convenience, we drop the ε subscript in xε and
yε.

Lemma 3.11. Let (x, y) solve the equations (3.6) for tn ≤ t ≤ η with initial
data x(tn) = w̄n and y(tn) = v̄n, and let f̄ I , f̄II be defined in (3.9). Let w(t) =
ei(t−tn)/εx(t) and v(t) = y(t). Then (w, v) solve equations (3.7). We have the
estimates

Eker(w̄n, v̄n, tn; fI
ε ) : =

∥∥Kη ∗ fI
ε (x, y, ·)(tn) − f̄ I(w̄n, v̄n)

∥∥
≤ CIη(

ε

η
)q||K(q)||∞ + Cεq−1/ηq
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and

Eker(w̄n, v̄n, tn; fII) : =
∥∥Kη ∗ fII(u, v)(tn) − f̄II(w̄(tn), v̄(tn))

∥∥
≤ CII(

ε

η
)q||K||W 1,q + ηCfII (||fI ||∞ + ||fII ||∞)

for some constants CI and CII independent of ε and η, and CfII is a Lipschitz
constant of fII .

Proof. We first derive the bound on Eker(w̄n, v̄n, tn; fII). With w(s) = w(tn) +
(s − tn)fI(w̃n, t̃n), where w̃n comes from the mean value theorem, we have

Kη ∗ g(u, v)(tn) =
∫ tn+η

tn

Kη(t − s)fII(eis/εw(tn), v(tn))ds

+
∫ tn+η

tn

Kη(t − s) (s − tn)
(
eis/ε∂1f

II fI + ∂2f
II fII

)
ds,

where ∂1f
II and ∂2f

II denote the partial derivatives of fII with respective to
its first and second arguments, respectively. Thus the second integral is bounded
above by ηCfII (||fI ||∞ + ||fII ||∞), and CfII is a Lipschitz constant of fII . Let
f̃II(t) = fII(eitw̄n, v̄n). Then f̃ II is a 2π periodic function. Furthermore, we
notice that

1
2π

∫ 2π

0

f̃II(t)dt =
1
2π

∫ 2π

0

fII(eitw̄n, v̄n)dt = f̄II(w̄n, v̄n) =: f̄II
n

and that f̃ II(t)− f̄II
n is a 2π periodic function with zero average. Thus by Lemma

2.2, we have∫ tn+η

tn

Kη(t − s)fII(eis/εw(tn), v(tn))ds =
∫ tn+η

tn

Kη(t − s)(f̃II(s) − f̄II
n )ds

+
∫ tn+η

tn

Kη(t − s)f̄II
n ds

= CI(
ε

η
)q||K||W 1,q + f̄ II

n .

Therefore, we have∥∥Kη ∗ fII(x, y)(tn) − f̄II(w̄n, v̄n)
∥∥ ≤ CI(

ε

η
)q||K||W 1,q + ηLg(||fI ||∞ + ||gII ||∞).

We now prove the first inequality. Since x(t) = exp(i(t−tn)/ε)w̄n +
∫ t

tn
exp(i(t−

s)/ε)fI(x(s), y(s))ds,

Kη ∗ fε(tn) =
i

ε
Kη ∗

(
eiε−1(·−tn)w̄n +

∫ ·

tn

eiε−1(·−s)fI(x(s), y(s))ds

)
(tn)

+Kη ∗ fI(x, y)(tn)

= I1 + I2 + Kη ∗ fI(x, y)(tn),(3.10)
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where I1 = i
ε w̄

nKη ∗exp(iε−1(·− tn)), and I2 is the second term in the convolution.
Thus ||I1|| ≤ C0ε

q−1/ηq by Lemma 2.2. Integration by parts shows

I2 =
i

ε
Kη ∗

(∫ ·

tn

eiε−1(·−s)fI(x(s), y(s))ds

)
(tn)

= −Kη ∗ fI(x, y)(tn) + e−itn/εfI(w̄n, v̄n)Kη ∗ ei ·/ε

+Kη ∗
(∫ t

tn

eiε−1(t−s) d

ds
fI(x(s), y(s))ds

)
.

Notice that the first term cancels with the last term in (3.10). By Lemma 2.2, the
second term | exp(−iε−1tnfI(w̄n, v̄n)Kη ∗ eiε−1t| ≤ CK |f I(w̄n, v̄n)|εq/ηq. We now
analyze the last term:

II = Kη ∗
(∫ t

tn

ei(t−s)/ε d

ds
f I(u(s), v(s))ds

)
(ξ)

=
∫ tn+η

s=tn

∫ tn+η

t=s

Kη(ξ − t)eiε−1te−iε−1sb(s)dtds,

where

b(s) =
d

ds
f I(x(s), y(s))

=
d

ds
f I(w(s), v(s)) (w(s) = ei(s−tn)/εx(s), f(x, y) = f(w, v))

= ∂1f
I(w, v)e−iε−1tfI(w, v) + ∂2f

I(v, s)fII(x, y).

Switching the order of integrations, we have

|II| ≤
∫ tn+η

s=tn

|b(s)| ds

∣∣∣∣
∫ tn+η

t=tn

Kη(tn − t)eiε−1tdt

∣∣∣∣ ≤ const η||b||∞(
ε

η
)q||K(q)||∞.

Hence, ∥∥Kη ∗ fI
ε (u, v, ·)(tn)

∥∥ ≤ CIη(
ε

η
)q||K(q)||∞.

�

Now we analyze the local errors made in one step of the HMM-FE-* schemes by
grouping the errors according to how they are committed in the HMM process. We
first remind the readers of the notation.

Let U(tn) = (X(tn), Y (tn)) be the solution of the effective equation (1.4) at
grid nodes tn = t0 + nH, with initial condition U(t0) = U0 = (X0, Y0). Let Un =
(Xn, yn) denote the numerical approximations for U(tn) produced by the chosen
HMM-FE-Υ scheme; here Υ is the selected micro-solver. Define En = U(tn)−Un.
Assuming that f̄ can be evaluated with no error, we first have the standard relation:

En+1 = En + H(f̄(U(tn)) − f̄(Un)) + En
macro = (I + H Df̄n)En + En

macro,

where En
macro is the usual local truncation error of the Forward Euler scheme, and

Df̄n is the Jacobian matrix obtained through the mean value theorem. Next, in
HMM schemes, since f̄ is actually approximated through Step 1 in the algorithm
described in Section 2.1, there are further sources of errors coming from microscopic
processes from Step 1(a)-(d). Denote by EHMM the errors made altogether from
Step 1(a)-1(d). It becomes clear that EHMM = E(a)

HMM + E(Υ)
HMM , where E(a)

HMM
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corresponds to the analytical errors committed and E(Υ)
HMM corresponds to the dis-

cretization error. We have been analyzing E(a)
HMM in this paper, and the bounds

appear in the theorems in Section 2 and Lemma 3.11. E(Υ)
HMM = E(Υ)

micro + Equad is
the sum of the global error in evaluating fε accumulated in Step 1(b), and the quad-
rature error Equad corresponds to Step 1(d). The justification of using R = Q = I,
the identity operator, is absorbed into E(a)

HMM . Here, it is understood that the terms
in EHMM = En

HMM actually depend on U(tn), fε and tn. We remark that there are
problems not considered in this paper in which R or Q require further analytical
and numerical approximations.

In summary, for an HMM-FE-Υ scheme, we have

En+1 = (I + HDf̄n)En + HEn
HMM ,

where En
HMM = E(a)

HMM +E(Υ)
micro+Equad. Writing An =

(
I + HDf̄n

)
for convenience,

we have

(3.11) En+1 = Πn
j=0AjE

0 +
n+1∑
j=1

Πn
k=jAk

(
HEj−1

HMM + Ej−1
macro

)
.

In the Forward Euler scheme, ||Emacro|| ≤ CtruncH
2. Assuming that the macro-

solver is stable, i.e. ||Aj || is bounded,

||Aj || ≤ Camp1e
µH , for 0 ≤ j ≤ n.

Then if we have ||Ej−1
HMM || ≤ CHmmH for some ε ≤ ε0(H), and η ≤ η0(H), and

ε0, η0 decrease with H, we have a bound on the global error of the macro-solver in
H.

Assuming that we use a 4th-order Runge-Kutta scheme in Step 1(b), in the time
interval [tn, tn+η], the global error in the approximation of uε is Crk4h

4ηε−5, where
the last factor ε−5 comes from d(5)uε/dt(5); therefore the error in evaluating fε, i.e.
E(Υ)

micro, becomes C̃rk4h
4ηε−6.

By Lemma 3.11,

||E(a)
HMM || ≤ C̃εq−1/ηq + ηCfII (||fI ||∞ + ||fII ||∞).

If we take the composite trapezoidal rule as our numerical quadrature, for general
smooth functions, ||Equad|| ≤ C̃quadh

2. However, due to the regularity of the kernel
used, K ∈ Cq

c (R), our integrand is smooth and periodic, and therefore its Fourier
spectrum decays very fast. Since the trapezoidal rule is exact for e2πi·lx for l =
0, . . . , 2m, ||Equad|| is typically very small and negligible.

Assume that for T0 ≤ t ≤ T1, the analytical solution U = (X, Y ) of the effective
equations (3.9) is bounded by M̄ :|X(t)| + |Y (t)| ≤ M̄, and that |Xk|| + ||Y k|| ≤
M̄ + m′ for k = 0, 1, . . . , n < N and T0 + Nh ≤ T1. Assume in addition that we
start with the exact initial conditions. The error (3.11) is bounded by

|En+1| =
n+1∑
j=1

Πn
k=j ||Ak||

(
H||Ej−1

HMM || + ||Ej−1
macro||

)

≤ C1e
µ(T1−T0)H

⎛
⎝1 +

n+1∑
j=1

||Ej−1
HMM ||

⎞
⎠ .
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For η = CηH−1/qε(q−1)/q, h = Chη−1/4H1/4ε1+2/4, ||Ej
HMM || ≤ CM̄+m′H, for 0 ≤

j ≤ n, and |En+1| ≤ C exp(T1 − T0)H.
With H and T1 − T0 sufficiently small, we have

||Xn+1|| + ||Y n+1|| ≤ M̄ + ||En+1|| ≤ M̄ + m′.

Thus we can iterate our arguments and obtain the following theorem:

Theorem 3.12. Given an HMM-FE-rk4 scheme, let Un = (Xn, Y n) be the solution
at tn = T0 + nH, computed by this scheme applied to (3.6), and let U(t) be the
analytical solution to (3.9). Let H, h, η be respectively the macro step size, micro
step size, and the length of each microscale evaluation. Then there are constants
C such that for h ≤ h0(H, ε), η ≤ η0(H) < H, H < H0, and for t ∈ [T0, T1], the
global error En := U(tn) − Un is bounded above by H:

|Xn − X0| ≤ CH

and
|Y n − Y (tn)| ≤ CH,

for 0 ≤ n ≤ N, where T0 + NH = T1.

3.3. Complexity estimates. In the previous subsection, we see in an HMM-FE-
rk4 scheme for the oscillatory problem (3.9), how the kernel support size η and the
step size h for the micro-solver should scale (up to constants) with the macro-solver
step size H. This is done through balancing different errors to the same order in
H. We now describe this balancing of errors for oscillatory problems of a general
HMM-X -Υ scheme. The dissipative case is analyzed similarly.

Assume that the macro-solver X is an s-th order accurate scheme, the micro-
solver is r-th order accurate, and Kη ∈ K

p,q is used. We want our kernel estimation
error EHMM = ||f̄(Un) −

∑
j ωjKjf(uε(tn)|| to be bounded by CKHs so that it

is comparable to the local truncation error of the given macro-scheme. Similar to
what we have seen previously, the error in approximating uε in Step 1(b) is

Chrηε−(r+1),

where the factor ε−(r+1) comes from d(r+1)uε/dt(r+1), and thus

|E(Υ)
micro| ≤ C||∂fε

∂u
||∞ηhrε−(r+1) ≤ C̃ηhrε−(r+2).

Hence we need ηhrε−(r+2) = C ′Hs, so omitting the constant,

h = η−1/rHs/rε1+2/r.

From Section 2, we know that, for suitable problems, the force estimation error of
a kernel in K

p,q is

(3.12) E(a)
HMM ≤ C1η

p + Cgε
(
ε

η
)q.

Cgε
in our case is proportional to ||∂fε/∂uε||∞; thus,

Cgε
(
ε

η
)q = C

εq−1

ηq
.

Omitting the constants, the two terms in (3.12) are of the same order when η
is proportional to η∗(ε) = ε(q−1)/(p+q), and the εq−1/ηq term dominates ηp for
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η < η∗(ε). To minimize the number of microscale time steps, we want η to be small.
Hence, we want to scale η < η∗(ε) such that the dominating term

εq−1

ηq
∼ Hs =⇒ η = H−s/qε(q−1)/q.

The constraint η < η∗ is satisfied if

H > ε−ω

where ω > 0 is a constant found by balancing all the exponents involving positive
integers p and q.

Hence, with η = H−s/qε1−1/q,

# micro timesteps =
η

h
= H−αε−β,

where

α =
rs + qs + s

qr
, β =

q + r + 1
qr

> 0,

since p, q, r are positive integers, 0 < β < 1. Assuming that 1/H macro steps are
needed to reach T , the total complexity is

# total HMM steps = H−1−αε−β ≤ C.

Example 3.13. In the following, we give a really conservative error estimate for
an HMM-FE-rk4 method using a kernel in K

2,5 (s = 1, r = 4, p = 2, q = 5).

• Global error in η-interval: rk4 gives h4ηε−5. The last factor ε−5 is from
d5z/dt5.

• E4 scaled with H gives ηh4ε−6 = H.
• Error in the approximation of f̄ : ε4/η5 = H.

Thus, η = ε4/5H−1/5 and correspondingly h = ε6/5H6/5. An estimate for the
number of flops for the HMM-FE-rk4 method with η/h micro steps for each of the
N ∼ 1/H macro steps is

# of Flops = N
η

h
= ε−1/2H−3/2.

We compare this particular HMM-FE-rk4 method to other methods. Any explicit
methods will need a step size of the order of ε to resolve the oscillations and to
be stable. The complexity then is proportional to ε, which makes the computation
impossible, let alone other properties such as, possibly, unnecessary damping in the
solution. This evidence suggests that our HMM-FE-rk4 is superior.

4. Analytical and numerical examples

In this section, we apply our schemes to a few examples. For each fixed ε, our
numerical tests verify the results for the HMM schemes developed in the previous
section.

We set up our numerical simulations as follows. The numerical approximations
are computed in the time interval [0, T1] using a macro step size H ∈ {T1/nj : nj =
10 + 10j, j = 0, 1, 2, . . . , 7}. We use Hj to denote T1/nj , hj for the corresponding
micro step size, and ηj for the kernel support size. With a given ε, and the quadruple
(p, q, r, s) representing that a kernel in K

p,q(I) is used in Step 1(d), and an s-th
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order macro-solver and r-th order micro-solver are used in the chosen HMM scheme,
we determine ηj and hj according to our discussion earlier:

ηj = CηH−s/qε1−1/q,

hj = Chη−1/rHs/rε1+2/r.

We compute the absolute errors in the Y component defined by

e
(j)
L1 =

T1/Hj∑
n=1

|Y n − Y (nHj)|Hj

and
e(j)
∞ = max

1≤n≤T1/Hj

|Y n − Y (nHj)|.

Finally, these errors are plotted using loglog plots in each of the following examples.
In the following subsections, AB2 stands for the 2nd order Adam-Bashforth scheme,
LF for Leapfrog, FE for Forward Euler scheme, and rk4 stands for the common 4th-
order explicit Runge-Kutta scheme.

4.1. A stiff oscillatory example.

(4.1)
{

ẋ = iε−1(x − y) + i(y − t) + 1
ẏ = i(y − t) + |x − y|2 ,

(
x0

y0

)
=

(
2
1

)
,

with solution {
x = eiε−1t + eit + t,
y = eit + t.

Before applying HMM ODE schemes to this system, we remark that this system is
in the class of nonlinear equations that we have considered in the previous section.
System (4.1) after a linear transformation (w, y) = (x − y, y), becomes{

ẇ = iε−1w − |w|2 + 1
ẏ = |w|2 ,

(
w0

y0

)
=

(
1
0

)
,

which is obviously in the form to which our convergence theory applies. We have
mentioned that the averaging approach is invariant of linear transformations, so we
can work directly with (4.1). We see in this example that we cannot simply ignore
the fast scale variable x, since it contributes the dynamics of y.

In Figure 4.1, we plot e
(j)
L1 and e

(j)
∞ for each computation using the macroscopic

step size Hj = 4/(10 + 10j) along with the following settings:
(a) HMM-FE-lf: Kexp([−1, 1]), δt∗ = 0, (p, q, r, s) = (1, 10, 2, 1), ε =

10−3/(2π), Cη = 5, Ch = 0.4;
(b) HMM-FE-rk4: Kexp([−1, 1]), δt∗ = 0, (p, q, r, s) = (1, 10, 4, 1), ε =

10−5/(2π), Cη = 2.6, Ch = 0.5;
(c) HMM-LF-rk4: Kexp([−1, 1]), δt∗ = 0, (p, q, r, s) = (1, 10, 4, 2), ε =

10−6/(2π), Cη = 6, Ch = 2;
(d) HMM-AB2-rk4: Kexp([−1, 1]), δt∗ = 0, (p, q, r, s) = (1, 10, 4, 2), ε =

10−6/(2π), Cη = 6, Ch = 2.
We remark that since the system is not stiffly dissipative, in Step 1(b), we solve uε,n

in [tn, tn + δt∗] by the given equation, and in [tn, tn − δt∗] backward in time with
the initial condition uε,n(τ = tn) = Un. Then the effective force can be evaluated
at tnusing a symmetric kernel.
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0

(a) FE-lf
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−1
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0

(c) LF-rk4

10
1

10
−1

10
0

(b) FE-rk4

10
1

10
−3

10
−2

10
−1

10
0

(d) AB2-rk4

Figure 4.1. The horizontal axes 1/H. The lines with x-markers
are e

(j)
∞ and the lines with ◦-markers are e

(j)
L1 . The dotted lines are

proportional to H, and the dashed lines are proportional to H2.
The detailed settings are provided in the example of Section 4.1.

4.2. Dissipative systems.

4.2.1. Stiff system with fast transient. We test the HMM-AB2-rk4 solver (with
a 4th-order Runge-Kutta for microscale and the 2nd-order Adam-Bashforth for
macroscale) on the following equation:

(4.2) y′ = −ε−1(y + cos t), y(0) = 2.0.

Since the macro-solver is a linear multistep method that requires a uniform step
size, we use the nonsymmetric kernel, K ∈ K

2,3([−1, 0]) ∩ C3
c ([−1, 0.2]), depicted

in Figure 1.1, to estimate the effective force at the left end of each microscale
evolution.

HMM-AB2a-rk4: δt∗ = 0.6η, (p, q, r, s) = (2, 3, 4, 2), ε = 10−4, Cη = 25, Ch =
0.25, H ∈ {T1/nj : nj = 40+20j, j = 0, 1, 2, . . . , 10}, T1 = 4. The errors are plotted
in Figure 4.2.
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10
1

10
−3

10
−2

10
−1

Figure 4.2. HMM-AB2a-rk4. The horizontal axis is 1/H. The
lines with x-markers are e

(j)
∞ and the lines with ◦-markers are e

(j)
L1 .

The dashed lines are proportional to H2. The detailed settings are
provided in Section 4.2.1.

4.2.2. Oscillatory system with transient.

(4.3)
{

ẋ = ε−1(i + 5
2 (1 − |x − y|2))(x − y) + i(y − t) + 1

ẏ = i(y − t) + |x − y|2 ,

(
x0

y0

)
=

(
3
1

)
.

We see from the equation that a stiff transient in x would take place whenever
|x − y| is not 1. However, passing the transients, the averaged solution should be
identical to that of system (4.1). In the following computations, the macro time
step is taken to be H ∈ {2/nj : nj = 10+10j, j = 0, 1, 2, . . . , 8}. The corresponding
errors are plotted in Figure 4.3.

HMM-AB2-rk4: K ∈ K
2,3([−1, 0]) ∩ C3

c ([−1,−0.1]), δt∗ = 0, (p, q, r, s) =
(2, 3, 4, 2), ε = 10−6/(2π), Cη = 0.23, Ch = 10, T1 = 2.

10
1

10
−3

10
−2

(a) AB2a-rk4
10

1

10
−3

10
−2

(b) AB2s-rk4

Figure 4.3. Numerical accuracy study of (4.3). The lines with x-
markers are e

(j)
∞ and the lines with ◦-markers are e

(j)
L1 . The dotted

lines are proportional to H, and the dashed lines are proportional
to H2. The detailed settings are provided in Section 4.2.2.
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HMM-AB2-rk4: K(t) = Kexp(t + 0.2), δt∗ = 0.6η, (p, q, r, s) = (10, 1, 4, 2),
ε = 10−6/(2π), Cη = 20.3, Ch = 2, T1 = 2. Note that U is constructed at Tn =
0.6η + nH.

4.3. A three-body problem. Let x = (x1, x2, x3) ∈ R2 × R2 × R2 and let (m1,
m2, m3) ∈ R3 denote, respectively, the positions and the masses of the three planets
of the system. See Figure 4.4 for an illustration of the setup. The potential energy
of this system takes the form:

V (x) = −
∑
i<j

mimj

|xi − xj |
= −

(
m1m2

|x1 − x2|
+

m1m3

|x1 − x3|
+

m2m3

|x2 − x3|

)
.

The corresponding equations of motion are

miẍi = ∇xi
V (x), i = 1, 2, 3.

We solve these second-order equations as a system of first-order equations by intro-
ducing new dependent variables vi = ẋi and v̇i = ẍi. In our setting, we assume that
m2 is O(1) and O(ε) = m1 	 m2 	 m3 = O(1/ρ). x3 is stationary. We assume
that

|x1 − x2|2 ∼ ε, |x2 − x3|2 ∼ ρ−1 and |x1 − x3|2 ∼ ρ−1,

so that the equations for vi have only two scales:

v̇1 = −m2
(x1 − x2)
|x1 − x2|3︸ ︷︷ ︸
O(1/ε)

−m3
(x1 − x3)
|x1 − x3|3︸ ︷︷ ︸

O(1)

= f I(x) +
1
ε
g(x),

v̇2 = −m1
(x2 − x1)
|x2 − x1|3︸ ︷︷ ︸

O(1)

−m3
(x2 − x3)
|x2 − x3|3︸ ︷︷ ︸

O(1)

= fII(x).

Thus, with suitable initial conditions, m1 spins around m2 in ε time scale while
m2 orbits around m3 in the slow time scale. Essentially, we have two time scales
in this problem and the HMM method resolves the trajectory of m2 and m1 in a
short time η, then takes a big time step. See Figure 4.5 for a snapshot of an actual
computation.

0 2 4 6 8 10
−3

−2

−1

0

1

2

m
3
 m

2
 

m
1
 

Figure 4.4. This is a diagram showing the planar three-body
problem. In our setup, m1 spins around m2 is the ε time scale.
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Figure 4.5. Snapshots of the computed trajectories

Simulation 1. ε = 10−5/(2π), ρ = 10−4, (m1, m2, m3) = (500 ∗ ε, 0.4, 5/ρ), x1(0) =
x2(0) + 0.5(

√
ε,
√

ε), x2(0) = (
√

ρ, 0), x3(0) = (0, 0), and v1(0) = (5,−5), v2(0) =
(0, 10),v1(0) = (0, 0), T1 = 5.0.

HMM-LF-rk4: Kexp, δt∗ = 0, Cη = 230/2 Ch = 120, T1 = 5.0. We first
apply the scheme with different H’s to establish a convergence evidence for this
method. Denote by X

LF (H)
2 the position of mass m2 at T1 constructed this way

using macro step size H. We obtain |XLF (0.5)
2 −X

LF (0.25)
2 | .= 18.29904, |XLF (0.25)

2 −
X

LF (0.125)
2 | .= 5.47153, |XLF (0.125)

2 − X
LF (0.0625)
2 | .= 1.04626, and from these data,

we saw that the difference is deceasing at a rate proportional to H2. In Figure
4.6 are plotted the trajectories of X

LF (H)
2 and also the total energy of the system

versus 1/H, which shows a convergence in total energy at a rate proportional to
H2.

−10 0 10 20 30
0

5

10

15

20

25

30

(a) Trajectories
10

1

10
0

10
1

(b) Energy convergence

Figure 4.6. Numerical convergence study of the energy simula-
tion 1 of HMM-LF-rk4. The plot on the left shows the difference of
the total energy of approximation at T1 to the initial energy versus
1/H. Cη = 230, Ch = 120, T = 5.0.
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Figure 4.7. Planar three-body problem numerical convergence
study of simulation 1. The curves marked with � are data obtained
from HMM-FE-rk4 with symmetric kernel Kexp (i.e., δt∗ = 0) with
backward flow to enforce uniform step sizes. The curves marked
with × are data obtained from HMM-FE-rk4 with symmetric ker-
nel Kexp and variable step sizes. The plot on the left is obtained
with Cη = 200, and the one on the right with Cη = 230/2.

In the following set of simulations, we compare the numerical approximations
obtained from two different first-order schemes to the X

LF (0.05)
2 (T1). In our simu-

lations, we ran the following two first-order schemes:
• HMM-FE-rk4: Kexp([−1, 1]): δt∗ = 0, (p, q, r, s) = (1, 10, 4, 1), Cη = 230/2

or 200, Ch = 120, T1 = 5.0.
• HMM-FE-rk4: Kexp([−1, 1]): δt∗ = η/2, (p, q, r, s) = (1, 10, 4, 1), Cη =

230/2 or 200, Ch = 120, T1 = 5.0.
The two schemes differ in that one keeps uniform macroscopic time steps and
the other one can be considered as a variable time stepping method. We plot
|x2 − X

LF (0.05)
2 | versus 1/H in Figure 4.7.

−60 −40 −20 0 20
−80

−60

−40

−20

0

20

Figure 4.8. Planar three-body problem numerical convergence
study of simulation 2. The circle is placed at the position of x3. The
diamond and cross represent, respectively, the x2(0) and x2(80).
The dashed line shows the orbit if m1 = 0.
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Simulation 2. ε = 10−5/(2π), ρ = 10−4, (m1, m2, m3) = (500∗ε, 5.87, 1/ρ), x1(0) =
x2(0)+0.5(

√
ε,
√

ε), x2(0) = (1,−2.1
√

ρ), x3(0) = (0, 0), and v1(0) = v2(0)+(60, 0),
v2(0) = (2.5, 2.2), v3(0) = (0, 0), H = 0.2, Cη = 200/2, Ch = 100.

HMM-LF-rk4: Kexp and δt∗ = 0, T1 = 80. See Figure 4.8.

5. Summary

In this paper, we introduce and analyze a new class of numerical algorithms
for stiff ODE systems based on the HMM framework. We study the stability and
convergence of the HMM schemes and present a few numerical computations on
stiff systems using either Runge-Kutta or linear multistep HMM schemes. The
analysis also covers some existing classes of methods that use variable step sizes.
An important component in the new effective force estimation is accomplished
through the convolution of the data with certain classes of compactly supported
kernels. In particular, we show that a general class of highly stiff systems with
oscillatory solutions, for the first time can be practically approximated with an
explicit technique that requires fewer functional evaluations than the number of
oscillations.

We point out that the HMM methods are not limited to the few simple schemes
that we listed above. We show that one can use this methodology to build an HMM
scheme for a hierarchy of scales. One can customize and fine tune the numerical
approximation scheme in each scale more or less independently from the other
scales. For example, one can naturally adopt symplectic schemes for Hamiltonian
systems. The HMM framework provides a systematic way to build a scheme that
is suitable for a given system.
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