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122 W. E, P.-B. MING, AND P.-W. ZHANG

1. Introduction and main results

1.1. General methodology. Consider the classical elliptic problem

(1.1)

{
− div

(
a ε(x)∇uε(x)

)
= f(x) x ∈ D ⊂ R

d,

uε(x) = 0 x ∈ ∂D.

Here ε is a small parameter that signifies explicitly the multiscale nature of the
coefficient a ε(x). Several classical multiscale methodologies have been developed
for the numerical solution of this elliptic problem, the most well known among which
is the multigrid technique [8]. These classical multiscale methods are designed to
resolve the details of the fine scale problem (1.1) and are applicable for general
problems, i.e., no special assumptions are required for the coefficient a ε(x). In
contrast modern multiscale methods are designed specifically for recovering partial
information about uε at a sublinear cost, i.e., the total cost grows sublinearly with
the cost of solving the fine scale problem [18]. This is only possible by exploring
the special features that a ε(x) might have, such as scale separation. The simplest
example is when

(1.2) a ε(x) = a
(
x,

x

ε

)
,

where a(x, y) can either be periodic in y, in which case we assume the period to be
I = [−1/2, 1/2]d, or random but stationary under shifts in y, for each fixed x ∈ D.
In both cases, it has been shown that [5, 36]

(1.3) ‖uε(x) − U(x)‖L2(D) → 0,

where U(x) is the solution of a homogenized equation:

(1.4)

{
− div

(
A(x)∇U(x)

)
= f(x) x ∈ D,

U(x) = 0 x ∈ ∂D.

The homogenized coefficient A(x) can be obtained from the solutions of the so-
called cell problem. In general, there are no explicit formulas for A(x), except in
one dimension.

Several numerical methods have been developed to deal specifically with the case
when a(x, y) is periodic in y. References [3, 4, 7] propose to solve the homogenized
equations as well as the equations for the correctors. Schwab et al. [29, 38] use mul-
tiscale test functions of the form ϕ(x, x/ε) where ϕ(x, y) is periodic in y to extract
the leading order behavior of uε(x), extending an idea that was used analytically
in the work of [2, 15, 34, 44] for the homogenization problems. These methods
have the feature that their cost is independent of ε, hence sublinear as ε → 0, but
so far they are restricted to the periodic homogenization problem. An alternative
proposal for more general problems but with much higher cost is found in [20, 25].

1.2. Heterogeneous multiscale method. HMM [16, 17, 18] is a general method-
ology for designing sublinear algorithms by exploiting scale separation and other
special features of the problem. It consists of two components: selection of a macro-
scopic solver and estimating the missing macroscale data by solving locally the fine
scale problem.

For (1.1) the macroscopic solver can be chosen as a conventional Pk finite el-
ement method on a triangulation TH of element size H which should resolve the
macroscale features of a ε(x). The missing data is the effective stiffness matrix at
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HETEROGENEOUS MULTISCALE METHOD 123

this scale. This stiffness matrix can be estimated as follows. Assuming that the
effective coefficient at this scale is AH(x), if we knew AH(x) explicitly, we could
have evaluated the quadratic form∫

D

∇V (x) · AH(x)∇V (x) dx

by numerical quadrature: For any V ∈ XH , the finite element space,

(1.5) AH(V, V ) �
∑

K∈TH

|K|
∑

x�∈K

ω�

(
∇V · AH∇V

)
(x�),

where {x�} and {ω�} are the quadrature points and weights in K, |K| is the
volume of K. In the absence of explicit knowledge of AH(x), we approximate(
∇V · AH∇V

)
(x�) by solving the problem:

(1.6)

{
− div

(
a ε(x)∇vε

� (x)
)

= 0 x ∈ Iδ(x�),

vε
� (x) = V�(x) x ∈ ∂Iδ(x�),

where Iδ(x�) is a cube of size δ centered at x�, and V� is the linear approximation
of V at x�. We then let

(1.7)
(
∇V · AH∇V

)
(x�) �

1
δd

∫
Iδ(x�)

∇vε
� (x) · a ε(x)∇vε

� (x) dx.

(1.5) and (1.7) together give the needed approximate stiffness matrix at the scale H .
For convenience, we will define the corresponding bilinear form: For any V, W ∈ XH

AH(V, W ): =
∑

K∈TH

|K|
δd

∑
x�∈K

ω�

∫
Iδ(x�)

∇vε
� (x) · a ε(x)∇wε

� (x) dx,

where wε
� is defined for W ∈ XH in the same way that vε

� in (1.6) was defined for
V .

In order to reduce the effect of the imposed boundary condition on ∂Iδ(x�), we
may replace (1.7) by

(1.8a)
(
∇V · AH∇V

)
(x�) �

1

(δ ′)d

∫
I

δ
′ (x�)

∇vε
� (x) · a ε(x)∇vε

� (x) dx,

where δ′ < δ. For example, we may choose δ
′
= δ/2. In (1.6), we used the Dirichlet

boundary condition. Other boundary conditions are possible, such as Neumann and
periodic boundary conditions. In the case when a ε(x) = a(x, x/ε) and a(x, y) is
periodic in y, one can take Iδ(x�) to be x� + εI, i.e., δ = ε and use the boundary
condition that vε

� (x) − V�(x) is periodic on Iδ.
So far the algorithm is completely general. The savings compared with solving

the full fine scale problem comes from the fact that we can choose Iδ(x�) to be
smaller than K. The size of Iδ(x�) is determined by many factors, including the
accuracy and cost requirement, the degree of scale separation, and the microstruc-
ture in a ε(x). One purpose for the error estimates that we present below is to give
guidelines on how to select Iδ(x�). As mentioned already, if a ε(x) = a(x, x/ε) and
a(x, y) is periodic in y, we can simply choose Iδ(x�) to be x� + εI, i.e., δ = ε. If
a(x, y) is random, then δ should be a few times larger than the local correlation

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



124 W. E, P.-B. MING, AND P.-W. ZHANG

length of aε. In the former case, the total cost is independent of ε. In the latter
case, the total cost depends only weakly on ε (see [31]).

The final problem is to solve

(1.8) min
V ∈XH

1
2
AH(V, V ) − (f, V ).

K

Figure 1. Illustration of HMM for solving (1.1). The dots are the

quadrature points. The little squares are the microcell Iδ(x�).

To summarize, HMM has the following features:
(1) It gives a framework that allows us to maximally take advantage of the spe-

cial features of the problem such as scale separation. For periodic homoge-
nization problems, the cost of HMM is comparable to the special techniques
discussed in [3, 7, 29, 35]. However HMM is also applicable for random prob-
lems and for problems whose coefficient a ε(x) does not has the structure
of a(x, x/ε). For problems without scale separation, we may consider other
possible special features of the problem such as local self-similarity, which
is considered in [19].

(2) For problems without any special features, HMM becomes a fine scale solver
by choosing an H that resolves the fine scales and letting AH(x) = a ε(x).

Some related ideas exist in the literature. Durlofsky [14] proposed an up-scaling
method, which directly solves some local problems for obtaining the effective co-
efficients [33, 40, 41]. Oden and Vemaganti [35] proposed a method that aims at
recovering the oscillations in ∇uε locally by solving a local problem with some given
approximation to the macroscopic state U as the boundary condition. This idea is
sometimes used in HMM to recover the microstructural information. Other numer-
ical methods that use local microscale solvers to help extract macroscale behavior
are found in [26, 27].

The numerical performance of HMM including comparison with other methods
is discussed in [31].

This paper will focus on the analysis of HMM. We will estimate the error between
the numerical solutions of HMM and the solutions of (1.4). We will also discuss
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HETEROGENEOUS MULTISCALE METHOD 125

how to construct better approximations of uε from the HMM solutions. Our basic
strategy is as follows. First we will prove a general statement that the error between
the HMM solution and the solution of (1.4) is controlled by the standard error in the
macroscale solver plus a new term, called e(HMM), due to the error in estimating
the stiffness matrix. We then estimate e(HMM). This second part is only done
for either periodic or random homogenization problems, since concrete results are
only possible if the behavior of uε is well understood. We believe that this overall
strategy will be useful for analyzing other multiscale methods.

We will always assume that a ε(x) is smooth, symmetric and uniformly elliptic:

(1.9) λI ≤ a ε ≤ ΛI

for some λ, Λ > 0. We will use the summation convention and standard notation
for Sobolev spaces (see [1]). We will use |·| to denote the absolute value of a
scalar quantity, the Euclidean norm of a vector and the volume of a set K. For
the quadrature formula (1.5), we will assume the following accuracy conditions for
kth-order numerical quadrature scheme [11]:

(1.10)
∫
−

K

p(x) dx: =
1
|K|

∫
K

p(x) dx =
L∑

�=1

ω�p(x�) for all p(x) ∈ P2k−2.

Here ω� > 0, for � = 1, · · · , L. For k = 1, we assume the above formula to be exact
for p ∈ P1.

1.3. Main results. Our main results for the linear problem are as follows.

Theorem 1.1. Denote by U0 and UHMM the solution of (1.4) and the HMM

solution, respectively. Let

e(HMM) = max
x�∈K
K∈TH

‖A(x�) −AH(x�)‖,

where ‖ · ‖ is the Euclidean norm. If U0 is sufficiently smooth and (1.10) holds,
then there exists a constant C independent of ε, δ and H, such that

‖U0 − UHMM‖1 ≤ C
(
Hk + e(HMM)

)
,(1.11)

‖U0 − UHMM‖0 ≤ C
(
Hk+1 + e(HMM)

)
.(1.12)

If there exits a constant C0 such that e(HMM)|ln H | < C0, then there exists a
constant H0 such that for all H ≤ H0,

(1.13) ‖U0 − UHMM‖1,∞ ≤ C
(
Hk + e(HMM)

)
|ln H |.

At this stage, no assumption on the form of a ε(x) is necessary. U0 can be the
solution of an arbitrary macroscopic equation with the same right-hand side as
in (1.1). Of course for UHMM to converge to U0, i.e., e(HMM) → 0, U0 must be
chosen as the solution of the homogenized equation, which we now assume exists.
To obtain quantitative estimates on e(HMM), we must restrict ourselves to more
specific cases.

Theorem 1.2. For the periodic homogenization problem, we have

e(HMM) ≤
{

Cε if Iδ(x�) = x� + εI,

C
(ε

δ
+ δ

)
otherwise.
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126 W. E, P.-B. MING, AND P.-W. ZHANG

In the first case, we replace the boundary condition in (1.6) by a periodic bound-
ary condition: vε

� − V� is periodic with period εI. For the second result we do not
need to assume that the period of a(x, ·) is a cube: In fact it can be of arbitrary
shape as long as its translation tiles up the whole space.

Another important case for which a specific estimate on e(HMM) can be ob-
tained is the random homogenization. In this case, using results in [43], we have

Theorem 1.3. For the random homogenization problem, assuming that (A) in the
Appendix holds (see [43]), we have

E e(HMM) ≤




C(κ)
(ε

δ

)κ

d = 3,

remains open d = 2,

C(κ)
(ε

δ

)1/2

d = 1,

where

κ =
6 − 12γ

25 − 8γ

for any 0 < γ < 1/2. By choosing γ small, κ can be arbitrarily close to 6/25.

The probabilistic set-up will be given in the Appendix. To prove this result, we
assume that (1.8a) is used with δ ′ = δ/2.

1.4. Recovering the microstructural information. In many applications, the
microstructure information in uε(x) is very important. UHMM by itself does not
give this information. However, this information can be recovered using a simple
post-processing technique. For the general case, having UHMM, one can obtain
locally the microstructural information using an idea in [35]. Assume that we are
interested in recovering uε and ∇uε only in the subdomain Ω ⊂ D. Consider the
following auxiliary problem:

(1.14)

{
− div

(
a ε(x)∇ũ ε(x)

)
= f(x) x ∈ Ωη,

ũ ε(x) = UHMM(x) x ∈ ∂Ωη,

where Ωη satisfies Ω ⊂ Ωη ⊂ D and dist(∂Ω, ∂Ωη) = η. We then have

Theorem 1.4. There exists a constant C such that

(1.15)
(∫
−

Ω

|∇(uε − ũ ε)|2 dx
)1/2

≤ C

η

(
‖U0 −UHMM‖L∞(Ωη) + ‖uε −U0‖L∞(Ωη)

)
.

For the random problem, the last term was estimated in [43].
A much simpler procedure exists for the periodic homogenization problem. Con-

sider the case when k = 1 and choose Iδ = xK + εI, where xK is the barycenter of
K. Here we have assumed that the quadrature point is at xK .

Let ũ ε be defined piecewise as follows:

(1) ũ ε|Iδ
= vε

K , where vε
K is the solution of (1.6) with the boundary condition

that vε
K −UHMM is periodic with period εI and

∫
Iδ

(ũ ε −UHMM)(x) dx = 0.
(2)

(
ũ ε − UHMM

)
|K is periodic with period εI.
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HETEROGENEOUS MULTISCALE METHOD 127

For this case, we can prove

Theorem 1.5. Let ũ ε be defined as above. Then

(1.16)
( ∑

K∈TH

‖∇(uε − ũ ε)‖2
0,K

)1/2

≤ C
(√

ε + H
)
.

Similar results with some modification hold for nonlinear problems. The details
are given in §5.

1.5. Some technical background. In this subsection, we will list some general
results that will be frequently referred to later on.

Given a triangulation TH , it is called regular if there is a constant σ such that
HK

ρK
≤ σ for all K ∈ TH

and if the quantity
H = max

K∈TH

HK

approaches zero, where HK is the diameter of K and ρK is the diameter of the
largest ball inscribed in K. TH satisfies an inverse assumption if there exists a
constant ν such that

H

HK
≤ ν for all K ∈ TH .

A regular family of triangulation of TH satisfying the inverse assumption is called
quasi-uniform.

The following interpolation result for the Lagrange finite element is adapted from
[10]. Here and in what follows, for any k ≥ 2,∇kv is understood in a piecewise
manner.

Theorem 1.6 ([10]). Let Π be kth-order Lagrange interpolate operator, and assume
that the following inclusions hold:

(1.17) W k+1,p(K̂) ↪→ C0(K̂) and W k+1,p(K̂) ↪→ Wm,q(K̂).

Then

(1.18) |v − Πv|m,q,K ≤ C|K|1/q−1/p Hk+1
K

ρm
K

|v|k+1,p,K .

If TH is regular, we have the global estimate

(1.19) |v − Πv|m,q,D ≤ CHk+1−m+min{0,d(1/q−1/p)}|v|k+1,p,D.

Inequality (1.18) is proven in [10, Theorem 3.1.6], and (1.19) is a direct conse-
quence of (1.18) and the inverse inequality below.

Using (1.19) with p = q = 2 and m = 2, k = 1, we have ‖v−Πv‖2,D ≤ C‖v‖2,D.
Hence

(1.20) ‖Πv‖2,D ≤ ‖v − Πv‖2,D + ‖v‖2,D ≤ C‖v‖2,D.

We will also need the following form of the inverse inequality.

Theorem 1.7 ([10, Theorem 3.2.6]). Assume that TH is regular, and assume also
that the two pairs (l, r) and (m, q) with l, m ≥ 0 and r, q ∈ [0,∞] satisfy

l ≤ m and Pk(K̂) ⊂ W l,r(K̂) ∩ Wm,q(K̂).
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Then there exists a constant C = C(σ, ν, l, r, m, q) such that

(1.21) |v|m,q,K ≤ CH
l−m+d(1/q−1/r)
K |v|l,r,K

for any v ∈ Pk(K̂).
If in addition TH satisfies the inverse assumption, then there exists a constant

C = C(σ, ν, l, r, m, q) such that

(1.22)
( ∑

K∈TH

|v|qm,q,K

)1/q

≤ CH l−m+min{0,d(1/q−1/r)}
( ∑

K∈TH

|v|rl,r,K
)1/r

for any v ∈ XH and r, q < ∞, with

max
K∈TH

|v|m,∞,K replacing
( ∑

K∈TH

|v|qm,q,K

)1/q

, if q = ∞,

max
K∈TH

|v|l,∞,K replacing
( ∑

K∈TH

|v|rl,r,K
)1/r

, if r = ∞.

The following simple result will be used repeatedly.

Lemma 1.8. Let A1(x) and A2(x) be symmetric matrices satisfying (1.9). Let ϕ1

be the solution of

(1.23) − div
(
A1(x)∇ϕ1(x)

)
= div

(
Ã1(x)∇F1(x)

)
x ∈ Ω,

with either the Dirichlet or periodic boundary condition on ∂Ω. Let ϕ2 be a solution
of (1.23) with A1, Ã1 and F1 replaced by A2, Ã2 and F2, respectively, and let ϕ2

satisfy the same boundary condition as ϕ1. Then

λ‖∇(ϕ1 − ϕ2)‖0,Ω ≤ max
x∈Ω

|(Ã1 − Ã2)(x)| ‖∇F1‖0,Ω + max
x∈Ω

|(A1 − A2)(x)| ‖∇ϕ2‖0,Ω

+ max
x∈Ω

|Ã2(x)| ‖∇(F1 − F2)‖0,Ω.(1.24)

Proof. Inequality (1.24) is a direct consequence of

λ‖∇(ϕ1−ϕ2)‖2
0,Ω ≤

∫
Ω

∇(ϕ1−ϕ2)·
(
(Ã2−Ã1)∇F1+(A2−A1)∇ϕ2+Ã2∇(F2−F1)

)
.

�

The following simple result underlies the stability of HMM for problem (1.1).

Lemma 1.9. Let ϕ be the solution of

(1.25)

{
− div

(
a∇ϕ

)
= 0 in Ω ⊂ R

d,

ϕ = V� on ∈ ∂Ω,

where V� is a linear function and a =
(
aij

)
satisfies

λI ≤ a ≤ ΛI.

Then we have

(1.26) ‖∇V�‖0,Ω ≤ ‖∇ϕ‖0,Ω and
(∫

Ω

∇ϕ · a∇ϕ
)1/2

≤
(∫

Ω

∇V� · a∇V�

)1/2

.
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Proof. Notice that ϕ = V� on the edges of Ω, using the fact that ∇V� is a constant
in Ω, and integration by parts leads to∫

Ω

∇(ϕ − V�)(x)∇V�(x) dx = 0,

which implies∫
Ω

|∇ϕ(x)|2 dx =
∫
Ω

|∇V�(x)|2 dx +
∫
Ω

|∇(ϕ − V�)(x)|2 dx.

This gives the first result in (1.26). Multiplying (1.25) by ϕ(x) − V�(x) and inte-
grating by parts, we obtain∫

Ω

∇ϕ(x) · a∇ϕ(x) dx +
∫
Ω

∇(ϕ − V�)(x) · a∇(ϕ − V�)(x) dx

=
∫
Ω

∇V�(x) · a∇V�(x) dx.

This gives the second part of (1.26). �

Remark 1.10. For this result, the coefficient a =
(
aij

)
may depend on the solution,

i.e., (1.25) may be nonlinear.

Remark 1.11. The same result holds if we use instead a periodic boundary condi-
tion: ϕ − V� is periodic with period Ω.

2. Generalities

Here we prove Theorem 1.1. We will let UH = UHMM for convenience.
Since UH is the numerical solution associated with the quadratic form AH , U0 is

the exact solution associated with the quadratic form A, defined for any V ∈ H1
0 (D)

as

A(V, V ) =
∫
D

∇V (x) · A(x)∇V (x) dx.

To estimate U0 − UH , we view AH as an approximation to A, and we use Strang’s
first lemma [10].

Using (1.26) with Ω = Iδ(x�) and (1.9), for any V ∈ XH , we have

AH(V, V ) ≥ λ
∑

K∈TH

|K|
∑

x�∈K

ω�

∫
−

Iδ(x�)

|∇V�(x)|2 dx

= λ
∑

K∈TH

|K|
∑

x�∈K

ω�|∇V (x�)|2

= λ‖∇V ‖2
0.(2.1)
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Similarly, for any V, W ∈ XH , we obtain

|AH(V, W )| ≤
∑

K∈TH

|K|
∑

x�∈K

ω�

(∫
−

Iδ(x�)

∇V� · a ε∇V�

) 1
2
(∫
−

Iδ(x�)

∇W� · a ε∇W�

) 1
2

≤ Λ
∑

K∈TH

|K|
∑

x�∈K

ω�|∇V (x�)| |∇W (x�)|

= Λ
∑

K∈TH

∫
K

|∇V (x)| |∇W (x)| dx

≤ Λ‖∇V ‖0‖∇W‖0.(2.2)

The existence and the uniqueness of the solutions to (1.8) follow from (2.1)
and (2.2) via the Lax-Milgram lemma and the Poincaré inequality.

To streamline the proof of Theorem 1.1, we introduce the following auxiliary
bilinear form ÂH .

ÂH(V, W ) =
∑

K∈TH

ÂK(V, W ) with ÂK(V, W ) = |K|
∑

x�∈K

ω�(∇W · A∇V )(x�).

Classical results on numerical integration [11, Theorem 6] give for any V, W ∈
XH ,

(2.3)

∣∣∣∣∣∣ ÂK(V, W ) −
∫
K

∇W · A∇V dx

∣∣∣∣∣∣ ≤ CHm‖V ‖m,K‖∇W‖0,K 1 ≤ m ≤ k.

Moreover, for any V, W ∈ XH , if ‖V ‖k+1 and ‖W‖2 are bounded, we have [11,
Theorem 8],

(2.4) |ÂH(V, W ) − A(V, W )| ≤ CHk+1‖V ‖k+1‖W‖2.

Proof of Theorem 1.1. Using the first Strang lemma [10, Theorem 4.1.1], we have

‖U0 − UH‖1 ≤ C inf
V ∈XH

(
‖U0 − V ‖1 + sup

W∈XH

|AH(V, W ) − A(V, W )|
‖W‖1

)
.

Let V = ΠU0 and using (1.19) with m = 1, p = q = 2, we have

(2.5) inf
V ∈XH

‖U0 − V ‖1 ≤ ‖U0 − ΠU0‖1 ≤ CHk.

It remains to estimate |AH(V, W ) − A(V, W )| for V = ΠU0 and W ∈ XH .
Using (2.3), we get

|AH(V, W ) − A(V, W )| ≤ |AH(V, W ) − ÂH(V, W )| + |ÂH(V, W ) − A(V, W )|
≤

(
e(HMM)‖∇V ‖0 + CHk‖V ‖k

)
‖∇W‖0.(2.6)

This gives (1.11)
To get the L2 estimate, we use the Aubin-Nitsche dual argument [10]. To this

end, consider the following auxiliary problem: Find w ∈ H1
0 (D) such that

(2.7) A(v, w) = (U0 − UH , v) for all v ∈ H1
0 (D).

The standard regularity result reads [24]

(2.8) ‖w‖2 ≤ C‖U0 − UH‖0.
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Putting v = U0 − UH into the right-hand side of (2.7), we obtain

‖U0 − UH‖2
0 = A(U0 − UH , w − Πw) +

(
AH(UH , Πw) − A(UH , Πw)

)
= A(U0 − UH , w − Πw)

+
(
AH(UH − ΠU0, Πw) − A(UH − ΠU0, Πw)

)
+

(
AH(ΠU0, Πw) − A(ΠU0, Πw)

)
.(2.9)

Using (2.6) with k = 1, we bound the first two terms in the right-hand side of the
above identity as

|A(U0 − UH , w − Πw)| ≤ C‖U0 − UH‖1‖w − Πw‖1 ≤ CH‖U0 − UH‖1‖w‖2

and

|AH(UH −ΠU0, Πw)−A(UH −ΠU0, Πw)| ≤
(
e(HMM)+CH

)
‖U0−UH‖1‖Πw‖1.

The last term in the right-hand side of (2.9) may be decomposed into

AH(ΠU0, Πw) − A(ΠU0, Πw) =
(
AH(ΠU0, Πw) − ÂH(ΠU0, Πw)

)
+

(
ÂH(ΠU0, Πw) − A(ΠU0, Πw)

)
.

It follows from (2.4) that

|ÂH(ΠU0, Πw) − A(ΠU0, Πw)| ≤ CHk+1‖U0‖k+1‖w‖2.

By definition of e(HMM) and using (1.20), we get

|AH(ΠU0, Πw) − ÂH(ΠU0, Πw)| ≤ Ce(HMM)‖∇ΠU0‖0‖w‖2.

Combining the above estimates and using (2.8) lead to (1.12).
It remains to prove (1.13). As in [37], for any point z ∈ D, we define the

regularized Green’s function Gz ∈ H1
0 (D) and the discrete Green’s function Gz

H ∈
XH as

(2.10)
A(Gz , V ) = (δz , ∂V ) for all V ∈ H1

0 (D),

A(Gz
H , V ) = (δz , ∂V ) for all V ∈ XH ,

where δz is the regularized Dirac-δ function defined in [37]. It is well known that

(2.11) ‖Gz − Gz
H‖1,1 ≤ C and ‖Gz

H‖1,1 ≤ C|ln H |.
A proof for (2.11) can be obtained by using the weighted-norm technique [37]. We
refer to [9, Chapter 7] for details. Using the definition of Gz and Gz

H , a simple
manipulation gives

∂(U0 − UH)(z) = A(Gz , U0 − ΠU0) + A(Gz , ΠU0 − UH)

= A(Gz − Gz
H , U0 − ΠU0) + A(Gz

H , U0 − UH)

= A(Gz − Gz
H , U0 − ΠU0) + AH(UH , Gz

H) − A(UH , Gz
H)

= A(Gz − Gz
H , U0 − ΠU0) +

(
AH(ΠU0, G

z
H) − A(ΠU0, G

z
H)

)
+

(
AH(UH − ΠU0, G

z
H) − A(UH − ΠU0, G

z
H)

)
.

Using (2.11), we obtain

‖U0 − UH‖1,∞ ≤ C‖U0 − ΠU0‖1,∞ + |A(ΠU0, G
z
H) − AH(ΠU0, G

z
H)|

+ |A(UH − ΠU0, G
z
H) − AH(UH − ΠU0, G

z
H)|.
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Using (2.6), we get

|A(ΠU0, G
z
H) − AH(ΠU0,G

z
H)| ≤

(
e(HMM) + CHk

) ∑
K∈TH

‖ΠU0‖k,K‖∇Gz
H‖0,K

≤ C
(
e(HMM) + Hk

) ∑
K∈TH

‖ΠU0‖k,∞,K‖∇Gz
H‖L1(K)

≤ C
(
e(HMM) + Hk

)
|ln H | ‖U0‖k+1,∞,

where we have used the inverse inequality (1.21).
Similarly, we have

|A(UH − ΠU0, G
z
H) − AH(UH − ΠU0, G

z
H)|

≤
(
e(HMM) + CH

) ∑
K∈TH

‖UH − ΠU0‖1,K‖∇Gz
H‖0,K

≤ C
(
e(HMM) + H

) ∑
K∈TH

‖UH − ΠU0‖1,∞,K‖∇Gz
H‖0,1,K

≤ C
(
e(HMM) + H

)
|ln H |‖U0 − UH‖1,∞

+ C
(
e(HMM) + H

)
|ln H |Hk‖U0‖k+1,∞.

A combination of the above three estimates yields

‖U0 − UH‖1,∞ ≤ CHk + C
(
e(HMM) + H

)
|ln H | ‖U0 − UH‖1,∞

+ C
(
e(HMM) + Hk

)
|ln H | ‖U0‖k+1,∞.

If e(HMM)|ln H | < C0: = 1/(2C), then there exits a constant H0 such that for all
H ≤ H0,

C
(
e(HMM) + H

)
|ln H | ≤ 1/2 + CH |ln H | < 1.

We thus obtain (1.13) and this completes the proof. �
Combining the foregoing proof for the L2 and W1,∞ estimates, using the Green’s

function defined in [39], we obtain

Remark 2.1. Under the same condition for the W 1,∞ estimate in Theorem 1.1, we
have

‖U0 − UH‖L∞ ≤ C
(
e(HMM) + Hk+1

)
|ln H |2.

3. Estimating e(HMM)

In this section, we estimate e(HMM) for problems with locally periodic coef-
ficients. The estimate of e(HMM) for problems with random coefficients can be
found in the Appendix.

We assume that a ε(x) = a(x, x/ε), where a ε is smooth in x and periodic in y

with period I. Define κ = �δ/ε
, and we introduce V̂� as

(3.1) V̂�(x) = V�(x) + εχk
(
x�,

x

ε

) ∂V�

∂xk
(x),

where {χj}d
j=1 is defined as: For j = 1, · · · , d, χj(x, y) is periodic in y with period

I and satisfies

(3.2) − ∂

∂yi

(
aik

∂χj

∂yk

)
(x, y) =

∂

∂yi
aij(x, y) in I,

∫
I

χj(x, y) dy = 0.
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Given {χj}d
j=1, the homogenized coefficient A =

(
Aij(x)

)
is given by

Aij(x) =
∫
−

I

(
aij + aik

∂χj

∂yk

)
(x, y) dy.

Note that {χj}d
j=1 is smooth and bounded in all norms.

First let us consider the case when Iδ(x�) = x� + εI, and (1.6) is solved with
the periodic boundary condition. Denote by v̂ ε

� the solution of (1.6) with the
coefficients a ε(x) replaced by a(x�, x/ε). v̂ ε

� may be viewed as a perturbation of
vε

� . Using Lemma 1.8, we get

(3.3) ‖∇(vε
� − v̂ ε

� )‖0,Iε ≤ Cε‖∇V�‖0,Iε .

Observe that v̂ ε
� = V̂�. A direct calculation yields

(
∇W · (AH −A)∇V

)
(x�) =

∫
−

Iε

∇wε
� ·

[
a
(
x,

x

ε

)
− a

(
x�,

x

ε

)]
∇vε

� dx

+
∫
−

Iε

∇wε
� · a

(
x�,

x

ε

)
∇(vε

� − v̂ ε
� ) dx.

Using (3.3), we get

(3.4) e(HMM) ≤ Cε.

Next we consider the more general case when Iδ is a cube of size δ not neces-
sarily equal to ε. The following analysis applies equally well to the case when the
period of a(x, ·) is of general and even nonpolygonal shape. This situation arises in
some examples of composite materials [30]. We will show that if δ is much larger
than ε, then the averaged energy density for the solution of (1.6) closely approxi-
mates the energy density of the homogenized problem. We begin with the following
observation: (

∇W · A∇V
)
(x�) = ∇W�(x) · A(x�)∇V�(x)

=
∫
−

Iκε(x�)

∇W� · a
(
x�,

x

ε

)
∇V̂� dx.(3.5)

We first establish some estimates on the solution of the cell problem (1.6). We
will write Iδ instead of Iδ(x�) if there is no risk of confusion.

Lemma 3.1. There exists a constant C independent of ε and δ such that for each
�,

(3.6) ‖∇vε
�‖0,Iδ\Iκε

≤ C
((ε

δ

)1/2

+ δ
)
‖∇V�‖0,Iδ

.

Proof. We still denote by v̂ ε
� the solution of (1.6) with the coefficient a ε(x) replaced

by a(x�, x/ε). Using Lemma 1.8, we get

(3.7) ‖∇(vε
� − v̂ ε

� )‖0,Iδ
≤ Cδ‖∇V�‖0,Iδ

.

Define θ ε
� = v̂ ε

� − V̂�, which obviously satisfies

(3.8)




− div
(
a
(
x�,

x

ε

)
∇θ ε

� (x)
)

= 0 x ∈ Iδ(x�),

θ ε
� (x) = −εχk

(
x�,

x

ε

) ∂V�

∂xk
(x) x ∈ ∂Iδ(x�).
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Note that θ ε
� is simply the boundary layer correction for the cell problem (1.6) [5].

It is proved in [45, (1.51) in §1.4], using the rescaling x′ = x/δ over Iδ and ε′ = ε/δ.

(3.9) ‖∇θ ε
� ‖0,Iδ

≤ C
(ε

δ

)1/2

‖∇V�‖0,Iδ
.

This together with (3.7) gives

(3.10) ‖∇(vε
� − V̂�)‖0,Iδ

≤ C
((ε

δ

)1/2

+ δ
)
‖∇V�‖0,Iδ

.

A straightforward calculation gives

(3.11) ‖∇V̂�‖0,Iδ\Iκε
≤ C

(ε

δ

)1/2

‖∇V�‖0,Iδ
,

which together with (3.10) leads to

‖∇vε
�‖0,Iδ\Iκε

≤ ‖∇V̂�‖0,Iδ\Iκε
+ ‖∇(vε

� − V̂�)‖0,Iδ\Iκε

≤ ‖∇V̂�‖0,Iδ\Iκε
+ ‖∇(vε

� − V̂�)‖0,Iδ

≤ C
((ε

δ

)1/2

+ δ
)
‖∇V�‖0,Iδ

.

This gives (3.6). �

As in (3.6), we also have

(3.12) ‖∇vε
�‖0,Iδ\I(κ−2)ε

≤ C
((ε

δ

)1/2

+ δ
)
‖∇V�‖0,Iδ

.

Theorem 3.2.

(3.13) e(HMM) ≤ C
(ε

δ
+ δ

)
.

Proof. Note that vε
� = (vε

� − v̂ ε
� ) + θ ε

� + V̂�. We have(
∇W · (AH −A)∇V

)
(x�) = :I1 + I2 + I3,

where

I1 =
∫
−

Iδ

∇wε
� · a

(
x,

x

ε

)
∇(vε

� − v̂ ε
� ) dx, I2 =

∫
−

Iδ

∇wε
� · a

(
x,

x

ε

)
∇θ ε

� dx,

I3 =
∫
−

Iδ

∇wε
� · a

(
x,

x

ε

)
∇V̂� dx −∇W� · A(x�)∇V�.

Using (3.7) and (2.2), we bound I1 as

|I1| ≤ Λδ−d‖∇(vε
� − v̂ ε

� )‖0,Iδ
‖∇wε

�‖0,Iδ

≤ Cδ1−d‖∇V�‖0,Iδ
‖∇W�‖0,Iδ

= Cδ|∇V�| |∇W�|.

Using the symmetry of a ε, I2 =
∫
−

Iδ
∇θ ε

� · a
(
x, x

ε

)
∇wε

� dx and

I2 =
∫
−

Iδ

∇
(
θ ε

� + εχk
(
x�,

x

ε

) ∂V�

∂xk
(1 − ρε)

)
· a

(
x,

x

ε

)
∇wε

� dx

−
∫
−

Iδ

∇
(
εχk

(
x�,

x

ε

) ∂V�

∂xk
(1 − ρε)

)
· a

(
x,

x

ε

)
∇wε

� dx,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HETEROGENEOUS MULTISCALE METHOD 135

where ρε(x) ∈ C∞
0 (Iδ), |∇ρε| ≤ C/ε, and

(3.14) ρε(x) =

{
1 if dist(x, ∂Iδ) ≥ 2ε,

0 if dist(x, ∂Iδ) ≤ ε.

Using (1.6) and θ ε
� + εχk

(
x�,

x
ε

)
∂V�

∂xk
(1 − ρε) ∈ H1

0 (Iδ), integrating by parts makes
the first term in the right-hand side of I2 vanish; therefore we write I2 as

I2 = −
∫
−

Iδ

aij

(
x,

x

ε

)∂wε
�

∂xi

∂χk

∂yj

∂V�

∂xk
(1 − ρε) dx + ε

∫
−

Iδ

aij

(
x,

x

ε

)∂wε
�

∂xi
χk ∂V�

∂xk

∂ρε

∂xj
dx.

Using (3.12), we bound I2 as

|I2| ≤ Cδ−d‖∇wε
�‖0,Iδ\I(κ−2)ε

‖∇V�‖0,Iδ\I(κ−2)ε
≤ C

(ε

δ
+ δ2

)
|∇W�| |∇V�|.

Using (3.2) and integrating by parts, we obtain∫
−

Iδ

∇wε
� · a

(
x�,

x

ε

)
∇V̂� dx =

∫
−

Iδ

∇W� · a
(
x�,

x

ε

)
∇V̂� dx,

which together with (3.5) gives

I3 =
∫
−

Iδ

∇wε
�

[
a
(
x,

x

ε

)
− a

(
x�,

x

ε

)]
∇V̂� dx

+
1
δd

∫
Iδ\Iκε

∇W� · a
(
x�,

x

ε

)
∇V̂� dx + (|κε/δ|d − 1)∇W� · A(x�)∇V�.

The last term of I3 is bounded by∣∣ |κε/δ|d − 1
∣∣ |∇W� · A(x�)∇V�| ≤ C

ε

δ
|∇V�||∇W�|,

where we have used
∣∣ |κε/δ|d − 1

∣∣ ≤ Cε/δ. Using (3.11), we get

δ−d

∣∣∣∣∣∣∣
∫

Iδ\Iκε

∇W� · a
(
x�,

x

ε

)
∇V̂� dx

∣∣∣∣∣∣∣ ≤ C
1
δd

‖∇V̂�‖0,Iδ\Iκε
‖∇W�‖0,Iδ\Iκε

≤ C
(ε

δ
+ δ2

)
|∇V�||∇W�|.

Consequently, we obtain

|I3| ≤ Cδ1−d‖∇wε
�‖0,Iδ

‖∇V̂�‖0,Iδ
+ C

(ε

δ
+ δ2

)
|∇V�||∇W�|

≤ C
(ε

δ
+ δ

)
|∇V�||∇W�|.

Combining the estimates for I1, I2 and I3 gives the desired result (3.13). �

Remark 3.3. An explicit expression for vε
� is available in one dimension, from which

we may show that the bound for e(HMM) is sharp.
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4. Reconstruction and compression

4.1. Reconstruction procedure. Next we consider how to construct better ap-
proximations to uε from UH . We will restrict ourselves to the case when k = 1.

Proof of Theorem 1.4. Subtracting (1.1) from (1.14), we obtain{
− div

(
a ε(x)∇(ũ ε − uε)(x)

)
= 0 x ∈ Ωη,

(ũ ε − uε)(x) = UH(x) − uε(x) x ∈ ∂Ωη.

Using classical interior estimates for elliptic equation [24], we have

‖∇(ũ ε − uε)‖0,Ω ≤ C

η
‖ũ ε − uε‖0,Ωη .

Using the Hopf maximum principle, we get
1
η2

∫
−

Ωη

|(ũ ε − uε)(x)|2 dx ≤ C

η2
‖ũ ε − uε‖2

L∞(Ωη) ≤
C

η2
‖uε − UH‖2

L∞(∂Ωη)

≤ C

η2

(
‖U0 − UH‖2

L∞(Ωη) + ‖uε − U0‖2
L∞(Ωη)

)
.

A combination of the above two results implies Theorem 1.4. �

Proof of Theorem 1.5. Denote Iε(xK) = xK + εI and define û ε as the solution of

(4.1) − div
(
a
(
xK ,

x

ε

)
∇û ε(x)

)
= 0 in Iε(xK),

with the boundary condition that û ε − UH is periodic on ∂Iε(xK) and∫
Iε(xK)

(û ε − UH) dx = 0,

where xK is the barycenter of K.
It is easy to verify that û ε takes the explicit form

(4.2) û ε(x) = UH(x) + εχk
(
xK ,

x

ε

)∂UH

∂xk
(x).

Note that the periodic extension of û ε−UH is still εχk
(
xK , x

ε

)
∂UH

∂xk
(x). This means

that û ε is also well defined for the whole of K and takes the same explicit form
as (4.2).

Using
∫

I
χk(xK , y) dy = 0 for k = 1, · · · , d and that ∇UH is a piecewise constant

on K, we obtain

(4.3)
∫

Iε(xK)

(û ε − UH)(x) dx =
∫

Iε(xK)

εχk
(
xK ,

x

ε

)∂UH

∂xk
(x) dx = 0.

As in (3.7), we have

‖∇(ũ ε − û ε)‖0,Iε(xK) ≤ Cε‖∇UH‖0,Iε(xK).

From the construction of ũ ε, we have for any x1 ∈ K,

‖∇(ũ ε − û ε)‖0,Iε(x1) = ‖∇(ũ ε − û ε)‖0,Iε(xK).

Since ∇UH is constant over K, we get

(4.4) ‖∇(ũ ε − û ε)‖0,K ≤ Cε‖∇UH‖0,K .
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Adding up for all K ∈ TH and using the a priori estimate ‖∇UH‖0 ≤ C‖f‖0, we
obtain

(4.5)
( ∑

K∈TH

‖∇(ũ ε − û ε)‖2
0,K

)1/2

≤ Cε‖∇UH‖0 ≤ Cε.

Using (4.2), a straightforward calculation gives

∂û ε

∂xi
=

∂UH

∂xi
+

∂χk

∂yi

(
xK ,

x

ε

)∂UH

∂xk
.

Define the first order approximation of uε as

uε
1(x) = U0 + εχk

(
x,

x

ε

)∂U0

∂xk
,

where {χk}d
k=1 is the solutions of (3.2). Obviously,

∂uε
1

∂xi
=

∂U0

∂xi
+

(
ε
∂χk

∂xi
+

∂χk

∂yi

)(
x,

x

ε

)∂U0

∂xi
+ εχk

(
x,

x

ε

) ∂2U0

∂xi∂xk
.

A combination of the above estimates leads to

‖∇(û ε − uε
1)‖0,K ≤ C‖∇(UH − U0)‖0,K + Cε|U0|1,K

+
∥∥∥∥(∂χk

∂yi

(
x,

x

ε

)
− ∂χk

∂yi

(
xK ,

x

ε

))∂U0

∂xk

∥∥∥∥
0,K

+ Cε|U0|2,K

≤ C|U0 − UH |1,K + C(ε + H)‖U0‖2,K .

Summing up for all K ∈ TH and using Theorem 1.1 for k = 1 and Theorem 1.2 for
the case Iδ = xK + εI, we get( ∑

K∈TH

‖∇(û ε − uε
1)‖2

0,K

)1/2

≤ C(ε + H),

which together with (4.5) and the classical estimate for uε − uε
1 [5, 32, 45], i.e.,

‖uε − uε
1‖1 ≤ C

√
ε,

gives( ∑
K∈TH

‖∇(uε − ũ ε)‖2
0,K

)1/2

≤ ‖uε − uε
1‖1 +

( ∑
K∈TH

‖∇(uε
1 − û ε)‖2

0,K

)1/2

+
( ∑

K∈TH

‖∇(û ε − ũ ε)‖2
0,K

)1/2

≤ C(
√

ε + H).

�

Corollary 4.1.

(4.6) ‖ũ ε − uε‖0 ≤ C(ε + H2).

Proof. Using the definition of ũ ε, we have
∫

Iε(xK)
(ũ ε − UH)(x) dx = 0. Together

with (4.3), we have ∫
Iε(xK)

(ũ ε − û ε)(x) dx = 0.
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An application of the Poincaré inequality gives

‖ũ ε − û ε‖0,Iε(xK) ≤ Cε‖∇(ũ ε − û ε)‖0,Iε(xK) ≤ Cε2‖∇UH‖0,Iε(xK).

As before for any Iε(x1), ‖ũ ε − û ε‖0,Iε(x1) = ‖ũ ε − û ε‖0,Iε(xK), note that ∇UH is
a constant on K. We obtain

(4.7) ‖ũ ε − û ε‖0,K ≤ Cε2‖∇UH‖0,K .

On each element K, we have

‖û ε − UH‖0,K ≤ Cε‖∇UH‖0,K .

Combining the above and summing up for all K ∈ TH , we get

‖ũ ε − UH‖0 ≤ Cε‖∇UH‖0 ≤ Cε,

which together with

‖uε − UH‖0 ≤ ‖uε − U0‖0 + ‖U0 − UH‖0 ≤ C(ε + H2)

leads to (4.6), where we have used the estimate for U0 [5, 32, 45], i.e.,

‖uε − U0‖0 ≤ Cε. �
4.2. Compression operator. The compression operator (denoted by Q) maps the
microvariables to the macrovariables [16]. It plays an important role in the general
framework of HMM, even though for the present problem HMM can be formulated
without explicitly specifying the compression operator beforehand. Typically the
compression operator is some spatial/temporal averaging, or projection to some
slow manifolds. It is of interest to consider the error bound for Quε −UH . We first
list some natural properties of the compression operator.

• For any φ ∈ X , Qφ ∈ XH .
• There exists a constant C such that

‖Qφ‖0 ≤ C‖φ‖0.

• For any k ≥ 1, if φ ∈ Hk+1(Ω) ∩ H1
0 (Ω), then

‖φ − Qφ‖0 ≤ CHk+1|φ|k+1.

Theorem 4.2. Assume that Q satisfies all three requirements and U0 ∈ Hk+1(D)
for any k ≥ 1. Then

(4.8) ‖Quε − UH‖0 ≤ C(ε + Hk+1).

Moreover, if TH is quasi-uniform, then

(4.9) ‖Quε − UH‖1 ≤ C
( ε

H
+ Hk

)
.

Proof. We decompose Quε − UH into

(4.10) Quε − UH = Q(uε − U0) + (QU0 − U0) + (U0 − UH).

Using the fact that Q is bounded in L2
norm, we obtain

‖Q(uε − U0)‖0 ≤ C‖uε − U0‖0 ≤ Cε.

Using the third property of Q, we have

‖QU0 − U0‖0 ≤ CHk+1.

Using Theorem 1.1 and the first estimate in Theorem 1.2, we have

‖U0 − UH‖0 ≤ C(ε + Hk+1).
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A combination of these three estimates implies (4.8), which together with the inverse
inequality (cf. Theorem 1.7) leads to (4.9). �

It remains to give some examples of the compression operator. The following
two types of operators meet all three requirements:

• the L2-projection operator onto XH ,
• the Clément-type interpolation operator [12].

Remark 4.3. Notice that in one dimension, the standard Lagrange interpolant does
not meet the second requirement. However, it is still possible to derive (4.9) via
another approach. Moreover, a careful study of one dimensional examples shows
that the term ε/H in (4.9) is sharp.

5. Nonlinear homogenization problems

5.1. Algorithms and main results. We consider the following nonlinear problem
which has been discussed in [6, 23]:

(5.1)

{
− div

(
a ε

(
x, uε(x)

)
∇uε(x)

)
= f(x) x ∈ D,

uε(x) = 0 x ∈ ∂D.

In this section, we define X : = W 1,p
0 (D) with p > 1 and XH is defined as the Pk

finite element subspace of X .
We assume that a ε(x, uε) satisfies

λ|ξ|2 ≤ a ε
ijξiξj ≤ Λ|ξ|2 for all ξ ∈ R

d,

with 0 < λ ≤ Λ. Moreover, we assume that a ε(x, z) is equi-continuous in z uni-
formly with respect to x and ε.

The homogenized problem, if it exists, is of the following form:{
LU0: = − div

(
A

(
x, U0(x)

)
∇U0(x)

)
= f(x) x ∈ D,

U0(x) = 0 x ∈ ∂D.

If we let

A(v, w) =
(
A(x, v)∇v,∇w

)
for all v, w ∈ X,

then

(5.2) A(U0, v) = (f, v) for all v ∈ X ′,

where X ′ is the dual space of X .
The linearized operator of L at U0 is defined for any v ∈ H1

0 (D) by

Llin(U0)v = − div
(
A(x, U0)∇v + Ap(x, U0)∇U0 v

)
,

where Ap(x, z): = ∇zA(x, z). Llin induces a bilinear form through

Â(u; v, w): =
(
A(x, u)∇v,∇w

)
+

(
Ap(x, u)∇u v,∇w

)
for all v, w ∈ H1

0 (D).

Our basic assumption is that the linearized operator Llin is an isomorphism from
H1

0 (D) to H−1(D), so U0 must be an isolated solution of (5.2).
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To formulate HMM, for each quadrature point x�, define vε
� to be the solutions

of

(5.3)

{
− div

(
a ε(x, vε

� )∇vε
� (x)

)
= 0 x ∈ Iδ(x�),

vε
� (x) = V�(x) x ∈ ∂Iδ(x�).

We can define wε
� similarly.

For any V, W ∈ XH , define

∇W (x�) · AH

(
x�, V (x�)

)
∇V (x�) =

∫
−

Iδ(x�)

∇wε
� (x) · a ε

(
x, vε

� (x)
)
∇vε

� (x) dx

and
AH(V, W ): =

∑
K∈TH

|K|
∑

x�∈K

ω�∇W (x�) · AH

(
x�, V (x�)

)
∇V (x�).

The HMM solution is given by the problem:

Problem 5.1. Find UH ∈ XH such that

(5.4) AH(UH , V ) = (f, V ) for all V ∈ XH .

For any v, vH , w ∈ X , define

(5.5) R(v, vH , w): = A(vH , w) − A(v, w) − Â(v; vH − v, w).

It is easy to see that for any v and vH satisfying ‖v‖1,∞ + ‖vH‖1,∞ ≤ M ,

(5.6) |R(v, vH , w)| ≤ C(M)(‖eH‖2
0,2p + ‖eH∇eH‖0,p)‖∇w‖0,q

for eH : = v − vH and 1
p + 1

q = 1, p, q ≥ 1 (see [42, Lemma 3.1] for a similar result).
Therefore we have

Lemma 5.2. UH ∈ XH is the solution of Problem 5.1 if and only if

Â(U0; U0 − UH , V ) = R(U0, UH , V )

+ AH(UH , V ) − A(UH , V ) for all V ∈ XH .(5.7)

For any V, W ∈ XH , define

(5.8) E(V, W ): = ∇W (x�) · (AH −A)
(
x�, V (x�)

)
∇V (x�).

Define e(HMM) as

(5.9) e(HMM) = max
x�∈K,K∈TH

V ∈XH∩W 1,∞(D), W∈XH

|E(V, W )|
|∇V�| |∇W�|

.

The existence and uniqueness of the solution of Problem 5.1 are proved in the
following lemma.

Lemma 5.3. Assume that U0 ∈ W 2,p(D) with p > d and Llin is an isomorphism
from H1

0 (D) to H−1(D). If e(HMM) is uniformly bounded and there exist constants
H0 > 0 and M1 > 0 such that for 0 < H ≤ H0 and

(5.10) e(HMM)1/2|ln H | ≤ M1,

then Problem 5.1 has a solution UH satisfying

(5.11)
‖UH − PHU0‖1,∞ ≤ e(HMM)1/2 + H1−d/p,

‖U0 − UH‖1,∞ ≤ C
(
e(HMM)1/2 + H1−d/p

)
,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HETEROGENEOUS MULTISCALE METHOD 141

where PHU0 ∈ XH is defined as

(5.12) Â(U0; PHU0, V ) = Â(U0; U0, V ) for all V ∈ XH .

Moreover, if there exists a constant η(M) with 0 < η(M) < 1 such that

(5.13)
∑

K∈TH

|K|
∑

x�∈K

ω�|E(V, Z) − E(W, Z)| ≤ η(M)‖V − W‖1‖Z‖1

for all V, W ∈ XH ∩ W 1,∞(D) and Z ∈ XH , satisfying ‖V ‖1,∞ + ‖W‖1,∞ ≤ M ,
then there exists a constant H1 > 0 such that for 0 < H ≤ H1, the HMM solution
UH satisfying (5.11)1 is locally unique.

Proof. Since Llin is an isomorphism from H1
0 (D) to H−1(D), there exists a constant

C such that

sup
W∈H1

0 (D)

Â(U0; V, W )
‖W‖1

≥ C‖V ‖1 for all V ∈ H1
0 (D).

Using [42, Lemma 2.2], we conclude that there exists a constant H2 > 0 such that
for 0 < H ≤ H2,

(5.14) sup
W∈XH

Â(U0; V, W )
‖W‖1

≥ C‖V ‖1 for all V ∈ XH .

Therefore there is a unique solution PHU0 ∈ XH satisfying (5.12) and

(5.15) ‖U0 − PHU0‖1,∞ ≤ CH1−d/p.

Moreover, let Ĝz
H be the finite element approximation of the regularized Green’s

function associated with Â(U0; ·, ·). Using [42, equation 2.11], or using (5.14),
similarly to (2.11), we have

(5.16) ‖Ĝz
H‖1,1 ≤ C|ln H |.

Define a nonlinear mapping T : XH → XH by

Â(U0; T (V ), W ) = Â(U0; U0, W ) − R(U0, V, W ) + A(V, W ) − AH(V, W ),

for any W ∈ XH . Obviously T is continuous due to (5.14) and (5.6).
Let

B: = {V ∈ XH | ‖V − PHU0‖1,∞ ≤ e(HMM)1/2 + H1−d/p }.
We next prove that there exists a constant H0 > 0 such that for all 0 < H ≤ H0,
T (B) ⊂ B.

Notice that

Â(U0; T (V ) − PHU0, W ) = −R(U0, V, W ) + A(V, W ) − AH(V, W ).

Taking W = Ĝz
H in the above equation, using (5.16) and (5.6), we obtain, for

‖V ‖1,∞ ≤ M ,

‖T (V ) − PHU0‖1,∞ ≤ C(M)‖U0 − V ‖2
1,∞|ln H | + C

(
e(HMM) + H

)
|ln H |‖V ‖1,∞

≤ C(M)(‖U0 − PHU0‖2
1,∞ + ‖PHU0 − V ‖2

1,∞)|ln H | + CM
(
e(HMM) + H

)
|ln H |

≤ C(M)
(
e(HMM) + H2−2d/p

)
|ln H | + CM

(
e(HMM) + H

)
|ln H |.
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Since V ∈ B and e(HMM) is uniformly bounded, e.g., e(HMM) ≤ M1, we have

‖V ‖1,∞ ≤ ‖V − PHU0‖1,∞ + ‖PHU0‖1,∞ ≤ C(U0) + e(HMM)1/2

≤ C(U0) + M
1/2
1 = :M0.(5.17)

Combining the above two estimates, we obtain

‖T (V ) − PHU0‖1,∞ ≤ C(M0)
(
e(HMM) + H2−2d/p + H

)
|ln H |.

Define M1: = 1/C(M0). Using (5.10), we obtain

‖T (V ) − PHU0‖1,∞ ≤ e(HMM)1/2 + C(M0)(H2−2d/p + H)|ln H |.
Therefore there exits a constant H3 such that for 0 < H ≤ H3, we have

‖T (V ) − PHU0‖1,∞ ≤ e(HMM)1/2 + H1−d/p.

Let H0: = min(H2, H3). Then for 0 < H ≤ H0, we have T (B) ⊂ B. An application
of Brouwer’s fixed point theorem gives the existence of a UH ∈ B such that T (UH) =
UH . By definition, UH satisfies (5.11)1. Together with (5.15) it yields (5.11)2.

To prove uniqueness, assume that both UH and ÛH are solutions of (5.4) satis-
fying (5.11)1. Using (5.14), we obtain

C‖UH − ÛH‖1 ≤ sup
W∈XH

∫ 1

0
Â(U t

H ; UH − ÛH , W ) dt

‖W‖1

≤ sup
W∈XH

|A(UH , W ) − A(ÛH , W )|
‖W‖1

,

where U t
H = (1 − t)ÛH + tUH . Note that

A(UH , W ) − A(ÛH , W ) =
(
A(UH , W ) − AH(UH , W )

)
−

(
A(ÛH , W ) − AH(ÛH , W )

)
.

Since both UH and ÛH sit in the set B, we can use (5.17) to get ‖UH‖1,∞ +
‖ÛH‖1,∞ ≤ 2M0. Using (5.13), we obtain

‖UH − ÛH‖1 ≤ (η(2M0) + C1H)‖UH − ÛH‖1.

If we choose H1 such that
η(2M0) + C1H1 < 1,

then if H < H1, we have UH = ÛH . Therefore the HMM solution is locally
unique. �

From here on, when we talk about the HMM solution, we are referring to this
particular solution that satisfies the condition in Lemma 5.3.

Based on the above lemma, we prove a nonlinear analog of Theorem 1.1.

Theorem 5.4. Under the assumptions in Lemma 5.3, let U0 and UH be solutions
of (5.2) and (5.4), respectively. Assume in addition that U0 ∈ W k+1,∞(D). Then
there exist constants H0 and M∗

1 such that if 0 < H < H0 and M1 < M∗
1, then

‖U0 − UH‖1 ≤ C
(
Hk + e(HMM)

)
,(5.18)

‖U0 − UH‖1,∞ ≤ C
(
Hk + e(HMM)

)
|ln H |.(5.19)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HETEROGENEOUS MULTISCALE METHOD 143

Proof. Note that U0 ∈ W k+1,∞(D) and from (5.14), we have

(5.20) ‖U0 − PHU0‖1 ≤ CHk, ‖U0 − PHU0‖1,∞ ≤ CHk.

Using (5.7) with V = PHU0 − UH and (5.14) and (2.3), we obtain

(5.21) ‖PHU0 − UH‖1 ≤ C‖U0 − UH‖2
1,4 + C

(
Hk + e(HMM)

)
.

Using the interpolation inequality

‖U0 − UH‖2
1,4 ≤ ‖U0 − UH‖1‖U0 − UH‖1,∞

together with (5.20) and (5.17) gives

‖PHU0 − UH‖1 ≤ C1

(
e(HMM)1/2 + H1−d/p

)
‖PHU0 − UH‖1

+ C
(
Hk + e(HMM)

)
.

Let V = Ĝz
H in (5.7). Using (5.16), we obtain

‖PHU0 − UH‖1,∞ ≤ C2

(
e(HMM) + H

)
|ln H |‖PHU0 − UH‖1,∞

+ C
(
‖U0 − UH‖2

1,∞ + e(HMM) + Hk
)
|ln H |.

Since (5.10) holds, using (5.11)2 and (5.20)2, we obtain

‖PHU0 − UH‖1,∞ ≤ C2

(
e(HMM)1/2 + H1−d/p

)
|ln H |‖PHU0 − UH‖1,∞

+ C
(
e(HMM) + Hk

)
|ln H |.

Now we choose

M∗
1: = min

( |ln H |
2C1

,
1

2C2

)
and H0 such that e(HMM)1/2|ln H | ≤ M∗

1 , and therefore

C1

(
e(HMM)1/2 + H1−d/p

)
≤ 1

2
+ C1H

1−d/p
0 < 1,

C2

(
e(HMM)1/2 + H1−d/p

)
|ln H | ≤ 1

2
+ C2H

1−d/p|ln H | < 1.

Thus we obtain

‖PHU0 − UH‖1 ≤ C
(
Hk + e(HMM)

)
,

‖PHU0 − UH‖1,∞ ≤ C
(
Hk + e(HMM)

)
|ln H |.

Using (5.20) once again gives (5.18) and (5.19). �

5.2. Estimating e(HMM). It remains to estimate e(HMM) and verify assump-
tions (5.10) and (5.13). We assume that a ε(x, uε) =

(
aij(x, x/ε, uε)

)
, and for

1 ≤ i, j ≤ d, the coefficients a ε
ij(x, y, z) are smooth in x, z and periodic in y with

period I. These types of problems, among others, have been considered in [5, 6, 23].
The homogenized coefficient A =

(
Aij(x, p)

)
is given for any p ∈ R by

Aij(x, p) =
∫
−

I

(
aij + aik

∂χj

∂yk

)
(x, y, p) dy,

where {χk}d
k=1 is defined for any p ∈ R by

(5.22) − ∂

∂yi

(
aik

∂χj

∂yk

)
(x, y, p) =

∂

∂yi
aij(x, y, p),
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with the periodic boundary condition in y and
∫

I
χk(x, y, p) dy = 0. It is clear that

A(x, p) is also smooth in x and p and satisfies [6, Proposition 3.5]

(5.23) λI ≤ A ≤ Λ2

λ
I.

Using Lemma 1.9 and Remark 1.10, for the solution of (5.3), we have

(5.24) ‖∇V�‖0,Iδ
≤ ‖∇vε

�‖0,Iδ
≤

√
Λ/λ ‖∇V�‖0,Iδ

.

This gives a bound for AH :

λI ≤ AH ≤ Λ2

λ
I,

which together with (5.23) implies

(5.25) e(HMM) ≤ 2Λ2/λ.

This shows that e(HMM) is uniformly bounded.
To simplify the presentation, we will show how to estimate e(HMM) when (5.3)

is changed slightly to

(5.26)

{
− div

(
a ε

(
x, V (x�)

)
∇vε

� (x)
)

= 0 x ∈ Iδ(x�),

vε
� (x) = V�(x) x ∈ ∂Iδ(x�)

and AH(V, W ) is changed to

AH(V, W ) =
∑

K∈TH

|K|
∑

x�∈K

ω�

∫
−

Iδ(x�)

∇wε
� (x) · a ε

(
x, V (x�)

)
∇vε

� (x) dx.

If δ = ε, we replace the Dirichlet boundary condition in (5.26) by the periodic
boundary condition, i.e., vε

� (x) − V�(x) is periodic on ∂Iε(x�).

Theorem 5.5. If (
√

ε/δ + δ)|ln H | is sufficiently small, then (5.10) and (5.13)
hold and

(5.27) e(HMM) ≤ C
((ε

δ

)1/2

+ δ
)
.

In the case of δ = ε, if ε|ln H | is sufficiently small, then (5.10) and (5.13) hold
and

(5.28) e(HMM) ≤ Cε.

In what follows, we concentrate on the first case. The second case when δ = ε
will be commented on.

Let us first fix more notation. Denote by v̂ ε
� the solutions of (5.26) with the

coefficient a
(
x, x/ε, V (x�)

)
replaced by a

(
x�, x/ε, V (x�)

)
. Similarly we define wε

�

to be the solution of (5.26) with V replaced by W ∈ XH . Also, ŵ ε
� can be defined

in the same way and wε
� and ŵ ε

� can be viewed as the perturbations of vε
� and v̂ ε

� ,
respectively. Moreover, we define

aV (x�) = a
(
x�,

x
ε , V (x�)

)
, aW (x�) = a

(
x�,

x
ε , W (x�)

)
,

aV (x) = a
(
x, x

ε , V (x�)
)
, aW (x) = a

(
x, x

ε , W (x�)
)
.

Observe that v̂ ε
� and ŵ ε

� also satisfy (5.24), and using Lemma 1.8, we have

(5.29) ‖∇(vε
� − v̂ ε

� )‖0,Iδ
≤ Cδ‖∇V�‖0,Iδ

, ‖∇(wε
� − ŵ ε

� )‖0,Iδ
≤ Cδ‖∇W�‖0,Iδ

.
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Lemma 5.6. We have

‖∇(v̂ ε
� − ŵ ε

� )‖0,Iδ
≤ C

(
|(V − W )(x�)|(‖∇V�‖0,Iδ

+ ‖∇W�‖0,Iδ
)

+ ‖∇(V� − W�)‖0,Iδ

)
.(5.30)

Proof. Observe that

− div
(
aV (x�)∇(v̂ ε

� − V�)
)

= div
(
aV (x�)∇V�

)
,

− div
(
aW (x�)∇(ŵ ε

� − W�)
)

= div
(
aW (x�)∇W�

)
.

Both v̂ ε
� − V� and ŵ ε

� − W� vanish on ∂Iδ(x�). Using Lemma 1.8, we obtain

λ‖∇(v̂ ε
� − V� − ŵ ε

� + W�)‖0,Iδ
≤ Λ‖∇(V� − W�)‖0,Iδ

+ max
x∈Iδ

|(aV − aW )(x�)|
(
‖∇V�‖0,Iδ

+ ‖∇(ŵ ε
� − W�)‖0,Iδ

)
.

Using (5.24) for ŵ ε
� , we obtain

‖∇(ŵ ε
� − W�)‖0,Iδ

≤ ‖∇ŵ ε
� ‖0,Iδ

+ ‖∇W�‖0,Iδ
≤ C(1 +

√
Λ/λ)‖∇W�‖0,Iδ

,

which together with maxx∈Iδ
|(aV − aW )(x�)| ≤ C|(V − W )(x�)| gives (5.30). �

Next we establish the estimate for (vε
� − v̂ ε

� )− (wε
� − ŵ ε

� ). Let ψε
� : = vε

� − v̂ ε
� and

ψ̃ε
� : = wε

� − ŵ ε
� . Clearly, ψε

� , ψ̃
ε
� vanish on ∂Iδ(x�) and satisfy

− div
(
aV (x)∇ψε

�

)
= div

((
aV (x) − aV (x�)

)
∇v̂ ε

�

)
x ∈ Iδ(x�),

− div
(
aW (x)∇ψ̃ε

�

)
= div

((
aW (x) − aW (x�)

)
∇ŵ ε

�

)
x ∈ Iδ(x�).

Lemma 5.7. We have

‖∇(ψε
� − ψ̃ε

� )‖0,Iδ
≤ Cδ

(
|(V − W )(x�)|(‖∇V�‖0,Iδ

+ ‖∇W�‖0,Iδ
)

+ ‖∇(V� − W�)‖0,Iδ

)
.(5.31)

Proof. Using Lemma 1.8, we have

λ‖∇(ψε
� − ψ̃ε

� )‖0,Iδ
≤ max

x∈Iδ

|aV (x) − aV (x�) − aW (x) + aW (x�)| ‖∇v̂ ε
� ‖0,Iδ

+ max
x∈Iδ

|aV (x) − aW (x)| ‖∇ψ̃ε
�‖0,Iδ

+ max
x∈Iδ

|aW (x) − aW (x�)| ‖∇(v̂ ε
� − ŵ ε

� )‖0,Iδ
.

Using

(5.32) max
x∈Iδ

|aV (x) − aV (x�) − aW (x) + aW (x�)| ≤ Cδ|(V − W )(x�)|,

from (5.29)2, we have ‖∇ψ̃ε
�‖0,Iδ

≤ Cδ‖∇W�‖0,Iδ
. Collecting the above estimates

and using (5.30), we obtain (5.31). �

Define

V̂�(x) = V�(x) + εχk
�

(
x�,

x

ε
, V (x�)

) ∂V�

∂xk
(x),

Ŵ�(x) = W�(x) + εχk
�

(
x�,

x

ε
, W (x�)

)∂W�

∂xk
(x),

where {χk
�}d

k=1 are the solutions of (5.22) with coefficient replaced by aij(x�, y, p).
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Denote θ ε
� = v̂ ε

� − V̂� and θ̃ ε
� = ŵ ε

� − Ŵ�. Observe that


− div
(
aV (x�)∇θ ε

� (x)
)

= 0 x ∈ Iδ(x�),

θ ε
� (x) = −εχk

�

(
x�,

x

ε
, V (x�)

) ∂V�

∂xk
x ∈ ∂Iδ(x�),

and 


− div
(
aW (x�)∇θ̃ ε

� (x)
)

= 0 x ∈ Iδ(x�),

θ̃ ε
� (x) = −εχk

�

(
x�,

x

ε
, W (x�)

)∂W�

∂xk
x ∈ ∂Iδ(x�).

Similarly to (3.9), we have

(5.33) ‖∇θ ε
� ‖0,Iδ

≤ C
(ε

δ

)1/2

‖∇V�‖0,Iδ
, ‖∇θ̃ ε

� ‖0,Iδ
≤ C

(ε

δ

)1/2

‖∇W�‖0,Iδ
.

Let ρ ε be defined as in (3.14) and define

ϕε
� = θ ε

� + εχk
�

(
x�,

x

ε
, V (x�)

) ∂V�

∂xk
(1 − ρ ε),

ϕ̃ε
� = θ̃ ε

� + εχk
�

(
x�,

x

ε
, W (x�)

)∂W�

∂xk
(1 − ρ ε).

Observe that ϕε
� and ϕ̃ε

� vanish on ∂Iδ(x�) and satisfy

− div
(
aV (x�)∇ϕε

�(x)
)

= div
(
aV (x�)∇(ϕε

� − θ ε
� )(x)

)
x ∈ Iδ(x�),

− div
(
aW (x�)∇ϕ̃ε

�(x)
)

= div
(
aW (x�)∇(ϕ̃ε

� − θ̃ ε
� )(x)

)
x ∈ Iδ(x�).

Lemma 5.8. We have

‖∇(θ ε
� − θ̃ ε

� )‖0,Iδ
≤ C

(ε

δ

)1/2(
‖∇(V� − W�)‖0,Iδ

+ |(V − W )(x�)|(‖∇V�‖0,Iδ
+ ‖∇W�‖0,Iδ

)
)
.(5.34)

Proof. Using Lemma 1.8, we obtain

λ‖∇(ϕε
� − ϕ̃ε

�)‖0,Iδ
≤ max

x∈Iδ

|aV (x�) − aW (x�)|
(
‖∇(ϕε

� − θ ε
� )‖0,Iδ

+ ‖∇ϕ̃ε
�‖0,Iδ

)
+ max

x∈Iδ

|aW (x�)| ‖∇(ϕε
� − θ ε

� − ϕ̃ε
� + θ̃ ε

� )‖0,Iδ
.

A direct computation gives that

‖∇(ϕε
�−θ ε

� )‖0,Iδ
≤ C

(ε

δ

) 1
2 ‖∇V�‖0,Iδ

and ‖∇(ϕ̃ε
�−θ̃ ε

� )‖0,Iδ
≤ C

(ε

δ

) 1
2 ‖∇W�‖0,Iδ

,

which together with (5.33) gives

‖∇ϕ̃ε
�‖0,Iδ

≤ ‖∇θ̃ ε
� ‖0,Iδ

+ ‖∇(ϕ̃ε
� − θ̃ ε

� )‖0,Iδ
≤ C

(ε

δ

)1/2

‖∇W�‖0,Iδ
.
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Note that

ϕε
� − θ ε

� − ϕ̃ε
� + θ̃ ε

� = ε(1 − ρ ε)
(
χk

�

(
x�,

x

ε
, V (x�)

)
− χk

�

(
x�,

x

ε
, W (x�)

)) ∂V�

∂xk

+ ε(1 − ρ ε)χk
�

(
x�,

x

ε
, W (x�)

) ∂

∂xk
(V� − W�).

Using the continuity of {χk
�}d

k=1, a direct computation gives

‖∇(ϕε
�−θ ε

� −ϕ̃ε
� +θ̃ ε

� )‖0,Iδ
≤ C

(ε

δ

)1/2(
|(V −W )(x�)|‖∇V�‖0,Iδ

+‖∇(V�−W�)‖0,Iδ

)
.

Adding these up, we obtain (5.34). �

In the next lemma, we shall prove that E(V, W ) has certain continuity with
respect to V .

Lemma 5.9. For any V, W, Z ∈ XH satisfying ‖V ‖1,∞ + ‖W‖1,∞ ≤ M , there
exists a constant C(M) such that (5.13) holds with η(M) = C(M)(

√
ε/δ + δ).

Proof. Using the definition of vε
� and noticing that vε

� = (vε
� − v̂ ε

� ) + θ ε
� + V̂�, we

obtain ∫
−

Iδ

∇z ε
� · aV (x)∇vε

� dx =
∫
−

Iδ

∇Z� · aV (x)∇vε
� dx

= ∇Z� ·
(∫
−

Iδ

aV (x)(∇(v� − v̂ ε
� ) + ∇θ ε

� + ∇V̂�) dx
)
,

which together with
∫
−

Iκε
∇Z� · aV (x�)∇V̂� dx = ∇Z(x�) · A(x�, V (x�))∇V (x�) gives

E(V, Z) − E(W, Z) = :I1 + I2 + I3,

with

I1 = ∇Z� ·
[∫
−

Iδ

(
aV (x)∇(vε

� − v̂ ε
� ) − aW (x)∇(wε

� − ŵ ε
� )

)
dx

]
,

I2 = ∇Z� ·
[∫
−

Iδ

aV (x)∇θ ε
� − aW (x)∇θ̃ ε

� dx
]
,

and

I3 = ∇Z� ·
[∫
−

Iδ

aV (x)∇V̂� dx −
∫
−

Iκε

aV (x�)∇V̂� dx

−
∫
−

Iδ

aW (x)∇Ŵ� dx +
∫
−

Iκε

aW (x�)∇Ŵ� dx
]
.

I1 can be decomposed into

I1 = ∇Z� ·
[∫
−

Iδ

(
aV (x) − aW (x)

)
∇(vε

� − v̂ ε
� ) dx +

∫
−

Iδ

aW (x)∇(ψε
� − ψ̃ε

� ) dx
]
.

Using (5.29) and (5.31), we bound I1 as

|I1| ≤ Cδ
(
|∇(V� − W�)| + |(V − W )(x�)|(|∇V�| + |∇W�|)

)
|∇Z�|.

Similarly, using Lemma 5.8, we bound I2 as

|I2| ≤ C
(ε

δ

)1/2(
|∇(V� − W�)| + |(V − W )(x�)|(|∇V�| + |∇W�|)

)
|∇Z�|.
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I3 can be rewritten as

I3 = ∇Z� ·
∫
−

Iδ

((
aV (x) − aV (x�)

)
∇V̂� −

(
aW (x) − aW (x�)

)
∇Ŵ�

)
dx

−∇Z� ·
( 1
|κε|d − 1

δd

)∫
Iδ

(
aV (x�)∇V̂� − aW (x�)∇Ŵ�

)
dx

+
1

|κε|d∇Z� ·
∫

Iδ\Iκε

(
aV (x�)∇V̂� − aW (x�)∇Ŵ�

)
dx.

As in I1 and using (5.32), we bound I3 as

|I3| ≤ C
(ε

δ
+ δ

)(
|∇(V� − W�)| + |(V − W )(x�)|(|∇V�| + |∇W�|)

)
|∇Z�|.

Adding these up, we get

|E(V, Z) − E(W, Z)| ≤ C
(ε

δ
+ δ +

(ε

δ

)1/2)(
|∇(V� − W�)|

+ |(V − W )(x�)|(|∇V�| + |∇W�|)
)
|∇Z�|.(5.35)

Consequently we obtain

|K|
∑

x�∈K

ω�|E(V, Z) − E(W, Z)| ≤ C
(
δ +

(ε

δ

)1/2)
‖∇(V − W )‖0,K‖∇Z‖0,K

+ C
(
δ +

(ε

δ

)1/2)
‖V − W‖L∞(K)(‖∇V ‖0,K + ‖∇W‖0,K)‖∇Z‖0,K .

Using the inverse inequality (1.21) on each element, we obtain

‖V − W‖L∞(K)‖∇V ‖0,K ≤ CH
−d/2
K ‖V − W‖0,KH

d/2
K ‖∇V ‖L∞(K)

= C‖V − W‖0,K‖∇V ‖L∞(K).

Similarly ‖V − W‖L∞(K)‖∇W‖0,K ≤ C‖V − W‖0,K‖∇W‖L∞(K). A combination
of the above estimates gives (5.13) with η(M) = C(M)(

√
ε/δ + δ). �

Proof of the first case in Theorem 5.5. Let W = 0 in (5.35) and note that V ∈
W 1,∞(D). We obtain (5.27). Therefore if (

√
ε/δ + δ)|ln H | is sufficiently small,

then e(HMM)1/2|ln H | can be smaller than any given threshold; this verifies (5.10).
Next let η(M) = C(M)

(√
ε/δ+δ

)
. Then if (

√
ε/δ+δ)|ln H | is sufficiently small,

we have η(M) < 1; this verifies (5.13). �

Remark 5.10. Compared to the linear case, the upper bound for e(HMM) for
the case when δ/ε �∈ Z degrades to

√
ε/δ. This is due to the fact that AH is

nonsymmetric.

In the case of δ = ε, note that v̂ ε
� = V̂� and ŵ ε

� = Ŵ�. So a direct calculation
gives Lemma 5.6 for this case. Lemma 5.7 is also valid with δ replaced by ε. We
also have θ ε

� = 0 and θ̃ ε
� = 0. Observing that for any V, Z ∈ XH ,∫

−
Iε(x�)

∇z ε
� · aV (x�)∇v̂ ε

� dx =
∫
−

K

∇Z� · A(x�, V (x�))∇V� dx,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HETEROGENEOUS MULTISCALE METHOD 149

we may rewrite E(V, Z) as

E(V, Z) =
∫
−

Iε

∇z ε
� · aV (x)∇(vε

� − v̂ ε
� ) dx +

∫
−

Iε

∇z ε
� ·

(
aV (x) − aV (x�)

)
∇v̂ ε

� dx.

Consequently, (5.13) holds with η(M) = C(M)ε.

Proof of the second case in Theorem 5.5. Let W = 0 in (5.35) and note that V
∈ W 1,∞(D). We obtain (5.28). Therefore if ε|ln H | is sufficiently small, then
e(HMM)1/2|ln H | can be smaller than any given threshold; this verifies (5.10).

Next let η(M) = C(M)ε. Then if ε|ln H | is sufficiently small, we have η(M) < 1.
This proves (5.13). �

Appendix A. Estimating e(HMM) for problems

with random coefficients

Here we estimate e(HMM) for the random case. Our basic strategy follows that
of [43].

Denote a probability space by (Ω,F , P ) and let a(y, ω) =
(
aij(y, ω)

)
be a ran-

dom field whose statistics are invariant under integer shifts and which satisfies the
uniform ellipticity condition that there exist constants λ and Λ such that

λ|ξ|2 ≤ aij(y, ω)ξiξj ≤ Λ|ξ|2,
for almost all y ∈ R

d and ω ∈ Ω. For j = 1, · · · , d, denote by ϕj(y, ω) the solutions
of the cell problem:

(A.1) Lyϕj : = − divy

(
aij(y, ω)∇yϕj

)
= divy(aij · ej),

where {ej}d
j=1 are the standard basis in R

d. ∇ϕj is required to be stationary
under integer shift. The existence of ϕj is proved in [28, 36]. In general ϕj is not
stationary. The homogenized coefficient A [28, 36] is given by

A = 〈 a(I + ∇ϕ) 〉.
Here and in the following, we use the notation

〈 f 〉 = E

∫
[0,1]d

f(y) dy

and
[f ; m] =

1
md

∫
[0,m]d

f(y) dy,

where E denotes the expectation in the probability space (Ω,F , P ).
As in [43], we will consider the following auxiliary problem:

(A.2) Lu + ρu = f,

for any ρ > 0, where f is of the form

f =
d∑

j=1

Djgj + h,

with gj, h ∈ ρG which is defined as

ρG: = {ψ | 〈 |ψ|2 〉 ≤ G2},
and ψ is a random field whose statistics are stationary with respect to integer shifts.
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The solution of (A.2) can be expressed with the help of a diffusion process η
generated by the operator L.

For each fixed realization of {a(y, ·)}, denote by ηx the diffusion process generated
by L1 and starting from x at t = 0, and denote by Mx the expectation with respect
to ηx. Let

Γ(τ) =
∫ τ

0

f(η(t))e−ρt dt.

Then it is well known [21] that the solution of (A.2) is given by

u(x) = MxΓ(∞).

The following results are either standard or proved in [28, 43].

Lemma A.1. If u is the solution of (A.2), then there exists a constant C inde-
pendent of ρ such that

〈 |∇u|2 〉 + ρ〈u2 〉 ≤ C
(
〈 g2 〉 +

1
ρ
〈h2 〉

)
,(A.3)

〈 (MxΓ(∞))2 〉1/2 ≤ C
G2

ρ
,(A.4)

〈Mx(Γ(∞) − Γ(s))2 〉 ≤ C
G2

ρ
e−2sρ.(A.5)

Because of the lowest order term ρu, the Green’s function associated with the
operator L1 + ρI decays exponentially with rate O(

√
ρ). To make this statement

precise, we define the norm ‖x‖: = maxi|xi|, and

Qρ: =
{

x ∈ R
d | ‖x‖ ≤

(1
ρ

) 1
2 [ln(1/ρ)]1/2 }

.

Let τ be the first exit time of Qρ starting at x ∈ Qρ. Let ϕ̂ρ(x) = MxΓ(τ).

Lemma A.2 ([43]). If ρ is sufficiently small, then

E

∫
‖x‖≤10

|ϕρ(x) − ϕ̂ρ(x)|2 dx ≤ CG2e−C|ln(1/ρ)|2 ,(A.6)

E

∫
‖x‖≤1

|∇ϕρ(x) −∇ϕ̂ρ(x)|2 dx ≤ CG2e−C|ln(1/ρ)|2 .(A.7)

To prepare for the discussion on the consequence of the mixing condition, we
mention

Lemma A.3 ([43]). Let {aij , gj} and {ãij , g̃j} be two sets of data such that

{aij(y), gj(y)} = {ãij(y), g̃j(y)}

for y /∈ B, where B is a domain in R
d, and let ϕρ and ϕ̂ρ be the solutions of (A.2)

associated with {aij , gj} and {ãij , g̃j}, respectively (with h = 0). Then

(A.8)
∫
Rd

|ϕρ(x) − ϕ̃ρ(x)|2 dx ≤ C

ρ

∫
Rd

(G2 + |∇ϕρ(x)|2)IB(x) dx,

where IB is the indicator function of the domain B.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HETEROGENEOUS MULTISCALE METHOD 151

Now we introduce the crucial mixing condition [22]. Let B be a domain in
R

d. Denote by F(B) the σ-algebra generated by {aij(y, ω), y ∈ B}. Let ξ, η
be two random variables that are measurable with respect to F(B1) and F(B2),
respectively. Then

(A)
|Eξη − EξEη|

(Eξ2)1/2(Eη2)1/2
≤ e−λq,

where q = dist(B1, B2), λ > 0 is a fixed constant.

Lemma A.4. Under condition (A), we have

(A.9) E[ϕρ; m]2 ≤ C
(G2

ρ

( |ln(1/ρ)|2
ρ1/2m

)d

+ e−c(ln(1/ρ))2
)
.

Proof. For � = (�1, · · · , �d) ∈ Z
d ∩ [0, m)d: = Z

d
m, denote by I� the cube of size 1

centered at � + 1
2 = (�1 + 1

2 , · · · , �d + 1
2 ), and let ϕ� =

∫
I� ϕρ(x) dx. Then

[ϕρ; m] =
1

md

∑
�∈Zd

m

ϕ�.

We first estimate E(ϕ�ϕk). If |� − k| ≤ Cρ−1/2|ln(1/ρ)|2, then

E(ϕ�ϕk) ≤ 〈ϕ2
ρ(x) 〉1/2〈ϕ2

ρ(x) 〉1/2 ≤ C
G2

ρ
.

If |� − k| ≥ Cρ−1/2|ln(1/ρ)|2, then let B1: = � + B(ρ−1/2|ln(1/ρ)|2) and B2: =
k + B(ρ−1/2|ln(1/ρ)|2), where B(s) is a ball of size s in the norm ‖ · ‖. Denote by
ϕ̃1(x) the solution of (A.2) in which the coefficient

(
aij(y, ω)

)
is modified in R

d\B1

such that it is measurable with respect to F(B1), and similarly denote by ϕ̃2(x)
the solution of (A.2) in which the coefficient

(
aij(y, ω)

)
is modified in R

d\B2 such
that it is measurable with respect to F(B2). The modified coefficients

(
ãij(y, ω)

)
should still satisfy the condition on aij listed in the beginning of this subsection.
From ϕ̃1 and ϕ̃2, we can similarly define ϕ̃�

1 and ϕ̃�
2. Using (A.6), we have

E(ϕ̃�
1 − ϕ̃�)2 ≤ CG2e−C|ln(1/ρ)|2 ,

E(ϕ̃k
1 − ϕ̃k)2 ≤ CG2e−C|ln(1/ρ)|2 .

Since

E(ϕ�ϕk) = E(ϕ̃�ϕ̃k) + E(ϕ� − ϕ̃�
1)ϕ̃

k
2 + Eϕ̃�

1(ϕ
k − ϕ̃k

2)

+ E(ϕ� − ϕ̃�
1)(ϕ

k − ϕ̃k
2)

and

|Eϕ̃�
1|, |Eϕ̃k

2 | ≤ CGe−C|ln(1/ρ)|2 ,

|Eϕ̃�
1ϕ̃

k
2 | ≤ C

(G2

ρ
e−C|�−k| + G2e−C|ln(1/ρ)|2

)
,

we thus have

|Eϕ�ϕk| ≤ C
(G2

ρ
e−C|�−k| + G2e−C|ln(1/ρ)|2

)
.
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Hence

E[ϕρ; m]2 =
1

m2d

∑
�,k∈Zd

m

Eϕ�ϕk

=
1

m2d

( ∑
|�−k|≤ρ−1/2|ln(1/ρ)|2

Eϕ�ϕk +
∑

|�−k|>ρ−1/2|ln(1/ρ)|2
Eϕ�ϕk

)

≤ 1
m2d

(G2

ρ
md

(
ρ−1/2|ln(1/ρ)|2

)d

+ m2dG2e−C|ln(1/ρ)|2

× G2

ρ

∑
|�−k|≥ρ−1/2|ln(1/ρ)|2

e−C|�−k|
)

≤ C
G2

ρ

( ln(1/ρ)
ρ1/2m

)d

+ e−C|ln(1/ρ)|2 .

�

Proceeding along the same line as in [43, Theorem 2.1], using condition (A), we
have

Lemma A.5. For any 0 < γ < 1/2, under condition (A), there exists a constant
C such that

(A.10) |A − 〈 a(I + ∇χρ) 〉| ≤ Cρ
d−2−2γ

4+d ,

where χρ = {χk,ρ}d
k=1, and χk,ρ is the solution of (A.1) with g = (ak1, · · · , akd).

Now we are ready to estimate e(HMM). Define m = δ
2ε and denote by ϕm

j the
solution of (A.1) on Im = [0, m]d with the boundary condition that ϕm

j (y) = 0 on
∂Im, and let ϕm = (ϕm

1 , · · · , ϕm
d ). Then

e(HMM) = |A − [a(I + ∇ϕm)]m|.

Define ϕρ, ϕ
m
ρ similarly. We have

e(HMM) ≤ E1 + E2 + E3,

where

E1 = |A − [a(I + ∇ϕρ)]m|,
E2 = |[a(I + ∇ϕρ) − a(I + ∇ϕm

ρ )]m|,
E3 = |[a∇(ϕm

ρ − ϕm)]m|.

Obviously,
E1 = |A − 〈 a(I + ∇ϕρ) 〉 + [ψ̃]m|,

with ψ̃ = 〈 a(I + ∇ϕρ) 〉 − a(I + ∇ϕρ). It was proved in [43, Lemma 2.5] that

E|[ψ̃]m| ≤
(
E[ψ̃]2m

)1/2 ≤ C
( |ln(1/ρ)|2

ρ1/2m

)d/2

.

The above inequality together with Lemma A.5 gives

EE1 ≤ C
(
Gρ

d−2−2γ
4+d +

( |ln(1/ρ)|2
ρ1/2m

)d/2)
.
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To estimate E2, denote by τm the first exit time for the domain I2m. Then
ϕ2m

ρ = MxΓ(τm). For any s > 0,

|ϕρ − ϕ2m
ρ | = |Mx(Γ(∞) − Γ(τm))|

≤ Mx{|Γ(∞)| + |Γ(τm)|; τm ≤ s}
+ Mx{e−sρMρ(s)|Γ(∞) − Γ(τm)|; τm > s}

≤ C
(
Mx((Γ(∞)2 + Γ(τm)2)

)1/2

{Px(τm ≤ s)1/2 + e−sρ}.

Since
Px{τm ≤ s} ≤ e−Cm2/s,

we get

E[|ϕρ − ϕ2m
ρ |2]2m ≤ C

G2

ρ

(
e−Cm2/s + e−sρ

)2

.

Optimizing in s, we get

E[|ϕρ − ϕ2m
ρ |2]2m ≤ C

G4

ρ2
e−Cmρ1/2

.

Using standard interior estimates, we have

E E2 ≤
(

E[|∇(ϕρ − ϕm
ρ )|2]m

)1/2

≤ C

m

(
E[|ϕρ − ϕ2m

ρ |2]2m

)1/2

≤ CG2

mρ
e−Cmρ1/2

.

As for E3, proceeding along the same line as in the estimate of E1, we get

E E3 ≤ C
(
G2ρ

d−2−2γ
4+d +

( |ln(1/ρ)|2
ρ1/2m

)d/2)
.

To sum up, we have

Ee(HMM) ≤ C
(
G2ρ

d−2−2γ
4+d +

( |ln(1/ρ)|2
ρ1/2m

)d/2

+
CG2

mρ
e−Cmρ1/2

)
.

Optimizing in ρ with respect to the first two terms, we get ρ0 = m− 2d
d+4α with

α = (d − 2 − 2γ)/(d + 4). Hence

(A.11) E e(HMM) ≤ C
( |ln m|d

mκ
+

CG2

mρ0
e−Cmρ

1/2
0

)
≤ C

|ln m|d
mκ

,

with

κ =
d/2

1 +
d(d + 4)/4
d − 2 − 2γ

, 0 < γ <
1
2
.

Obviously, the |ln m|d factor in (A.11) can be absorbed into the factor m−κ. This
proves Theorem 1.3 for d = 3.

Remark A.6. The estimate (A.11) is unlikely to be optimal. If d = 1, a direct
calculation gives

E e(HMM) ≤ C
(ε

δ

)1/2

,
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whereas the estimate (A.11) does not apply for d = 1 and d = 2. We may use the
techniques in [13] to derive improved bounds for e(HMM) if the magnitude of the
oscillation in the coefficients

(
a ε

ij

)
is sufficiently small.
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Boston, 1997, pp. 21–43. MR1493039

34. G. Nguetseng, A general convergence result for a functional related to the theory of homoge-
nization, SIAM J. Math. Anal., 20 (1989), 608–623. MR0990867 (90j:35030)

35. J.T. Oden and K.S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive
modeling of heterogeneous materials. I. Error estimates and adaptive algorithms, J. Comput.
Phys., 164 (2000), 22–47. MR1786241 (2001e:74079)

36. G.C. Papanicolaou and S.R. S. Varadhan, Boundary value problems with rapidly oscillating
random coefficients, at Proceedings of the conference on Random Fields, Esztergom, Hungary,
1979, published in Seria Colloquia Mathematica Societatis Janos Bolyai, North-Holland, 27
(1981), pp. 835–873. MR0712714 (84k:58233)

37. R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element
approximations, Math. Comp., 38 (1982), 437–445. MR0645661 (83e:65180)

38. C. Schwab and A.-M. Matache, Generalzied FEM for homogenization problems, Multiscale
and Multiresolution Methods: Theory and Applications, Lecture Notes in Computational
Sciences and Engineering, Vol. 20 (T. J. Barth, T. Chan and R. Heimes eds.), Springer-Verlag,
Heidelberg, 2002, pp. 197–237. MR1928567 (2003i:65115)

39. R. Scott, Optimal L∞ estimates for the finite element method on irregular meshes, Math.
Comp., 30 (1976), 681–697. MR0436617 (55:9560)

40. S. Spagnolo, Convergence in energy for elliptic operators, Numerical Solutions of Partial
Differential Equations-III (SYNSPADE 1975, College Park, MD, May 1975) (B. Hubbard
ed.), Academic Press, New York, 1976, pp. 469–499. MR0477444 (57:16971)

41. L. Tartar, An introduction to the homogenization method in optimal design, Optimal shape
Design (A. Cellina and A. Ornelas eds.), Lecture Notes in Mathematics, Vol. 1740. Springer-
verlag, 2000. pp. 47–156. MR1804685

42. J. Xu, Two-grid discretization techniques for linear and nonlinear PDE, SIAM J. Numer.
Anal., 33 (1996), 1759–1777. MR1411848 (97i:65169)

43. V.V. Yurinskii, Averaging of symmetric diffusion in random media, Sibirsk. Mat. Zh. 23
(1982), no. 2, 176–188; English transl. in Siberian Math J., 27 (1986), 603–613. MR0867870
(88e:35190)

44. V.V. Zhikov, On an extension of the method of two-scale convergence and its application,
Sbornik: Mathematics, 191 (2000), 973–1014. MR1809928 (2001k:35026)

45. V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and
Integral Functionals, Springer-Verlag, Heidelberg, 1994. MR1329546 (96h:35003b)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1652127
http://www.ams.org/mathscinet-getitem?mr=1652127
http://www.ams.org/mathscinet-getitem?mr=0916685
http://www.ams.org/mathscinet-getitem?mr=0916685
http://www.ams.org/mathscinet-getitem?mr=0737190
http://www.ams.org/mathscinet-getitem?mr=0737190
http://www.ams.org/mathscinet-getitem?mr=1455261
http://www.ams.org/mathscinet-getitem?mr=1455261
http://www.ams.org/mathscinet-getitem?mr=2041455
http://www.ams.org/mathscinet-getitem?mr=0542557
http://www.ams.org/mathscinet-getitem?mr=0542557
http://www.ams.org/mathscinet-getitem?mr=1777492
http://www.ams.org/mathscinet-getitem?mr=1777492
http://www.ams.org/mathscinet-getitem?mr=1899805
http://www.ams.org/mathscinet-getitem?mr=1899805
http://www.ams.org/mathscinet-getitem?mr=1489436
http://www.ams.org/mathscinet-getitem?mr=1489436
http://www.ams.org/mathscinet-getitem?mr=1493039
http://www.ams.org/mathscinet-getitem?mr=0990867
http://www.ams.org/mathscinet-getitem?mr=0990867
http://www.ams.org/mathscinet-getitem?mr=1786241
http://www.ams.org/mathscinet-getitem?mr=1786241
http://www.ams.org/mathscinet-getitem?mr=0712714
http://www.ams.org/mathscinet-getitem?mr=0712714
http://www.ams.org/mathscinet-getitem?mr=0645661
http://www.ams.org/mathscinet-getitem?mr=0645661
http://www.ams.org/mathscinet-getitem?mr=1928567
http://www.ams.org/mathscinet-getitem?mr=1928567
http://www.ams.org/mathscinet-getitem?mr=0436617
http://www.ams.org/mathscinet-getitem?mr=0436617
http://www.ams.org/mathscinet-getitem?mr=0477444
http://www.ams.org/mathscinet-getitem?mr=0477444
http://www.ams.org/mathscinet-getitem?mr=1804685
http://www.ams.org/mathscinet-getitem?mr=1411848
http://www.ams.org/mathscinet-getitem?mr=1411848
http://www.ams.org/mathscinet-getitem?mr=0867870
http://www.ams.org/mathscinet-getitem?mr=0867870
http://www.ams.org/mathscinet-getitem?mr=1809928
http://www.ams.org/mathscinet-getitem?mr=1809928
http://www.ams.org/mathscinet-getitem?mr=1329546
http://www.ams.org/mathscinet-getitem?mr=1329546


156 W. E, P.-B. MING, AND P.-W. ZHANG

Department of Mathematics and PACM, Princeton University, Princeton, New Jer-

sey 08544 and School of Mathematical Sciences, Peking University, Beijing 100871, Peo-

ple’s Republic of China

E-mail address: weinan@Princeton.EDU

No. 55, Zhong-Guan-Cun East Road, Institute of Computational Mathematics, Acad-

emy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080,

People’s Republic of China

E-mail address: mpb@lsec.cc.ac.cn

School of Mathematical Sciences, Peking University, Beijing 100871, People’s Re-

public of China

E-mail address: pzhang@pku.edu.cn

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	1. Introduction and main results
	1.1. General methodology
	1.2. Heterogeneous multiscale method
	1.3. Main results
	1.4. Recovering the microstructural information
	1.5. Some technical background

	2. Generalities
	3. Estimating e(HMM)
	4. Reconstruction and compression
	4.1. Reconstruction procedure
	4.2. Compression operator

	5. Nonlinear homogenization problems
	5.1. Algorithms and main results
	5.2. Estimating e(HMM)

	Appendix A. Estimating e(HMM) for problems[1] with random coefficients
	References

