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Abstract

We analyze a class of numerical schemes proposed in [26] for stochastic dif-

ferential equations with multiple time scales. Both advective and diffusive time

scales are considered. Weak as well as strong convergence theorems are proven.

Most of our results are optimal. They in turn allow us to provide a thorough

discussion on the efficiency as well as optimal strategy for the method. c© 2005

Wiley Periodicals, Inc.

1 Introduction

Multiscale modeling and computation have received a great deal of interest in
recent years (for a review, see [8]). Yet there are relatively few analytical results
available that help to assess the performance and provide guidance for designing
these methods. The main purpose of the present paper is to provide a thorough
analysis of a recently proposed numerical technique [26] (see also [11]) for sto-
chastic differential equations with multiple time scales.

Consider the following generic example for (x, y) ∈ Rn × Rm :

(1.1)







Ẋ ε
t = f

(

X ε
t , Y ε

t , ε
)

, X ε
0 = x,

Ẏ ε
t =

1

ε
g
(

X ε
t , Y ε

t , ε
)

, Y ε
0 = y.

Here f (·) ∈ Rn and g(·) ∈ Rm are O(1) functions (possibly random) in ε, and ε is
a small parameter representing the ratio of the time scales in the system. We have
assumed that the phase space can be decomposed into slow degrees of freedom
x and fast ones y. Systems of this type arise from molecular dynamics, material
sciences, atmospheric and ocean sciences, etc. Standard computational schemes
may fail due to the separation between the O(ε) time scale that must be dealt with
and the O(1) and O(ε−1) time scales that are of actual interest. On the analytical
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side [12, 17, 24] (see also [3, 4, 20]), the following is known about (1.1). On the
O(1) time scale (advective time scale), if the dynamics for Y ε

t with X ε
t = x fixed

has an invariant probability measure µε
x(dy) and the following limit exists:

(1.2) f̄ (x) = lim
ε→0

∫

Rm

f (x, y, ε)µε
x(dy),

then in the limit of ε → 0, X ε
t converges to the solution of

(1.3) ˙̄Xt = f̄ (X̄t), X̄0 = x .

On the longer O(ε−1) time scale (diffusive time scale), fluctuations become
important and additional terms must be included in (1.3). Under appropriate as-
sumptions on f and g, for small ε the dynamics for X ε

t can be approximated by
the stochastic differential equation

(1.4) ˙̄X ε
t = f̄

(

X ε
t

)

+ εb̄
(

X̄ ε
t

)

+
√

εσ̄
(

X̄ ε
t

)

Ẇt , X̄ ε
0 = x,

where Wt is a Wiener process and the coefficients b̄ and σ̄ are expressed in terms of
limits of expectations similar to (1.2); see Section 3. The importance of including
the new terms proportional to b̄ and σ̄ is especially clear when f̄ is either 0 or O(ε)

due, for example, to some symmetry, and the evolution of the slow variable arises
only on the O(ε−1) time scale.

It is often the case that the dynamics of the fast variables Y ε
t is too complicated

for the coefficients f̄ , b̄, and σ̄ to be computed analytically. The basic idea in
[26] is to approximate f̄ , b̄, and σ̄ numerically by solving the original fine scale
problem on time intervals of an intermediate scale, and use that data to evolve the
slow variables with macroscopic time steps. Several related techniques have been
proposed [7, 13, 16]. For kinetic Monte Carlo schemes involving disparate rates,
Novotny et al. proposed in [16] a technique called projective dynamics, which
reduces the Markov chain onto a smaller state space involving only the slow pro-
cesses. A similar idea, also named projective dynamics, was proposed in [13] for
dissipative deterministic ODEs with separated time scales. The method in [13] can
also be viewed as a special case of a general class of methods called Chebyshev
methods for stiff ODEs [19].

Of particular relevance to the present work is the framework of “heterogeneous
multiscale” methods proposed in [7] (HMM for short), since it provides a very
natural setting for the method proposed in [26]. At the same time, it also gives
a general principle for the analysis of this kind of method. In the present setting,
the general theorem proven in [7] states that if the macrosolver is stable, then the
numerical error consists of two parts: a part due to the error in the macrosolver
and a new part due to the approximation of the macroscale data (here the σ̄ , ā,
and b̄) by the microsolver. In general, the second part consists of the error in the
microsolver, the relaxation error, and the sampling error. This general principle has
been used for the analysis of several classes of multiscale methods (see in particular
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[6, 9, 11, 23]). It is also the strategy that we will follow in this paper. Deterministic
analogues of the algorithm were analyzed in [6, 10].

We will study equations like (1.1) both on the advective time scale (Section 2)
and the diffusive time scale (Section 3). After presenting the multiscale numeri-
cal schemes (Sections 2.1, 3.1, and 3.5), we prove convergence theorems for these
schemes (Sections 2.2, 2.3, and 3.2), and use these results (Sections 2.4 and 3.3) to
determine the optimal set of numerical parameters to be used at a given error toler-
ance. We also illustrate the schemes and test our theorems on numerical examples
(Sections 2.5 and 3.4).

Before ending this introduction, let us note that a simple trick for dealing with
the multiscaled nature of the problem above is to increase the parameter ε to an
optimal value according to a given error tolerance. This idea is indeed used in
the artificial compressibility method for computing nearly incompressible flows
[2] and the Car-Parrinello method [1], and has proven to be very successful. The
multiscale scheme is much more efficient than direct solutions of the microscale
model with the original ε ' 1. More interestingly, our results show that if used
correctly, the multiscale scheme is at least as efficient (on the advective time scale)
or much more efficient (on the diffusive time scale) than a direct scheme even if
an optimal value of ε is used in the microscale model to minimize the cost. In
addition, the multiscale scheme can be applied even in situations when explicitly
increasing the value of ε in the original equations can be difficult.

2 Advective Time Scale

Consider the following dynamics:

(2.1)







Ẋ ε
t = a

(

X ε
t , Y ε

t , ε
)

, X ε
0 = x,

Ẏ ε
t =

1

ε
b
(

X ε
t , Y ε

t , ε
)

+
1
√

ε
σ
(

X ε
t , Y ε

t , ε
)

Ẇt , Y ε
0 = y,

where a ∈ Rn , b ∈ Rm , and σ ∈ Rm × Rd are deterministic functions and Wt is
a standard d-dimensional Wiener process. Define C∞

b to be the space of smooth
functions with bounded derivatives of any order. We assume the following:

Assumption 2.1. The coefficients a, b, and σ , viewed as functions of (x, y, ε), are
in C∞

b ; a and σ are bounded.

Assumption 2.2. There exists an α > 0 such that ∀(x, y, ε),

|σ T (x, y, ε)y|2 ≥ α|y|2.

Assumption 2.3. There exists a β > 0 such that ∀(x, y1, y2, ε),

〈(y1 − y2), (b(x, y1, ε) − b(x, y2, ε))〉 + ‖σ (x, y1, ε) − σ (x, y2, ε)‖2 ≤

− β|y1 − y2|2,

where ‖ · ‖ denotes the Frobenius norm.
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Assumption 2.1 can be weakened but is used here for simplicity of presenta-
tion. Assumption 2.2 means that the diffusion is nondegenerate for the y-process.
Assumption 2.3 is a dissipative condition. Under these assumptions, one can show
that for each (x, ε), the dynamics

(2.2) Ẏ x,ε
t =

1

ε
b
(

x, Y x,ε
t , ε

)

+
1
√

ε
σ
(

x, Y x,ε
t , ε

)

Ẇt , Y x,ε
0 = y,

is exponentially mixing with a unique invariant probability measure µε
x(dy). De-

fine

(2.3) ā(x) = lim
ε→0

∫

Rm

a(x, y, ε)µε
x(dy).

It is proven later (with error estimates) that under Assumptions 2.1, 2.2, and 2.3,
X ε

t converges strongly as ε → 0 to the solution X̄t of the following dynamics:

(2.4) ˙̄Xt = ā(X̄t), X̄0 = x .

2.1 The Numerical Scheme

Usually of interest is the behavior of the slow variable X ε
t , whose leading-order

term for small ε is X̄t . But the coefficient ā in the effective equation (2.4) for X̄t is
given via an expectation with respect to measure µε

x(dy) that is usually difficult or
impossible to obtain analytically, especially when the dimension m is large.

The basic idea proposed in [26] is to solve (2.4) with a macrosolver in which
ā is estimated by solving the microscale problem (2.2). This leads to multiscale
schemes whose structure is explained next. (For simplicity we restrict ourselves
to explicit solvers. Extension to implicit solvers is straightforward, but it tends to
make the algorithm and implementation more involved.)

At each macrotime step n, having the numerical solution Xn , we need to es-
timate ā(Xn) in order to move to step n + 1. Since X̄t is deterministic, as a
macrosolver we may use any stable explicit ODE solver such as a forward Eu-
ler, a Runge-Kutta, or a linear multistep method. For instance, in the simplest case
when the forward Euler is selected as the macrosolver, we have

(2.5) Xn+1 = Xn + ãn%t,

where %t is the macrotime-step size and ãn is the approximation of ā(Xn) that we
obtain in a two-step procedure:

(1) We solve (2.2) using a microsolver for stochastic ODEs and denote the so-
lution by {Yn,m} where m labels the microtime steps. Multiple independent
replicas can be created, in which case we denote the solutions by {Yn,m, j }
where j is the replica number.
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(2) We then define an approximation of ā(Xn) by the following time and en-
semble average:

ãn =
1

M N

M
∑

j=1

nT +N−1
∑

m=nT

a(Xn, Yn,m, j , ε),

where M is the number of replicas, N is the number of steps in the time
averaging, and nT is the number of steps we skip to eliminate transients.

For the microsolver, denoting by & its weak order of accuracy, for each realiza-
tion we may use the first-order scheme (& = 1) [15]

(2.6)

Y i
n,m+1 = Y i

n,m +
1
√

ε

∑

j

σ i j (Xn, Yn,m, ε)ξ
j

m+1

√
δt

+
1

ε
bi (Xn, Yn,m, ε)δt +

1

ε

∑

jk

Ai jk(Xn, Yn,m, ε)s
k j
m+1δt

or the second-order scheme (& = 2)

(2.7)

Y i
n,m+1 = Y i

n,m +
1
√

ε

∑

j

σ i j (Xn, Yn,m, ε)ξ
j

m+1

√
δt

+
1

ε
bi (Xn, Yn,m, ε)δt +

1

ε

∑

jk

Ai jk(Xn, Yn,m, ε)s
k j
m+1δt

+
1

2ε3/2

∑

j

Bi j (Xn, Yn,m, ε)ξ
j

m+1δt3/2

+
1

2ε2
Ci (Xn, Yn,m, ε)δt2.

For the initial condition, we take Y0,0 = 0 and

(2.8) Yn,0 = Yn−1,nT +N−1;

i.e., the initial values for the microvariables at macrotime step n are chosen to be
their final values from macrotime step n − 1.

In (2.6) and (2.7) δt is the microtime step size (note that it only appears in terms
of the ratio δt/ε =: %τ ), and the coefficients are defined as



































Ai jk =
∑

l

(∂ lσ i j )σ lk,

Bi j =
∑

l

(σ l j∂ lbi + bl∂ lσ i j ) +
1

2

∑

kl

gkl∂k∂ lσ i j ,

Ci =
∑

j

b j∂ j bi +
1

2

∑

jk

g jk∂ j∂kbi ,
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where g = σσ T and the derivatives are taken with respect to y. The random

variables {ξ j
m} are i.i.d. Gaussian with mean 0 and variance 1, and

sk j
m =































1

2
ξ k

mξ j
m + zk j

m , k < j,

1

2
ξ k

mξ j
m − z jk

m , k > j,

1

2

((

ξ j
m

)2 − 1
)

, k = j,

where {zk j
m } are i.i.d. with P{zk j

m = 1
2
} = P{zk j

m = − 1
2
} = 1

2
.

2.2 Strong Convergence Theorem

In this section, we give the rate of strong convergence for the scheme described
above under Assumptions 2.1, 2.2, and 2.3 given at the beginning of Section 2.
Throughout the remainder of the paper, we will denote by C a generic positive
constant that may change its value from line to line.

THEOREM 2.4 Assume that the macrosolver is stable and of kth-order accuracy

for (2.4) and that %t and δt/ε are small enough. Then for any T0 > 0, there exists

a constant C > 0 independent of (ε, %t, δt, nT , M, N ) such that

(2.9)

sup
n≤T0/%t

E|X ε
tn
− Xn| ≤

C

(√
ε + %t k + (δt/ε)&

+
e−

1
2 βnT (δt/ε)

√
N (δt/ε) + 1

(

R +
√

R
)

+
√

%t
√

M(N (δt/ε) + 1)

)

,

where tn = n%t and

(2.10) R =
%t

1 − e−
1
2 β(nT +N−1)(δt/ε)

.

The error estimate on |X ε
tn
− Xn| in (2.9) can be divided into three parts:

(1) |X ε
t − X̄t |, where X̄t is the solution of the effective equation (2.4),

(2) |X̄tn − X̄n|, where X̄n is the approximation of X̄tn given by the selected
macrosolver assuming that ā(x) is known, and

(3) |X̄n − Xn|.
The first part is a principle of averaging estimates for stochastic ODEs, and we will
show in Lemma 2.5 that

sup
0≤t≤T0

E|X ε
t − X̄t | ≤ C

√
ε.

This part gives rise to the first term in (2.9).
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The second part is a standard ODE estimate and based on the smoothness of ā
given by Lemma A.4 in the appendix; we have

(2.11) sup
n≤T0/%t

∣

∣X̄tn − X̄n

∣

∣ ≤ C%t k .

This is the second term in (2.9).

The third part accounts for the error caused by using ãn instead of ā(Xn) in
the macrosolver. This part gives rise to a term of order O(ε) that is dominated
by C

√
ε and to the remaining three terms in (2.9), which will be estimated later

using Lemma 2.6. In this part of the error, the term (δt/ε)& is due to the micro-
time discretization that induces a difference between the invariant measures of the
continuous and discrete dynamical systems. The term

e−
1
2 βnT (δt/ε)

√
N (δt/ε) + 1

(

R +
√

R
)

accounts for the errors caused by relaxation of the fast variables. As will become
clear from the proof, the factor R appears due to the way in (2.8) that we initial-
ize the fast variables at each macrotime step. Different initializations will lead to
similar error estimates with different values of R. For example, if we use Yn,0 = 0,
then R = 1. As we will see in Section 2.4, the factor R is not essential for the
multiscale scheme to be more efficient than a direct scheme, but the presence of
this factor permits us to achieve even bigger efficiency gains. Finally, the term

√
%t

√
M(N (δt/ε) + 1)

accounts for the sampling errors when the fast variable reaches local equilibrium
(via a central-limit-theorem type of estimate).

Before proceeding with the proof of Theorem 2.4, we point out a property of
(2.9) that may seem somewhat surprising at first sight, namely, that the HMM
scheme converges as %t → 0, δt → 0, on any sequence such that R → 0, even
if one takes one realization only, M = 1, and makes only one microtime step per
macrotime step, nT = 1, N = 1 (in this case R = %t/(δt/ε) plus higher-order
terms). Indeed, in this case, (2.9) reduces to

(2.12) sup
n≤T0/%t

E
∣

∣X ε
tn
− Xn

∣

∣ ≤ C
(√

ε +
√

%t/(δt/ε) + (δt/ε)&
)

.

While the set of parameters leading to (2.12) may not be optimal (see the discussion
in Section 2.5), (2.12) is clearly a nice property of the multiscale scheme since, at
fixed %t and δt , the smaller M , nT , and N , the more efficient the scheme is. The
ultimate reason that the multiscale scheme converges even when nT = N = M = 1
has to be found in the proof of Theorem 2.4, but it is worthwhile to give an intuitive
explanation for this fact.

The parameter nT can be small and even equal to 1 because we reinitialize the
fast variables at macrotime step n by their final value at macrotime step n − 1
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(see (2.8)). Therefore they already sample µε
Xn−1

(dy) initially when one lets them

evolve to sample µε
Xn

(dy). Since Xn−Xn−1 = O(%t), these two measures become
closer and closer as %t → 0, and relaxation requires fewer and fewer microtime
steps. This gives convergence even when nT = 1 provided that %t/(δt/ε) → 0.
(Note that if we do not use (2.8) to reinitialize the fast variables, the multiscale
scheme still converges with M = N = 1 but it requires that nT (δt/ε) → ∞.)

On the other hand, the reason that the multiscale scheme converges even when
N = M = 1 is best explained through a simple example. Consider the two-
dimensional system

(2.13)











Ẋ ε
t = −Y ε

t , X0 = x,

Ẏ ε
t = −

1

ε
(Y ε

t − X ε
t ) +

1
√

ε
Ẇt , Y0 = y,

which leads to the following equation for X ε
t in the limit as ε → 0:

(2.14) Ẋt = −Xt , X0 = x .

To focus on sampling errors rather than relaxation errors, let us build a forward Eu-
ler multiscale scheme where, at each macrotime step, we draw only one realization
of Y ε

t out of the conditional measure

(2.15) µXn (dy) =
e−(y−Xn)2

√
π

dy

where Xn is the current value of the slow variable in the scheme. Extracting the
mean explicitly, this amounts to using

(2.16) Xn+1 = Xn − Xn%t +
1
√

2
ξn%t, X0 = x,

where the ξn’s are i.i.d. Gaussian random variables with mean 0 and variance 1.
Note that ξn is multiplied by %t , not

√
%t as in a standard SDE. This is not a

misprint and, in fact, is the reason that the noise term in (2.16) induces an error that
disappears as %t → 0. To see this explicitly, note that the solution of (2.16) is

(2.17) Xn = x(1 − %t)n +
%t
√

2

n−1
∑

j=1

(1 − %t) jξn− j .

The first term on the right-hand side is what would have been provided by a forward
Euler scheme for the limiting equation in (2.14). Therefore, a strong estimate
accounting for the error introduced by sampling is

(2.18) E
∣

∣Xn − x(1 − %t)n
∣

∣

2 =
%t2

2

n−1
∑

j=1

(1 − %t)2 j = O(%t)

for n = O(%t−1). Even though the scheme above makes an O(1) error in sam-
pling at each macrotime step, it converges as %t → 0 because the fast variable
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is sampled over and over again before the slow variable has changed significantly.
This leads to an effective number of realizations of the order O(%t−1) and shows
the importance of assessing the quality of the estimator as integrated in the multi-
scale scheme rather than as a tool to evaluate the conditional expectation of the fast
variables at each macrotime step.

LEMMA 2.5 For any T0 > 0, there exists a constant C > 0 independent of ε such
that

(2.19) sup
0≤t≤T0

E
∣

∣X ε
t − X̄t

∣

∣ ≤ C
√

ε.

PROOF: Because a(x, y, ε) is bounded, the slow process {X ε
t }0≤t≤T0

is also
bounded on the finite time interval [0, T0]. Partitioning [0, T0] into subintervals
of the same length % =

√
ε and denoting by /z0 the largest integer less than or

equal to z, we construct the following auxiliary processes (X̃ ε
t , Ỹ ε

t ) such that for
t ∈ [k%, (k + 1)%),











˙̃X ε
t = a

(

X ε
k%, Ỹ ε

t , ε
)

, X̃ ε
0 = x,

˙̃Y ε
t =

1

ε
b
(

X ε
k%, Ỹ ε

t , ε
)

+
1
√

ε
σ
(

X ε
k%, Ỹ ε

t , ε
)

Ẇt , Ỹ ε
k% = Y ε

k%.

A direct computation with Itô’s formula gives for t ∈ [k%, (k + 1)%),

(2.20)
d E

∣

∣Y ε
t − Ỹ ε

t

∣

∣

2 =
2

ε
E(Y ε

t − Ỹ ε
t ) ·

(

b(X ε
t , Y ε

t , ε) − b
(

X ε
k%, Ỹ ε

t , ε
))

dt

+
1

ε
E

∣

∣σ
(

X ε
t , Y ε

t , ε
)

− σ
(

X ε
k%, Ỹ ε

t , ε
)
∣

∣

2
dt,

where Y ε
t solves (2.1). Using Assumptions 2.1, 2.2, and 2.3, we have

(

Y ε
t − Ỹ ε

t

)

·
(

b
(

X ε
t , Y ε

t , ε
)

− b
(

X ε
k%, Ỹ ε

t , ε
))

+
1

2

∣

∣σ
(

X ε
t , Y ε

t , ε
)

− σ
(

X ε
k%, Ỹ ε

t , ε
)
∣

∣

2

≤
(

Y ε
t − Ỹ ε

t

)

·
(

b
(

X ε
t , Y ε

t , ε
)

− b
(

X ε
t , Ỹ ε

t , ε
))

+
(

Y ε
t − Ỹ ε

t

)

·
(

b
(

X ε
t , Ỹ ε

t , ε
)

− b
(

X ε
k%, Ỹ ε

t , ε
))

+
∣

∣σ
(

X ε
t , Y ε

t , ε
)

− σ
(

X ε
t , Ỹ ε

t , ε
)
∣

∣

2

+
∣

∣σ
(

X ε
t , Ỹ ε

t , ε
)

− σ
(

X ε
k%, Ỹ ε

t , ε
)
∣

∣

2

≤ −β
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2 + C
(
∣

∣Y ε
t − Ỹ ε

t

∣

∣

∣

∣X ε
t − X ε

k%

∣

∣ +
∣

∣X ε
t − X ε

k%

∣

∣

2)
.

Noting that for any β > 0, we have

C
∣

∣Y ε
t − Ỹ ε

t

∣

∣

∣

∣X ε
t − X ε

k%

∣

∣ ≤
1

2
β
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2 +
C2

2β

∣

∣X ε
t − X ε

k%

∣

∣

2
,
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which can be written as

(2.21)

(

Y ε
t − Ỹ ε

t

)

·
(

b
(

X ε
t , Y ε

t , ε
)

− b
(

X ε
k%, Ỹ ε

t , ε
))

+
1

2

∣

∣σ
(

X ε
t , Y ε

t , ε
)

− σ
(

X ε
k%, Ỹ ε

t , ε
)
∣

∣

2

≤ −
1

2
β
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2 + C
∣

∣X ε
t − X ε

k%

∣

∣

2
.

By the boundedness of a, for t ∈ [k%, (k + 1)%),

(2.22) E
∣

∣X ε
t − X ε

k%

∣

∣

2 ≤ C%2.

Combining (2.20), (2.21), and (2.22), it follows that

d E
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2 ≤ −
β

ε

∣

∣Y ε
t − Ỹ ε

t

∣

∣

2
dt +

C

ε
%2 dt.

Since E|Y ε
k% − Ỹ ε

k%|2 = 0 by construction, the Gronwall inequality then implies

that

E
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2 ≤ C%2.

This is true for each t ∈ [k%, (k + 1)%), and hence for 0 ≤ t ≤ T0. Therefore we

get

E
∣

∣X ε
t − X̃ ε

t

∣

∣

2

= E

∣

∣

∣

∣

∫ t

0

(

a
(

X ε
s , Y ε

s , ε
)

− a
(

X̃ ε
s , Ỹ ε

s , ε
))

ds

∣

∣

∣

∣

2

≤ CE

∫ t

0

(
∣

∣X ε
s − X ε

/s/%0%
∣

∣

2 +
∣

∣X̃ ε
s − X ε

/s/%0%
∣

∣

2 +
∣

∣Y ε
s − Ỹ ε

s

∣

∣

2)
ds

≤ Cε.

This implies that

(2.23) E
∣

∣X ε
t − X̃ ε

t

∣

∣ ≤ C
√

ε.

On the other hand, based on the smoothness of functions a and

â(x, ε) :=
∫

Rm

a(x, y, ε)µε
x(dy),
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and the exponential mixing property established in Lemma A.4 and Proposition A.2
given in the appendix, we have

(2.24)

E

∣

∣

∣

∣

∫ (k+1)%

k%

(

a
(

X ε
k%, Ỹ ε

t , ε
)

− ā
(

X ε
k%

))

dt

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

∫ (k+1)%

k%

(

a
(

X ε
k%, Ỹ ε

t , ε
)

− â(X ε
k%, ε)

)

dt

∣

∣

∣

∣

+
∣

∣â
(

X ε
k%, ε

)

− ā
(

X ε
k%

)
∣

∣%

≤ CεE
(
∣

∣Ỹ ε
k%

∣

∣

2 + 1
)

≤ Cε,

where the last step uses E(|Ỹ ε
k%|2+1) ≤ C , which follows from the energy estimate

(A.3) established in the appendix. By the smoothness of ā(x) = â(x, 0), we have

E
∣

∣X̃ ε
t − X̄t

∣

∣ = E

∣

∣

∣

∣

∫ t

0

(

a(X ε
/s/%0%, Ỹ ε

s , ε) − ā(X̄s)
)

ds

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

∫ t

0

(

a
(

X ε
/s/%0%, Ỹ ε

s , ε
)

− ā
(

X ε
/s/%0%

))

ds

∣

∣

∣

∣

+ E

∣

∣

∣

∣

∫ t

0

(

ā
(

X ε
/s/%0%

)

− ā
(

X ε
s

))

ds

∣

∣

∣

∣

+ E

∣

∣

∣

∣

∫ t

0

(

ā
(

X ε
s

)

− ā
(

X̄s

))

ds

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

∫ t

0

a
(

X ε
/s/%0%, Ỹ ε

s

)

ds −
∫ t

0

ā
(

X ε
/s/%0%

)

ds

∣

∣

∣

∣

+ C% + C

∫ t

0

E
∣

∣X ε
s − X̄s

∣

∣ds.

Breaking the first integral at the right hand-side into /t/%0 pieces and using (2.24),
we conclude that

(2.25) E
∣

∣X̃ ε
t − X̄t

∣

∣ ≤ C

(√
ε +

∫ t

0

E
∣

∣X ε
s − X̄s

∣

∣ds

)

.

Since

E
∣

∣X ε
t − X̄t

∣

∣ ≤ E
∣

∣X ε
t − X̃ ε

t

∣

∣ + E
∣

∣X̃ ε
t − X̄t

∣

∣,

combining (2.23) and (2.25) and using the Gronwall inequality, we arrive at (2.19).
!

Denoting by EXn the conditional expectation with respect to Xn , we have the
following:
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LEMMA 2.6 Under the assumptions in Theorem 2.4, for each T0 > 0, there exists

an independent constant C > 0 such that ∀n ∈ [0, T0/%t],

(2.26)

E|EXn ãn − ā(Xn)|2 ≤

C

(

ε2 + (δt/ε)2& +
e−βnT (δt/ε)

N (δt/ε) + 1
(e−β(n−1)Nm (δt/ε) + R2)

)

,

and

(2.27)

E|ãn − ā(Xn)|2

≤ C

(

ε2 + (δt/ε)2& +
e−βnT (δt/ε)

N (δt/ε) + 1
(e−β(n−1)Nm (δt/ε) + R2)

)

+ C
1

M(N (δt/ε) + 1)
,

where Nm = nT + N −1 is the total number of microtime steps per macrotime step

and realization.

PROOF: Notice first that since a(x, y, ε) is bounded, {Xn}n≤T0/%t is in a com-
pact set. Let

â(x, ε) =
∫

Rm

a(x, y, ε)µε(dy).

Using the smoothness of â(x, ε) established in Lemma A.4, it follows that ā(x) =
â(x, 0). Since

E|EXn ãn − ā(Xn)|2 ≤ 2E|EXn ãn − â(Xn, ε)|2 + 2E|â(Xn, ε) − ā(Xn)|2,

and E|â(Xn, ε) − ā(Xn)|2 ≤ Cε2 by Lemma A.4, this term gives the factor Cε2

in (2.26), and it suffices to estimate E|EXn ãn − â(Xn, ε)|2 to derive the remaining
terms. A similar argument gives the Cε2 term in (2.27) and links the remaining
terms to the estimate of E|ãn − â(Xn, ε)|2.

We first compute

E|EXn ãn − â(Xn, ε)|2

=
1

M2 N 2
E

∣

∣

∣

∑

m, j

EXn a(Xn, Yn,m, j , ε) − â(Xn, ε)
∣

∣

∣

2

≤
1

M N
E

∑

m, j

∣

∣

∣
EXn a(Xn, Yn,m, j , ε) − â(Xn, ε)

∣

∣

∣

2

.

By Lemma A.3 in the appendix, if δt/ε is small enough, for each n and j , Yn,m, j

is exponentially mixing with unique invariant probability measure µδt,ε
Xn

, and there

exists a random variable ζ Xn ,δt,ε with distribution µδt,ε
Xn

that is independent of the
driving Wiener processes. Denote by ζn,m the solution provided by the microsolver
with the initial condition ζ Xn ,δt,ε. Then, by construction, the distribution of ζn,m is
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µδt,ε
Xn

for all m > 0. We have (recall that Nm = nT + N − 1 is the total number of
microtime steps per macrotime step and realization),

(

E
∣

∣EXn a(Xn, Yn,m, j , ε) − â(Xn, ε)
∣

∣

2)1/2

≤
(

E
∣

∣EXn

(

a(Xn, Yn,m, j , ε) − a(Xn, ζn,nNm+m, ε)
)
∣

∣

2)1/2

+
(

E
∣

∣EXn a(Xn, ζn,nNm+m, ε) − â(Xn, ε)
∣

∣

2)1/2
.

The smoothness of a guarantees that

E
∣

∣EXn

(

a(Xn, Yn,m, j , ε) − a(Xn, ζn,nNm+m, ε)
)
∣

∣

2 ≤ CE|Yn,m, j − ζn,nNm+m |2,

while (A.14) implies that

E
∣

∣EXn a(Xn, ζn,nNm+m, ε) − â(Xn, ε)
∣

∣

2 ≤ C(δt/ε)2&.

Therefore

(2.28)
(

E
∣

∣EXn a(Xn, Yn,m, j , ε) − â(Xn, ε)
∣

∣

2)1/2 ≤

C
((

E|Yn,m, j − ζn,nNm+m |2
)1/2 + (δt/ε)&

)

.

The exponential mixing property established in Lemma A.3 implies that
(

E|Yn,m, j − ζn,nNm+m |2
)1/2

≤ e−
1
2
βm(δt/ε)

(

E|Yn−1,Nm , j − ζn,nNm |2
)1/2

≤ e−
1
2
βm(δt/ε)

(

E|Yn−1,Nm , j − ζn−1,nNm |2
)1/2

+ e−
1
2
βm(δt/ε)

(

E|ζn,nNm − ζn−1,nNm |2
)1/2

≤ e−
1
2
βm(δt/ε)

(

(E|Yn−1,Nm , j − ζn−1,nNm )|2
)1/2 + C%t

)

,

where the last inequality follows since, by Assumptions 2.1 and 2.3,

E|ζn,nNm − ζn−1,nNm |2 ≤ CE|Xn − Xn−1|2 ≤ C%t2.

Repeating the above argument at each macrotime step from n − 1 to n = 0, we
have

(

E|Yn−1,Nm , j − ζn−1,nNm |2
)1/2

≤ e−
1
2
βNm (δt/ε)

(

(E|Yn−2,Nm , j − ζn−2,(n−1)Nm |2)1/2 + C%t
)

≤ C(e−
1
2
β(n−1)Nm(δt/ε) + R).

Inserting these results in (2.28), we arrive at

E
∣

∣EXn a(Xn, Yn,m, j , ε) − â(Xn, ε)
∣

∣

2

≤ C
(

e−βm(δt/ε)(e−β(n−1)Nm (δt/ε) + R2) + (δt/ε)2&
)

.
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The inequality also holds for n = 0 with an appropriate choice of C . Summing
over m ∈ [nT , nT + N − 1] and j ∈ [1, M], we obtain

E
∣

∣EXn ãn − â(Xn, ε)
∣

∣

2

≤ C

(

e−βnT (δt/ε)
(

e−β(n−1)Nm (δt/ε) + R2
) 1 − e−βN (δt/ε)

N (1 − e−β(δt/ε))
+ (δt/ε)2&

)

.

Assuming δt/ε ∈ (0, 1), we have

1 − e−βN (δt/ε)

N (1 − e−β(δt/ε))
≤ C

1 − e−βN (δt/ε)

N (δt/ε)
≤

C ′

N (δt/ε) + 1
,

and the last two terms in (2.26) follow. Next we compute

E
∣

∣ãn − â(Xn, ε)
∣

∣

2 =
1

M2 N 2

∑

j,m,k,l

E
(

a(Xn, Yn,m, j , ε) − â(Xn, ε)
)

·
(

a(Xn, Yn,l,k, ε) − â(Xn, ε)
)

.

By the same analysis as above and by independence between Yn,m, j and Yn,m,k

for j 2= k for given {Xn′}n′≤n and {Yn′,·,·}n′<n , we have for j 2= k in the sum above

∣

∣

∣

∣

∑

j 2=k

∑

m,l

E
(

a(Xn, Yn,m, j , ε) − â(Xn, ε)
)

·
(

a(Xn, Yn,l,k, ε) − â(Xn, ε)
)

∣

∣

∣

∣

≤
∑

j 2=k

∑

m,l

E
∣

∣En

(

a(Xn, Yn,m, j , ε) − â(Xn, ε)
)

· En

(

a(Xn, Yn,l,k, ε) − â(Xn, ε)
)
∣

∣

≤ C M2 N 2

(

e−βnT (δt/ε)

N (δt/ε) + 1

(

e−β(n−1)Nm (δt/ε) + R2
)

+ (δt/ε)2&

)

,

where En denotes the expectation conditioned on {Xn′}n′≤n and {Yn′,·,·}n′<n . When
j = k we have
∣

∣E
(

a(Xn, Yn,m, j , ε) − â(Xn, ε)
)

·
(

a(Xn, Yn,l, j , ε) − â(Xn, ε)
)
∣

∣ ≤
∣

∣E
(

EXn

(

a(Xn, Yn,m, j , ε) − â(Xn, ε)
)

· En,m, j

(

a(Xn, Yn,l, j , ε) − â(Xn, ε)
))

∣

∣,

when m ≤ l and similarly when m > l. Here En,m, j denotes the conditional
expectation with respect to Yn,m, j .

By the energy estimate (A.3) and the same analysis as above using exponential
mixing, we deduce

E
∣

∣EXn

(

a(Xn, Yn,m, j , ε) − â(Xn, ε)
)
∣

∣

2 ≤ C
(

e−βm(δt/ε) + (δt/ε)2&
)

and

E
∣

∣En,m, j

(

a(Xn, Yn,l, j , ε) − â(Xn, ε)
)
∣

∣

2 ≤ C
(

e−β(l−m)(δt/ε) + (δt/ε)2&
)

.
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Summing over j ∈ [1, M] and m, l ∈ [nT , nT + N − 1], this leads to

∣

∣

∣

∣

∑

j

∑

m,l

E
(

a(Xn, Yn,m, j , ε) − â(Xn, ε)
)

·
(

a(Xn, Yn,l, j , ε) − â(Xn, ε)
)

∣

∣

∣

∣

≤

C M N 2

(

1

N (δt/ε) + 1
+ (δt/ε)2&

)

,

and the last two terms in (2.27) follow. !

PROOF OF THEOREM 2.4: We will prove (2.9) for the case when the macro-
solver is the forward Euler method. The extension to general stable macrosolvers
mentioned in Section 2.1 is straightforward. By the boundedness of a, the solu-
tions of all the equations for the slow processes X are all in a compact set. Letting
en = X̄n − Xn , we have

en+1 = en + %t
(

ā
(

X̄n

)

− ãn

)

= en + %t
(

ā
(

X̄n

)

− ā(Xn)
)

+ %t
(

ā(Xn) − ãn

)

and

Ee2
n+1 = E

(

en + %t
(

ā
(

X̄n

)

− ā(Xn)
))2 + %t2

E
(

ā(Xn) − ãn

)2

+ 2%tE
(

en + %t
(

ā
(

X̄n

)

− ā(Xn)
))

· (ā(Xn) − ãn)

=: I1 + I2 + I3.

For I1, by the smoothness of ā, we have

I1 ≤ (1 + C%t)e2
n.

For I2, letting Nm = nT + N − 1, by (2.27) we have

I2 ≤ C%t2

(

e−βnT (δt/ε)

N (δt/ε) + 1

(

e−β(n−1)Nm (δt/ε) + R2
)

+ (δt/ε)2& + ε2

)

+ C
%t2

M(N (δt/ε) + 1)
.

For I3, by (2.26), we have

|I3| ≤ 2%tE
∣

∣en + %t
(

ā
(

X̄n

)

− ā(Xn)
)
∣

∣

∣

∣EXn ãn − ā(Xn)
∣

∣

≤ %tE
∣

∣en + %t
(

ā(X̄n) − ā(Xn)
)
∣

∣

2 + C%tE
∣

∣EXn ãn − ā(Xn)
∣

∣

2

≤ %t (1 + C%t)Ee2
n

+ C%t

(

e−βnT (δt/ε)

N (δt/ε) + 1

(

e−β(n−1)Nm (δt/ε) + R2
)

+ (δt/ε)2& + ε2

)

.
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It follows that

Ee2
n+1 ≤ (1 + C%t)Ee2

n

+ C%t

(

e−βnT (δt/ε)

N (δt/ε) + 1

(

e−β(n−1)Nm (δt/ε) + R2
)

+ (δt/ε)2& + ε2

)

+ C
%t2

M(N (δt/ε) + 1)
.

Therefore, using the fact that 1 − x2 ≥ 1 − x for x ∈ (0, 1), we have

Ee2
n ≤ C

e−βnT (δt/ε)

N (δt/ε) + 1
(R2 + R)

+ C

(

(δt/ε)2& + ε2 +
%t

M(N (δt/ε) + 1)

)

,

which, together with (2.19), completes the proof of Theorem 2.4. !

2.3 Weak Convergence Theorem

Next we give the rate of weak convergence for the multiscale scheme under
Assumptions 2.1, 2.2, and 2.3.

THEOREM 2.7 Assume that the assumptions in Theorem 2.4 hold. Then for any

f ∈ C∞
0 and T0 > 0, there exists a constant C > 0 independent of (ε, %t, δt, nT ,

M, N ) such that

(2.29)

sup
n≤T0/%t

∣

∣E f
(

X ε
tn

)

− E f (Xn)
∣

∣

≤ C

(

ε + %t k + (δt/ε)& +
e−

1
2 βnT (δt/ε)

√
N (δt/ε) + 1

(R + R2)

+
%t

M(N (δt/ε) + 1)

)

.

As before, we split the estimate of |E f (X ε
tn
) − E f (Xn)| into three parts:

(1) |E f (X ε
t ) − f (X̄t)|,

(2) | f (X̄tn ) − f (X̄n)|, and

(3) | f (X̄n) − E f (Xn)|.
The first part accounts for the error caused by replacing X ε

t by the solution X̄t of
the asymptotic equation in (2.4). It has been proven (e.g., in [12, 24]) that

(2.30) sup
0≤t≤T0

∣

∣E f
(

X ε
t

)

− f
(

X̄t

)
∣

∣ ≤ Cε.

This is the first term in (2.29), and we give a formal derivation of this result by
perturbation analysis at the end of this section. The second part accounts for the
error caused by the macrosolver assuming that the coefficient ā in (2.4) is known



1560 W. E, D. LIU, AND E. VANDEN-EIJNDEN

exactly. A standard ODE estimate using the smoothness of ā (see Lemma A.4 in
the appendix) gives

(2.31) sup
n≤T0/%t

∣

∣ f
(

X̄tn

)

− f
(

X̄n

)
∣

∣ ≤ C%t k .

This is the second term in (2.9). The third part, the HMM error, accounts for the
error introduced by using ãn instead of ā(Xn) in the macrosolver. This part gives
rise to a term of order O(ε) that can be absorbed in Cε and to the last three terms
in (2.29). These terms account for discretization error in the microscheme, as well
as relaxation and sampling errors, and are estimated in Lemma 2.8.

LEMMA 2.8 For any f ∈ C∞
0 and T0 > 0, there exists a constant C > 0 such that

(2.32)

∣

∣ f
(

X̄n

)

− E f
(

Xn

)
∣

∣

≤ C

(

ε + (δt/ε)& +
e−

1
2 βnT (δt/ε)

√
N (δt/ε) + 1

(R + R2)

+
%t

M(N (δt/ε) + 1)

)

.

PROOF: Again for simplicity we will discuss only the case when the macro-
solver is the forward Euler method. To estimate | f (X̄n) − E f (Xn)|, we define an
auxiliary function u(k, x) for k ≤ n as follows:

u(n, x) = f (x), u(k, x) = u(k + 1, x + %t ā(x)).

Then we have u(0, x) = f (X̄n). By the boundedness of a, the solutions of the
equations for X are uniformly bounded in a compact set K . By the smoothness of
ā, it is easy to show that

sup
k,x

{
∣

∣∂x u(k, x)
∣

∣ +
∣

∣∂2
x u(k, x)

∣

∣

}

is uniformly bounded on K for different %t . Hence we have

∣

∣E
(

u(k + 1, Xk+1) − u(k, Xk)
)
∣

∣

=
∣

∣E
(

u(k + 1, Xk + %t ãk) − u(k + 1, Xk + %t ā(Xk))
)
∣

∣

≤ %t
∣

∣E∂x u(k + 1, Xk) · (EXk
ãk − ā(Xk))

∣

∣

+
1

2
%t2 sup

y∈K

∣

∣∂2
x u(k + 1, y)

∣

∣ E|ãk − ā(Xk)|2

≤ C
(

%tE|EXk
ãk − ā(Xk)| + %t2

E|ãk − ā(Xk)|2
)

.
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So, by Lemma 2.6, we have
∣

∣E f
(

Xn

)

− f
(

X̄n

)
∣

∣ =
∣

∣Eu(n, Xn) − u(0, x)
∣

∣

=
∣

∣

∣

∣

∑

0≤k≤n−1

E(u(k + 1, Xk+1) − u(k, Xk))

∣

∣

∣

∣

≤ C

(

ε +
∑

0≤k≤n−1

%t
e−

1
2 βnT (δt/ε)

√
Nδt + 1

· e−
1
2 βk Nm (δt/ε)

)

+ C%t

(

e−
1
2 βnT (δt/ε)

√
N (δt/ε) + 1

R + %t
e−βnT (δt/ε)

N (δt/ε) + 1
R2

)

+ C%t

(

(δt/ε)& +
%t

M(N (δt/ε) + 1)

)

,

and we are done. !

Finally, we give a formal argument for (2.30) using perturbation analysis [24] .
It is known that uε(t, x, y) = E{ f (X ε

t )} satisfies the following backward Fokker-
Planck equation:

(2.33)
∂uε

∂t
=

(

1

ε
L1 + L2 + εL3

)

uε, u(0) = f.

Here

L1 = b(x, y, 0)∂y +
1

2
σσ T (x, y, 0)∂2

y , L2 = a(x, y, 0)∂x + L
y
2,

where L
y
2 is a differential operator in y only, and εL3 contains higher-order terms

in ε. It is known [14] that under Assumptions 2.1, 2.2, and 2.3, for each x , the
process associated with L1 has µx(dy) ≡ µε=0

x (dy) as a unique invariant measure,
and this measure has a density, µx(dy) = px(y)dy.

Define P by

P f (x) =
∫

Rm

f (x, y)px(y)dy.

Notice that P is the projection onto the null space of L1. Let uε be formally repre-
sented by a power series

uε = u0 + εu1 + ε2u2 + . . . .

Inserting into (2.33) and equating coefficients of equal powers of ε, we get

L1u0 = 0,
∂u0

∂t
= L1u1 + L2u0, . . . .
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Suppose Pu0(0) = u0(0). Then Pu0 = u0 for all t > 0 and acting with P on both
sides of the second equation, we obtain the following transport equation for u0:

∂u0

∂t
= P L2u0 = Pa(x, y, 0)∂x u0 = ā(x)∂x u0, u0(0) = f.

u1 is given by

u1 = L−1
1 (P L2 − L2)u0.

Now we have
(

∂

∂t
−

1

ε
L1 − L2 − εL3

)

(uε − u0 − εu1)

=
(

1

ε
L1 + L2 + εL3 −

∂

∂t

)

(u0 + εu1)

= ε

(

L2 + εL3 −
∂

∂t

)

u1 + εL3u0

= O(ε).

This means that on finite time intervals, as long as u0 and u1 are bounded, we have

uε − u0 = O(ε).

The boundedness of u0 and u1 is implied by the smoothness of ā and the exponen-
tial mixing.

Remark 2.9. The derivation above implies that even if Assumptions 2.1 and 2.3 are
not satisfied as in the numerical example in the next section, the weak convergence
still holds provided u0 and u1 are bounded on finite time intervals.

2.4 Efficiency and Consistency Analysis

A measure of the cost of the multiscale scheme described in Section 2.1 is the
number of microtime steps per unit of time,

cost =
M Nm

%t
=

M(nT + N − 1)

%t
.

Suppose that one wishes to compute with an error tolerance λ and ε is such that√
ε ' λ if strong convergence is required, or ε ' λ if weak convergence is

enough. Then the multiscale scheme is applicable, and the best numerical strategy
is to choose the parameters in the scheme so that in estimate (2.9) or (2.29) each
term but the first is of order λ. Suppose that we take one realization only, M = 1,
and evaluate expectations via time average. Then the optimal parameters are

(2.34)
%t = O(λ1/k), δt/ε = O(λ1/&),

nT = O(λ−1/&), N = O(λ−α+1/k−1/&),
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with α = 2 for strong convergence and α = 1 for weak convergence. The corre-
sponding cost is

(2.35) cost =
nT + N − 1

%t
= O(λ−α−1/&).

Similarly, if one takes N = 1 and evaluates expectations via ensemble average
only, we arrive at

(2.36)
%t = O(λ1/k), δt/ε = O(λ1/&),

nT = O(λ−1/& log λ−1), M = O
(

λ−α+1/k
)

,

and the cost is

(2.37) cost =
MnT

%t
= O(λ−α−1/& log λ−1).

This indicates that (2.35) is in fact optimal over both N and M , though the ad-
ditional cost of using ensemble instead of time averaging is only marginal and
proportional to O(log λ−1). Notice that the cost decreases as the order of the mi-
croscheme increases, but there is no gain in utilizing a higher-order macroscheme
since (2.35) and (2.37) are independent of k. The reason is quite simple. A higher-
order macroscheme in principle allows one to use a larger macrotime step, but this
increases the sampling errors unless a larger N or M is used as well. The two ef-
fects balance each other exactly and the cost remains the same. Therefore, the only
way to drive the cost down would be to use a higher-order estimator in conjunction
with higher-order micro- and macroschemes. This can be done in the nonrandom
case (see, e.g., [6, 10]), but it is difficult to construct higher-order estimators when
the fast process is governed by an SDE.

The costs in (2.35) and (2.37) indicate that, for small ε, the multiscale scheme is
cheaper than a direct scheme for (2.1). Denote by X ε

n the numerical approximation
provided by a scheme of weak order & (same as in the microsolver used in the
multiscale scheme) applied directly to (2.1) and assume that the corresponding
strong order of the scheme is &/2. Then the following error estimates hold:

sup
n≤T0/δt

E
∣

∣X ε
tn
− X ε

n

∣

∣ ≤ C(δt/ε)&/2,(2.38)

sup
n≤T0/δt

∣

∣E f
(

X ε
tn

)

− E f
(

X ε
n

)
∣

∣ ≤ C(δt/ε)&.(2.39)

Thus, at error tolerance λ, a time step of order δt/ε = O(λα/&) must be used,
leading to

cost = 1/δt = O(ε−1λ−α/&),

where, as before, α = 2 for strong convergence and α = 1 for weak convergence.
This is much higher than the cost of the multiscale scheme when ε ' λα.

A much tougher test for the multiscale scheme is to compare it with a direct
scheme not for (2.1) but rather for an equation like (2.1) where an optimal ε, say,
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ε′ > ε, is used. Denote by X ε′
n the numerical approximation for this equation pro-

vided by a microscheme of weak order & (same as in the microsolver used in the
multiscale scheme) and strong order &/2. Then analysis similar to the ones pre-
sented in Sections 2.2 and 2.3 gives the following error estimates for the scheme:

sup
n≤T0/δt ′

E
∣

∣X ε
tn
− X ε′

n

∣

∣ ≤ C
(
√

ε′ + (δt ′/ε′)&/2
)

,(2.40)

sup
n≤T0/δt ′

∣

∣E f
(

X ε
tn

)

− E f
(

X ε′

n

)
∣

∣ ≤ C
(

ε′ + (δt ′/ε′)&
)

.(2.41)

Given the error tolerance λ, the biggest ε′ one may take is therefore ε′ = λα. Then

(2.42) δt ′ = O(λα(1+1/&)),

and the cost is

(2.43) cost = 1/δt ′ = O(λ−α(1+1/&)).

For weak convergence (α = 1), this cost is identical to (2.35), but for strong con-
vergence (α = 2), it is higher by a factor of order O(λ−1/&); i.e., the multiscale
scheme is more efficient than a direct calculation with an optimally increased ε.
In essence, this is because the multiscale scheme only requires weak convergence
of the fast process even when strong convergence of the slow process is sought,
whereas the direct scheme with optimized ε leads to either weak or strong conver-
gence of both processes by construction.

It is interesting to corroborate the analysis of the efficiency of the multiscale
scheme with the analysis of its consistency. The multiscale scheme is consistent
with the limiting equation in (2.4) if %t/(nT + N − 1)δt → 0 as %t → 0, δt → 0.
But this scaling will not lead to a gain in efficiency in general. On the other hand,
because of the way in (2.8) by which we initialize the fast process at each macro-
time step, it is easy to see that the multiscale scheme is consistent with (compared
with (2.1))

(2.44)



















Ẋt =
1

M

M
∑

j=1

a(Xt , Y
j

t , ε), X0 = x,

Ẏ
j

t =
1

ε′
b
(

Xt , Y
j

t , ε
)

+
1

√
ε′

σ
(

Xt , Y
j

t , ε
)

Ẇ
j

t , Y
j

0 = 0,

as %t → 0, δt → 0, with %t/((nT + N − 1)(δt/ε)) → ε′ (note that it does not
matter what happens with nT , N , and M in this limit, and we may just as well keep
these parameters fixed).

This scaling may lead to a gain in efficiency. In particular, using the parameters
leading to (2.35) in the weak convergence case, we have

(2.45) ε′ =
%t

(nt + N − 1)(δt/ε)
= O(λ),

which is precisely the optimal value of ε we deduced before. In other words, the
multiscale scheme can also be thought of as a seamless way to compute with a
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system where the value of ε has been optimized in terms of the error tolerance.
This is a rather remarkable property of the multiscale scheme.

2.5 Numerical Example

Consider the following example with (X, Y ) ∈ R2:

(2.46)











Ẋt = −Yt − Y 3
t + cos(π t) + sin(

√
2π t), X0 = x,

Ẏt = −
1

ε

(

Yt + Y 3
t − Xt

)

+
1
√

ε
Ẇt , Y0 = y.

From (2.3) the effective equation for Xt is

(2.47) ˙̄Xt = −X̄t + cos(π t) + sin(
√

2π t), X̄0 = x .

Since the error caused by the principle of averaging is independent of the com-
putational parameters (%t, δt, M, N , nT ) and the analysis for the error caused by
the macrosolver is standard, we only analyze the difference between the numerical
solution Xn given by the multiscale scheme and the numerical solution X̄n given
by the macrosolver for (2.47) (in other words, we analyze the error caused by using
ãn instead of ā(Xn)). We focus on strong error estimates. Recall that according to
Theorem 2.4, in the case when

Nm(δt/ε) = (nT + N − 1)(δt/ε) > 1,

we have R = %t plus higher-order terms, and

(2.48) sup
n≤T0/%t

E
∣

∣Xn − X̄n

∣

∣ ≤

C

(

(δt/ε)& +
e−

1
2 βnT (δt/ε)

√
%t

√
N (δt/ε) + 1

+
√

%t
√

M(N (δt/ε) + 1)

)

.

Here %t is a fixed parameter. Suppose that we want to bound the error by O(2−p)

for p = 0, 1, . . . , and assume that M = 1. Then, proceeding as in Section 2.4, we
deduce that the optimal choice is to take

δt/ε = O(2−p/&), nT = O(1), N = O(2p(2+1/&)),

which leads to a cost scaled as

cost =
nT + N − 1

%t
= O(2p(2+1/&)).

In the numerical calculations, we took

(T0,%t, δt/ε, nT , M, N ) = (6, 0.01, 0.01 × 2−p/&, 100, 1, 10 × 2p(2+1/&)),

and we computed the following error estimate for one realization of the solution

E&
p =

%t

T0

∑

n≤/T0/%t0

∣

∣X̃n − X̄n

∣

∣.

A comparison between X̄n and the solution Xn provided by the multiscale scheme
for & = 1 and p = 2 is shown in Figure 2.1. The magnitudes of the errors for
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FIGURE 2.1. The comparison between X̄n and Xn produced by the
multiscale scheme with & = 1, p = 4 (black curves). Also shown is the
fast process Yn,nT +N used in the microsolver (gray curve).
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rr
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FIGURE 2.2. The error E&
p = (%t/T0)

∑

n≤/T0/%t0 |X̃n − X̄n| in the

function of p when & = 1 (circles) and & = 2 (squares). The dashed line
is 0.1 × 2−p, consistent with the predicted error estimate E&

p = O(2−p).

various p and & = 1, 2 are listed in Table 2.1 and shown in Figure 2.2. As predicted,
we observe E&

p = O(2−p).
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p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

& = 1 .058 .070 .032 .019 .0096 .0067 .0025 .00076

& = 2 .045 .059 .022 .021 .0098 .0064 .0033 .0014

TABLE 2.1. The computed values for the error E&
p.

3 Diffusive Time Scale

Consider the following equation for (x, y) ∈ Rn × Rm :

(3.1)











Ẋ ε
t =

1

ε
a
(

X ε
t , Y ε

t , ε
)

, X ε
0 = x,

Ẏ ε
t =

1

ε2
b
(

X ε
t , Y ε

t , ε
)

+
1

ε
σ
(

X ε
t , Y ε

t , ε
)

Ẇt , Y ε
0 = y.

We assume that the coefficients satisfy Assumptions 2.1, 2.2, and 2.3. This guar-
antees that the process Y x,ε

s , the solution of the second equation in (3.1) with fixed
X ε

t = x and rescaled time s = t/ε2, is exponentially mixing with unique invariant
probability measure µε

x(·). In addition, we assume the following:

Assumption 3.1. The coefficients b and σ are of the form
{

b(x, y, ε) = b0(y) + εb1(x, y, ε),

σ (x, y, ε) = σ0(y) + εσ1(x, y, ε).

Notice that by this assumption, Y x,ε=0
s and µ = µε=0

x are independent of x .

We assume the following centering condition:

Assumption 3.2.

(3.2) ∀(x, ε) :
∫

Rm

a(x, y, ε)µ(dy) = 0.

These two assumptions make the multiscale scheme simpler and facilitate the
analysis of its convergence properties but are not essential and will be relaxed in
Section 3.5.

To give the effective dynamics for X ε
t when ε is small, it will be convenient to

define for each (x, ε) the following auxiliary processes (Y 1
t , Y 2

t ):

(3.3)































Ẏ 1
t =

1

ε2
b0

(

Y 1
t

)

+
1

ε
σ0

(

Y 1
t

)

Ẇt , Y 1
0 = y1,

Ẏ 2
t =

1

ε2
∂b0

(

Y 1
t

)

Y 2
t +

1

ε
∂σ0

(

Y 1
t

)

Y 2
t Ẇt

+
1

ε2
b1

(

x, Y 1
t , ε

)

+
1

ε
σ1

(

x, Y 1
t , ε

)

Ẇt , Y 2
0 = y2.

Assumptions 2.2 and 2.3 imply that process Y 1
t is exponentially mixing with unique

invariant probability measure µ(dy1) defined as above. It is proven in Appendix B
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that for each (x, ε), the process (Y 1
t , Y 2

t ) defined by (3.3) is exponentially mixing

with unique invariant probability measure νε
x (dy1, dy2).

It will be shown later that X ε
t converges to the solution of the following sto-

chastic differential equation:

(3.4) ˙̄Xt = ā
(

X̄t

)

+ σ̄
(

X̄t

)

Ẇt , X̄0 = x,

where Wt is an n-dimensional Wiener process and

(3.5)



















































ā(x) = lim
ε→0

∫

Rm×Rm

νε
x (dy1, dy2)∂ya(x, y1, ε)y2

+ lim
ε→0

∫

Rm

µ(dy1)

∫ ∞

0

Ey1
∂xa(x, Y 1

ε2s
, ε)a(x, y1, ε)ds,

σ̄ (x)σ̄ T (x) =

2 lim
ε→0

∫

Rm

µ(dy1)a(x, y1, ε) ⊗
∫ ∞

0

Ey1
a
(

x, Y 1
ε2s

, ε
)

ds.

We will assume σ̄ is well-defined and belongs to C∞
b .

3.1 The Numerical Scheme

The scheme for (3.1) consists of a macrosolver for (3.4), a microsolver for

(Y 1
t , Y 2

t ), and an estimator for ā(·) and σ̄ (·). For the macrosolver, we may use any

stable explicit solver, such as (in the simplest case) the forward Euler method:

(3.6) Xn+1 = Xn + ãn%t + σ̃n ξ̃n+1

√
%t,

where {ξ̃n} are i.i.d. Gaussian with mean 0, variance 1, and independent of the

ones used in the microscheme, and ãn and σ̃n are the approximations of ā(Xn)

and σ̄ (Xn) provided by the estimator. For the microsolver for (3.3), we may use a

first- or second-order scheme, similar to (2.6) or (2.7) (note that the microtime step

will now appear only as the ratio δt/ε2 in these schemes). In order to estimate the

expectation in (3.5) (see (3.8) below), we integrate these equations over nT +N+N ′

microtime steps, and we reinitialize the fast variables as in (2.8) at each macrotime

step; i.e., we take

(3.7) Y 1
n,0 = Y 1

n−1,nT +N+N ′−1, Y 2
n,0 = Y 2

n−1,nT +N+N ′−1.
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For the estimator, we use the following time and ensemble average:

(3.8)














































ãn =
1

M N

M
∑

j=1

nT +N−1
∑

m=nT

∂ya
(

Xn, Y 1
n,m, j , ε

)

Y 2
n,m, j

+
(δt/ε2)

M N

M
∑

j=1

nT +N−1
∑

m=nT

N ′
∑

m′=0

∂xa
(

Xn, Y 1
n,m+m′, j , ε

)

a
(

Xn, Y 1
n,m, j , ε

)

,

B̃n =
2(δt/ε2)

M N

M
∑

j=1

nT +N−1
∑

m=nT

N ′
∑

m′=0

a
(

Xn, Y 1
n,m, j , ε

)

⊗ a
(

Xn, Y 1
n,m+m′, j , ε

)

.

σ̃n is obtained by Cholesky decomposition of B̃n so that σ̃nσ̃
T
n = B̃n . Here nT

is the number of microtime steps that we skip to eliminate transients, N is the
number of microtime steps that we use for time averaging, and N ′ is the number of
microtime steps we use to estimate the integrals over s in (3.5). M is the number
of realizations of the fast auxiliary processes (Y 1

t , Y 2
t ).

3.2 Convergence of the Scheme

THEOREM 3.3 Suppose %t and δt/ε2 are sufficiently small. Then for any f ∈ C∞
0

and T0 > 0, there exists a constant C independent of the parameters (ε, %t, δt, nT ,

M, N , N ′) such that

(3.9)

sup
n≤T0/δt

∣

∣E f
(

X ε
tn

)

− E f (Xn)
∣

∣

≤ C
(

ε + %t + (δt/ε2)& + e−
1
2 βN ′(δt/ε2)

)

+ C

(

e−
1
2 βnT (δt/ε2)

√

N (δt/ε2) + 1
R̄ +

%t

M(N (δt/ε2) + 1)

)

,

where

R̄ =
√

%t

1 − e−
1
2 β(nT +N+N ′−1)(δt/ε2)

.

We divide the estimate of |E f (X ε
t ) − f (Xn)| into two parts:

(1) |E f (X ε
t ) − E f (X̄t)| and

(2) |E f (X̄tn ) − E f (Xn)|.

For the first part, it is known [12, 24] that

sup
0≤t≤T0

∣

∣E f
(

X ε
t

)

− E f
(

X̄t

)

| ≤ Cε,

which gives rise to the first term in (3.9). We give a formal derivation of this result
at the end of this section. Now we estimate the second part.



1570 W. E, D. LIU, AND E. VANDEN-EIJNDEN

Using Lemmas B.2 and B.3 and repeating the analysis of Lemma 2.6, we can
show that for each T0 > 0, there exists an independent constant C such that ∀n ∈
[0, T0/%t],

(3.10)

E|EXn ãn − ā(Xn)|2 + E
∥

∥EXn B̃n − σ̄ (Xn)σ̄
T (Xn)

∥

∥

2

≤ C
(

ε2 + (δt/ε2)2& + e−βN ′(δt/ε2)
)

+ C
e−βnT (δt/ε2)

N (δt/ε2) + 1

(

e−βn(nT +N+N ′−1)(δt/ε2) + R̄2
)

,

and

(3.11)

E|ãn − ā(Xn)|2 + E‖B̃n − σ̄ (Xn)σ̄
T (Xn)‖2

≤ C
(

ε2 + (δt/ε2)2& + e−βN ′(δt/ε2)
)

+ C
e−βnT (δt/ε2)

N (δt/ε2) + 1

(

e−βn(nT +N+N ′−1)(δt/ε2) + R̄2
)

+ C
1

M(N (δt/ε2) + 1)
.

Based on these estimates, we have the following:

LEMMA 3.4 For any f ∈ C∞
0 and T0 > 0, there exists an independent constant C

such that

(3.12)

sup
n≤T0/δt

∣

∣E f
(

X̄tn

)

− E f (Xn)
∣

∣

≤ C
(

ε + %t + (δt/ε2)& + e−
1
2 βN ′(δt/ε2)

)

+ C

(

e−
1
2 βnT (δt/ε2)

√

N (δt/ε2) + 1
R̄ +

%t
√

M(N (δt/ε2) + 1)

)

.

PROOF: Define the function u(k, x) for k ≤ n similarly as in the proof of
Lemma 2.8:

u(n, x) = f (x), u(k, x) = E
(

u(k + 1, x + %t ā(x) +
√

%t σ̄ (x)ξn

)

.

It is easy to show by the smoothness of ā, σ̄ , and f and the compactness of f that
u(k, x) is a smooth function of x with uniformly bounded derivatives for all k. By
Taylor expansion we then have
∣

∣E
(

u(k + 1, Xk+1) − u(k, Xk)
)
∣

∣

=
∣

∣E
(

u
(

k + 1, Xk + %t ãk +
√

%t σ̃k ξ̃k

)

− u
(

k + 1, Xk + %t ā(Xk) +
√

%t σ̄ (Xk)ξk

)
∣

∣
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≤ %tE|∂x u(k + 1, Xk)| |EXk
ãk − ā(Xk)|

+
1

2
%t2

E
∣

∣∂2
x u(k + 1, Xk)

∣

∣

∣

∣EXk
ã2

k − ā2(Xk)
∣

∣

+
1

2
C%tE

∣

∣∂2
x u(k + 1, Xk)

∣

∣

∣

∣EXk
B̃k − σ̄ (Xk)σ̄

T (Xk)
∣

∣

+
1

6
E

∣

∣∂3
x u(k + 1, Xk)

∣

∣

∣

∣EXk

(

%t
(

ãk − ā(Xk)
)

+
√

%t
(

σ̃k ξ̃k − σ̄ (Xk)ξk

))3∣
∣

+
1

12
E

∣

∣∂4
x u(k + 1, yk)

∣

∣ E
∣

∣%t
(

ãk − ā(Xk)
)

+
√

%t
(

σ̃k ξ̃k − σ̄ (Xk)ξk

)
∣

∣

4

≤ C%t
(

E
∣

∣EXk
ãk − ā(Xk)

∣

∣

2 + E
∣

∣EXk
B̃k − σ̄ (Xk)σ̄

T (Xk)
∣

∣

2)1/2

+ C%t2
(

E|ãk − ā(Xk)|2 + E
∣

∣B̃k − σ̄ (Xk)σ̄
T (Xk)

∣

∣

2)1/2 + C%t2,

where

yk = Xk + θk

(

%t ãk +
√

%t σ̃k ξ̃k − %t ā(Xk) −
√

%t σ̄ (Xk)ξk

)

for some θk ∈ [0, 1]. Hence, using (3.10) and (3.11), we deduce
∣

∣E f (Xn) − f
(

X̄n

)
∣

∣ = |Eu(n, Xn) − u(0, x)|

=
∣

∣

∣

∣

∑

0≤k≤n−1

E(u(k + 1, Xk+1) − u(k, Xk))

∣

∣

∣

∣

≤ C
(

ε + %t + (δt/ε2)& + e−
1
2 βN ′(δt/ε2)

)

+ C

(

e−
1
2 βnT (δt/ε2)

√

N (δt/ε2) + 1
R̄ +

%t
√

M(N (δt/ε2) + 1)

)

.

Since
∣

∣E
(

f
(

X̄tn

)

− f
(

X̄n

))
∣

∣ ≤ C%t,

(3.12) follows. !

Now we give a formal derivation for the convergence of the solution X ε
t of (3.1)

to the solution X̄t of (3.4) by perturbation analysis. Letting Z ε
t = (Y ε

t − Y 1
t )/ε,

(3.1) can be written as the following enlarged system:














































Ẋ ε
t =

1

ε
a
(

X ε
t , Y 1

t , 0
)

+ ∂ya
(

X ε
t , Y 1

t , 0
)

Z ε
t + ∂εa

(

X ε
t , Y 1

t , 0
)

+ εE

Ẏ 1
t =

1

ε2
b0

(

Y 1
t

)

+
1

ε
σ0

(

Y 1
t

)

Ẇt ,

Ż ε
t =

1

ε2
∂b0

(

Y 1
t

)

Z ε
t +

1

ε2
b1

(

X ε
t , Y 1

t , 0
)

+
1

ε
F

+
1

ε
∂σ0

(

Y 1,ε
t

)

Z ε
t Ẇt +

1

ε
σ1

(

X ε
t , Y 1

t , 0
)

Ẇt + GẆt ,

(3.13)
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with X ε
0 = x , Y 1

0 = y, and Z ε
0 = 0. Furthermore, E(·), F(·), and G(·) are

appropriate functions of (x, y1, y2, ε) whose actual values are not important for the
limiting equation. The generator of this enlarged system can be written as

Lε =
1

ε2
L1 +

1

ε
L2 + L3 + εL4,

where


































































L1 = b0(y1)
∂

∂y1

+ (∂b0(y1)z + b1(x, y1, 0))
∂

∂z
+

1

2
AAT

∂2

∂y2
(

A = diag(σ0(y1), ∂σ0(y1)z + σ1(x, y1, 0)), y = (y1, z)
)

,

L2 = a(x, y1, 0)
∂

∂x
+ Lz

2,

L3 =
(

∂ya(x, y1, 0)z + ∂εa(x, y1, 0)
) ∂

∂x
+

1

2
GGT

∂2

∂z2
,

L4 = E
∂

∂x
,

and Lz
2 is a differential operator in z.

Notice that L1/ε
2 is the infinitesimal generator of process (Y 1

t , Y 2
t ) defined by

(3.3) with b1 and σ1 evaluated at ε = 0. By Lemma B.1 given in the appendix, L1

generates an exponentially mixing process, i.e., for f ∈ C∞
b ,

∣

∣eL1t f − Px f
∣

∣ ≤ B
(

|y1|2 + |z|2 + 1
)

e−βt ;

here

Px f =
∫

Rm×Rm

f (x, y1, z)νx(dy1, dz).

where νx(dy1, dy2) = νε=0
x (dy1, dy2) is the invariant measure for (3.3) with b1 and

σ1 evaluated at ε = 0. Assumption 3.2 implies that

(3.14) P L2 P = 0.

The equation uε(t, x, y1, y2) = Ex,y1,y2
f (X ε

t ) satisfies the following equation:

(3.15)
∂uε

∂t
= Lεuε, uε(0) = f.

Represent uε in the power series

uε = u0 + εu1 + ε2u2 + · · · .

Inserting this into (3.15) and equating coefficients of different powers of ε, we have

L1u0 = 0, L1u1 = −L2u0, L1u2 = −L2u1 − L3u0 +
∂u0

∂t
, . . . .
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Suppose that u0(0) = Pu0(0). Projecting onto P , by the solvability condition
(3.14), we have

(3.16)
∂u0

∂t
=

(

P L3 P − P L2L−1
1 L2 P

)

u0 = L̄u0, u0(0) = f,

and

u1 = −L−1
1 L2u0, u2 = −L−1

1

(

L3 − L2L−1
1 L2 − L̄

)

u0.

By definition and uniqueness of the invariant measures, for any bounded func-
tion f ,

∫

Rm

f (y1)µ(dy1) =
∫

Rm×Rm

f (y1)ν
ε
x (dy1, dz).

Assumption 3.2 implies that

(3.17)

∫

Rm

∂εa(x, y1, 0)µ(dy1) =
∫

Rm×Rm

∂εa(x, y1, 0)νε
x (dy1, dz) = 0.

A direct computation with (3.17) and Lemma B.3 shows that

L̄ = ā
∂

∂x
+

1

2
σ̄ σ̄ T ∂2

∂x2
.

By the same “bootstrap” argument as in Section 2.3, on finite intervals, as long as
u0, u1, and u2 have bounded solutions, we have

uε − u0 = O(ε).

The boundedness of u0, u1, and u2 are guaranteed by the smoothness of the coeffi-
cients and exponential mixing.

Remark 3.5. Weak convergence to the effective dynamics is implied by the above
analysis even if the smoothness assumptions on the coefficients are not satisfied, as
in the numerical example below.

3.3 Efficiency and Consistency Analysis

We proceed as in Section 2.4. At fixed error tolerance λ, assuming that λ 5 ε,
we will see that the multiscale scheme is then appropriate. Due to the fact that
the sampling error is dominated by the macrotime discretization error in (3.9), the
optimal choice of parameters is

%t = O(λ), δt/ε2 = O(λ1/&),(3.18)

M = N = 1, nT = N ′ = O(λ1/& log λ−1).(3.19)

This leads to

(3.20) cost =
M(nT + 1 + N ′)

%t
= O(λ−1−1/& log λ−1).
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In comparison, a direct scheme for (3.1) with weak order & (same as in the
microsolver used in the multiscale scheme) leads to an error estimate as

(3.21) sup
n≤T0/δt

∣

∣E f
(

X ε
tn

)

− E f
(

X ε
n

)
∣

∣ ≤ C(δt/ε2)&,

where X ε
n is the numerical approximation provided by the direct scheme. At error

tolerance λ, a time step δt = O(ε2λ1/&), and the cost is 1/δt = O(ε−2λ−1/&). This
is much more expensive than the multiscale scheme when ε ' λ.

As in Section 2.4, we can compare the cost of the multiscale scheme to that
of a direct scheme for (3.1) where ε is chosen optimally as a function of the error
tolerance. The error estimate for such a direct scheme when ε is increased to the
value ε′ is

(3.22) sup
n≤T0/δt

∣

∣E f
(

X ε
tn

)

− E f
(

X ε′

n

)
∣

∣ ≤ C(ε′ + (δt/ε′
2
)&),

Thus as optimal parameters we should take ε′ = λ, a time step of order

(3.23) δt = O(λ2+1/&),

and the cost is

(3.24) cost = 1/δt = O
(

λ−2−1/&
)

.

This cost is still higher by a factor of order O(λ−1) than the one in (3.20) of the
multiscale scheme.

3.4 Numerical Example

Consider the following equation:






























Ẋ ε
t = −

2

ε
Y ε

t Z ε
t , X ε

0 = x,

Ẏ ε
t = −

1

ε2
Y ε

t +
1

ε
X ε

t Z ε
t +

1

ε
Ẇ 1

t , Y ε
0 = y,

Ż ε
t = −

2

ε2
Z ε

t +
1

ε
X ε

t Y ε
t +

1

ε
Ẇ 2

t , Z ε
0 = z.

The fast time scale processes are given by the following dynamics:














































Ẏ 1
t = −

1

ε2
Y 1

t +
1

ε
Ẇ 1

t , Y 1
0 = y1,

Ẏ 2
t = −

1

ε2
Y 2

t +
1

ε2
x Z1

t , Y 2
0 = y2,

Ż1
t = −

2

ε2
Z1

t +
1

ε
Ẇ 2

t , Z1
0 = z1,

Z2
t = −

2

ε2
Z2

t +
1

ε2
xY 1

t , Z2
0 = z2.
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The coefficients of the effective dynamics are














ā(x) =
∫

R4

(−2y1z2 − 2z1 y2

)

µx(dy1, dz1, dy2, dz2) = −
1

2
x,

σ̄ 2(x) = 2

∫

R2

µ(dy1, dz1)(2y1z1)

∫ ∞

0

E(2Y 1
ε2s

Z1
ε2s

)ds =
1

3
;

i.e., the effective equation is

(3.25) ˙̄Xt = −
1

2
X̄t +

1
√

3
Ẇt .

Since the error caused by the principle of averaging and macrotime discretiza-
tion is standard, we only compute the error caused by using (ã, σ̃ ) instead of (ā, σ̄ )

in the scheme. In the case when

(nT + N − 1)δt > 1,

we have R̄ ≈
√

%t . Relation (3.11) and its proof imply that for fixed %t ,

(3.26)

sup
n≤T0/δt

E|ãn − ā(Xn)| + E
∥

∥B̃n − σ̄ (Xn)σ̄
T (Xn)

∥

∥

≤ C
(

(δt/ε2)& + e−βN ′(δt/ε2)/2
)

+ C

(

e−βnT (δt/ε2)/2

√

N (δt/ε2) + 1
+

1
√

M(N (δt/ε2) + 1)

)

.

1 2 3 4 5 6

10
−2

10
−1

10
0

p

E
rr

or

FIGURE 3.1. The error E&
p = (%t/T0)

∑

n≤/T0/%t0 |ãn + 1
2 Xn|+ |σ̃n −

1√
3
| in function of p when & = 1 (circles). Also shown is the predicted

error estimate 2−p (dashed line).
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Suppose, assuming M = 1, we want to bound the error by 2−p for p =
0, 1, . . . . Then with the same analysis as before, the optimal choices for the pa-

rameters can be given as

δt/ε2 = O(2−p/&), nT = O(1), N = O(2p(2+1/&)), N ′ = O(2p/& p),

which leads to a cost scaled as

cost =
M(nT + N + N ′)

%t
= O(2p(2+1/&)).

In the numerical experiments, we took

(3.27) (T0,%t, δt/ε2, NT , M, N , N ′) =

(1, .001, 2−p/&, 16, 1, 10 × 2p(2+1/&), 2p/& p),

and computed for one realization of the solution the following error between the

(− 1
2

Xn,
1√
3
) of (ãn, σ̃n):

E&
p =

%t

T0

∑

n≤/T0/%t0

∣

∣

∣

∣

ãn +
1

2
Xn

∣

∣

∣

∣

+
∣

∣

∣

∣

σ̃n −
1
√

3

∣

∣

∣

∣

.

We choose the microsolver to be the first-order scheme (2.6). The magnitudes of

the above error are listed in Table 3.1 and shown in Figure 3.1.

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

& = 1 .274 .103 .052 .028 .014 .0071

TABLE 3.1. The computed values for the error E&
p.

3.5 Generalizations

In this section, we want to discuss two more general cases of equation (3.1).

The first is when the centering assumption, Assumption 3.2, is not satisfied. In

this case the effective dynamics for small ε can be expressed in the following form

[17]:

(3.28) ˙̄Xt = ā
(

X̄t , ε
)

+ σ̄
(

X̄t

)

Ẇt ,
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where


































































































ā(x, ε) =
1

ε

∫

Rm

µ(dy1)a(x, y1, ε)

+
∫

Rm×Rm

νε
x (dy1, dy2)∂ya(x, y1, ε)y2

+
∫

Rm

µ(dy1)

∫ ∞

0

(

Ey1
∂xa

(

x, Y 1
ε2s

, ε
)

−
∫

Rm

µ(dy1)∂xa(x, y1, ε)

)

a(x, y1, ε)ds

σ̄ (x)σ̄ T (x) = lim
ε→0

2

∫

Rm

µ(dy1)a(x, y1, ε)

⊗
∫ ∞

0

(

Ey1
a
(

x, Y 1
ε2s

, ε
)

−
∫

Rm

µ(dy1)a(x, y1, ε)

)

ds.

Notice that the above formula is no more complicated than (3.5). So the same
scheme as before can be used with minor modifications.

The second case of interest is when the principal component of the fast dynam-
ics depends on the slow dynamics. In other words,

(3.29) b0 = b0(x, y), σ0 = σ0(x, y).

Just for simplicity, we assume (3.2). In this case the effective dynamics has the
following form:

(3.30) ˙̄Xt = ā
(

X̄t

)

+ σ̄
(

X̄t

)

Ẇt ,

with














































ā(x) = lim
ε→0

∫

Rm×Rm

νε
x (dy1, dy2)∂ya(x, y1, ε)y2

+
∫

Rm

µx(dy1)

∫ ∞

0

Ey1

(

∂xa
(

x, Y 1
ε2s

, ε
)

+ ∂ya
(

x, Y 1
ε2s

, ε
)

Uε2s

)

a(x, y1, ε)ds

σ̄ (x)σ̄ T (x) = lim
ε→0

2

∫

Rm

µx(dy1)a(x, y1, ε) ⊗
∫ ∞

0

Ey1
a(x, Y 1

ε2s
, ε)ds,

where Ut = ∂x Y 1
t ∈ Rm × Rn is the process satisfying the following dynamics:

U̇t =
1

ε2
∂x b0

(

x, Y 1
t

)

+
1

ε2
∂yb0

(

x, Y 1
t

)

Ut

+
1

ε
∂xσ0

(

x, Y 1
t

)

Ẇt +
1

ε
∂yσ0

(

x, Y 1
t

)

Ut Ẇt .

Provided the stability condition such that the above integrals exist, the multiscale
scheme can also be applied to this case.
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Appendix A: Limiting Properties—Advective Time Scale

Here we give some limiting properties of the auxiliary process Y x,ε
t defined by

(2.2) and its time discretization. We assume that Assumptions 2.1, 2.2, and 2.3
hold.

Taking y1 = y and y2 = 0 in Assumption 2.3 and using Assumption 2.1, we
deduce that for some positive constant C ,

(A.1) y · b(x, y, ε) ≤ −
β

2
|y|2 + C(|x |2 + ε2 + 1).

Using this inequality and Itô’s formula, it is easy to check that for any p ≥ 1,
V (y) = |y|2p is a Lyapunov function for Y x,ε

t in the sense that

(A.2) LV (y) ≤ −
β

ε
V (y) +

1

ε
H(x, ε),

where L is the infinitesimal generator of Y x,ε
t and H(x, ε) is a positive smooth

function. This implies that

(A.3) lim sup
t→∞

EV
(

Y x,ε
t

)

≤ H(x, ε).

By theorem 6.1 in [21] (see also [18]), Y x,ε
t is exponentially mixing with unique

invariant probability measure µε
x(·) in the following sense: For each (x, ε) and p ∈

N, there exist positive constants B and κ such that for any function f : Rm → R

with | f (y)| ≤ |y|2p + 1,

(A.4)

∣

∣

∣

∣

E f
(

Y x,ε
t

)

−
∫

Rm

µε
x(dy) f (y)

∣

∣

∣

∣

≤ B(|y|2p + 1)e−κt/ε,

where y = Y x,ε
t=0.

For each (x, ε), we can construct an independent random variable ζ x,ε whose
law is µε

x(·), i.e., L(ζ x,ε) = µε
x(·). Let ζ x,ε

t be the solution of (2.2) with initial
condition ζ x,ε

t=0 = ζ x,ε. Then

L
(

ζ x,ε
t

)

= µε
x(·).

Relation (A.4) implies that

(A.5) E|ζ x,ε|2 = lim
t→∞

∣

∣Y x,ε
t

∣

∣

2 ≤ C(|x |2 + ε2 + 1).

The following lemma gives the exponentially mixing property of process Y x,ε
t to-

wards ζ x,ε
t .

LEMMA A.1 For any (x, ε),

(A.6) E
∣

∣Y x,ε
t − ζ x,ε

t

∣

∣

2 ≤ E
∣

∣y − ζ x,ε
∣

∣

2
e−2βt/ε.

where y = Y x,ε
t=0.
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PROOF: Using Itô’s formula and Assumption 2.3, we deduce

(A.7) dE
∣

∣Y x,ε
t − ζ x,ε

t

∣

∣

2 ≤ −
2β

ε
E

∣

∣Y x,ε
t − ζ x,ε

t

∣

∣

2
dt.

Hence (A.6) follows. !

From (A.5) and (A.6), it follows that

(A.8) E
∣

∣Y x,ε
t − ζ x,ε

t

∣

∣

2 ≤ CE(|y|2 + 1)e−2βt/ε

uniformly in time as long as (x, ε) is in a compact set.

PROPOSITION A.2 Suppose (x, ε) is in a compact set; then there exists a constant

C > 0 such that for any function f with Lipschitz constant less than 1 and t ∈
[0,∞),

(A.9) E

∣

∣

∣

∣

1

T

∫ t+T

t

f
(

x, Y x,ε
s , ε

)

ds −
∫

f (x, y, ε)µε
x(dy)

∣

∣

∣

∣

≤

C
(|y|2 + 1)e−βt/ε

T
.

PROOF: Since L(ζ x,ε
t ) = µε

x(·), we have

E f
(

x, Y x,ε
t , ε

)

−
∫

f (x, y, ε)µε
x(dy) = E f

(

x, Y x,ε
t , ε

)

− E f
(

x, ζ x,ε
t , ε

)

.

By Lemma A.1 and the assumption on f , we have

E

∣

∣

∣

∣

1

T

∫ t+T

t

f
(

x, Y x,ε
s , ε

)

ds −
∫

f (x, y, ε)µε
x(dy)

∣

∣

∣

∣

≤
1

T

∫ T

0

E
∣

∣ f
(

x, Y x,ε
s , ε

)

− f
(

x, ζ x,ε
s , ε

)
∣

∣ds

≤ C(|y|2 + 1)
e−βt/ε

T
.

!

Similar ergodic properties hold at the discrete level. Suppose Y x,ε
n is the solution

of the microsolver (2.6) or (2.7) with parameter (x, ε) and microtime step δt . By
the smoothness assumption, Assumption 2.1, for each x ∈ Rn , p ∈ N, and δt small
enough, there exists λ < 1 such that

(A.10) E
∣

∣Y x,ε
n+1

∣

∣

2p ≤ λ
∣

∣Y x,ε
n

∣

∣

2p + F(x, ε),

where F is a smooth function. The results in [21] imply that under Assumptions 2.2
and 2.3, for each (x, ε) and δt small enough, Y x,ε

n is ergodic with unique invariant
probability measure µδt,ε

x . By the same analysis as in the proof of Lemma A.1, the
following can be shown:
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LEMMA A.3 Suppose (x, ε) is in a compact set. For δt small enough, there exists
a family of random variables {ζ x,δt,ε} independent of the Wiener process in (2.6)
or (2.7) with measure µδt,ε

x such that

(A.11) E
∣

∣Y x,ε
n − ζ x,δt,ε

n

∣

∣

2 ≤ E|y − ζ x,δt,ε|2e−βnδt/ε,

where Y x,ε
n (respectively, ζ x,δt,ε

n ) is the solution of the microsolver (2.6) or (2.7)
with initial condition y (respectively, ζ x,δt,ε).

For any smooth function f = (x, y, ε) with polynomial growth in y, we define

(A.12) f̂ (x, ε) =
∫

Rm

f (x, y, ε)µε
x(dy)

and

(A.13) f̂ δt(x, ε) =
∫

Rm

f (x, y, ε)µδt,ε
x (dy).

Using energy estimate (A.3) and following the proof of theorem 3.3 in [25], it can
be shown that under Assumptions 2.1, 2.2, and 2.3, if (x, ε) is in a compact set, for
δt small enough, we have

(A.14)
∣

∣ f̂ (x, ε) − f̂ δt(x, ε)
∣

∣ ≤ C(δt/ε)&.

This gives us an estimate on the error induced by the discretization on computing
expectations.

The following lemma gives the property we need for

â(x, ε) =
∫

Rm

a(x, y, ε)µε
x(dy).

LEMMA A.4 The function â(x, ε) is smooth.

PROOF: For simplicity, we only discuss the case when Rn = Rm = R. The
proof for higher dimensions is similar. Suppose (x, ε) is in a compact set. Let
u(t, x, y, ε) = E a(x, Y x,ε

t , ε) be the solution of the backward Fokker-Planck equa-
tion

(A.15)
∂u

∂t
= Lu, u(0, x, y, ε) = a(x, y, ε).

A straightforward generalization of Mikulyavichyus result [22] shows that u(t, x,

y, ε) is infinitely differentiable with respect to (x, y, ε). It is also proven in [25] that
under Assumptions 2.1, 2.2, and 2.3, for any (x, ε) and n ∈ N, there exists sn ∈ N,
Bn ∈ [0,∞), and βn > 0 such that

(A.16)
∣

∣∂n
y u(t, x, y, ε)

∣

∣ ≤ Bn(|y|sn + 1)e−βn t/ε.

Taking derivatives with respect to x on both sides of equation (A.15), we have

(A.17)
∂

∂t
∂x u = ∂xa(x, y, ε)∂yu + ∂xσ

2(x, y, ε)∂2
y u + L∂x u.
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Using Duhamel’s principle, ∂x u can be formally expressed in terms of u as

(A.18)

∂x u = eLt∂xa(x, y, ε)

+
∫ t

0

eL(t−s)
(

∂xa(x, · , ε)∂yu + ∂xσ
2(x, · , ε)∂2

y u
)

ds.

By the uniform mixing (A.8), the following limit exists:

∂x â(x, ε) = ∂x lim
t→∞

u(t, x, y, ε) = lim
t→∞

∂x u(t, x, y, ε).

Differentiating (A.17) with respect to y and using (A.16), we deduce that the semi-
group generating ∂yu has a positive exponential decay. By the same type of analy-
sis, we deduce that

|∂xyu(t, x, y, ε)| ≤ B(|y|2 + 1) exp (−ηt),

where B and η are positive constants. Hence,

∂xyā(x, ε) = ∂xy lim
t→∞

u(t, x, y, ε) = lim
t→∞

∂xyu(t, x, y, ε) = 0.

The lemma follows by repeating the same analysis to higher-order derivatives in x

and ε. !

Appendix B: Limiting Properties—Diffusive Time Scale

Now we want to give the exponential mixing property of the process (Y 1
t , Y 2

t )

given by (3.3). We will assume that the coefficients are smooth and Assumption
3.2 holds.

LEMMA B.1 For each (x, ε), the process (Y 1
t , Y 2

t ) is exponentially mixing with

unique invariant measure νε
x (dy1, dy2). Furthermore, there exist stationary pro-

cesses (ζ 1
t , ζ 2

t ) with L(ζ 1
t , ζ 2

t ) = νε
x such that for some B < ∞ and all t ∈ [0,∞),

(B.1) E
∣

∣Y 1
t − ζ 1

t

∣

∣

2 +
∣

∣Y 2
t − ζ 2

t

∣

∣

2 ≤ B(|y1| + |y2| + 1)e−2βt/ε2

.

PROOF: By (A.4), Y 1
t is exponentially mixing. Now we want to show that

(Y 1
t , Y 2

t ) is also exponentially mixing. For any τ > 0, denote by (V τ
t , Y τ

t ) the
unique solution of the equation



























V̇t =
1

ε2
b0(Vt) +

1

ε
σ0(Vt)Ẇt ,

Ẏt =
1

ε2
∂b0(Vt)Yt +

1

ε
∂σ0(Vt)Yt Ẇt ,+

1

ε2
b1(x, Vt , ε) +

1

ε
σ1(x, Vt , ε)Ẇt ,

Y−τ = y2, V−τ = y1.

It is easily seen that the distributions of (V τ
0 , Y τ

0 ) and (Y 1
τ , Y 2

τ ) coincide, i.e.,

L
(

V τ
0 , Y τ

0

)

= L
(

Y 1
τ , Y 2

τ

)

.
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For ergodicity, it is sufficient [5] to prove that there exist random variables ξ and ζ

such that the following convergence is exponential:

lim
τ→∞

E
∣

∣V τ
0 − ξ

∣

∣

2 + E
∣

∣Y τ
0 − ζ

∣

∣

2 = 0, ∀(y1, y2).

Then (Y 1
t , Y 2

t ) is ergodic with unique invariant measure νε
x = L(ξ, ζ ). The exis-

tence of ξ is guaranteed by the exponential mixing of Y 1
t .

Now we give the existence of ζ . Taking ε = 0 and |y2 − y1| → 0 in Assump-
tion 2.3, we have for any (y, y′),

(B.2) 〈y, ∂b0(y′)y〉 + ‖∂σ0(y′)y‖2 ≤ −β|y|2.

By the smoothness assumption, Assumption 2.1, (B.2), and Itô’s lemma, we have
for some constant C and all t ≥ −τ ,

dE
∣

∣Y τ
t

∣

∣

2 ≤ −
β

ε2
E

∣

∣Y τ
t

∣

∣

2
dt +

C

ε2
(|y1|2 + 1)dt.

This means that for ∀τ > 0 and t ∈ [−τ,∞),

(B.3) E
∣

∣Y τ
t

∣

∣

2 ≤ e−β(t+τ )/ε2

|y2|2 + C(|y1|2 + 1).

Let γ > τ and Zt = Y τ
t − Y

γ
t , t ≥ −γ ; then Zt is the solution of the following

equation:

Żt =
1

ε2
∂b(Vt)Zt +

1

ε
∂σ (Vt)Zt Ẇt , Z(−τ ) = y2 − Y

γ
−τ .

Direct computation with Itô’s formula and (B.3) shows that

E|Z0|2 = E
∣

∣Y τ
0 − Y

γ
0

∣

∣

2 ≤ C(|y1|2 + |y2|2 + 1)e−2βτ/ε2

.

This implies that there exists a random variable ζ such that

E
∣

∣Y τ
0 − ζ

∣

∣

2 ≤ C0(|y1|2 + |y2|2 + 1)e−2βτ/ε2

.

The same analysis will show that ζ is independent of initial value (y1, y2). Taking
(ζ 1

t , ζ 2
t ) to be the solution of (3.3) with independent initial distribution νε

x , by the
same analysis above using Assumptions 2.3, we have (B.1). !

By a similar argument above we can prove the following lemma for the time
discretization of (Y 1

n , Y 2
n ) by the scheme (2.6) and (2.7).

LEMMA B.2 For microstep δ small enough and each (x, ε), (Y 1
n , Y 2

n ) is exponen-
tially mixing with unique invariant measure νδ

x,ε(dy1, dy2). Furthermore, there ex-

ist stationary processes (ζ 1
n , ζ 2

n ) with distribution νδt
x,ε such that for some B < ∞,

(B.4) E
∣

∣Y 1
n − ζ 1

n

∣

∣

2 +
∣

∣Y 2
n − ζ 2

n

∣

∣

2 ≤ B(|y1| + |y2| + 1)e−βnδt/ε2

.
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By the independence of Y 1
t on (x, ε) and the linear form of the equation for Y 2

t ,
using the same analysis as in [25], we also have for any x ∈ Rn and any function
of polynomial growth,

(B.5)

∣

∣

∣

∣

∫

Rm×Rm

νε
x (dy1, dy2) f (x, y1, y2, ε)

−
∫

Rm×Rm

νδt
x,ε(dy1, dy2) f (x, y1, y2, ε)

∣

∣

∣

∣

≤ Bδt&,

where B is an independent constant.

Define

(B.6)



















































ã(x, ε) =
∫

Rm×Rm

νε
x (dy1, dy2)∂ya(x, y1, ε)y2

+
∫

Rm

µ(dy1)

∫ ∞

0

Ey1
∂xa

(

x, Y 1
ε2s

, ε
)

a(x, y1, ε)ds,

σ̃ (x, ε)σ̃ T (x, ε) = 2

∫

Rm

µ(dy1)a(x, y1, ε)

⊗
∫ ∞

0

Ey1
a
(

x, Y 1
ε2s

, ε
)

ds.

LEMMA B.3 The functions ã(x, ε) and σ̃ (x, ε)σ̃ T (x, ε) are smooth functions of

(x, ε) with derivatives of polynomial growth.

PROOF: To repeat the proof of Lemma A.4, we only need to show that the
following functions are smooth with derivatives of polynomial growth,

∫ ∞

0

Ey1
a
(

x, Y 1
ε2s

, ε
)

ds,

∫ ∞

0

Ey1
∂xa

(

x, Y 1
ε2s

, ε
)

ds.

Based on the centering condition, the exponential mixing, and the independence of
Y 1

ε2s
with respect to x , using the same analysis for the proof of Lemma A.4, we have

that functions Ey1
a(x, Y 1

ε2s
, ε) and Ey1

∂xa(x, Y 1
ε2s

, ε) and their arbitrary derivatives
with respect to y1 decay exponentially to 0 and hence are integrable on an infinite
time interval. Hence interchanging the order of limits, we have the following limit:

∂y1

∫ ∞

0

Ey1
a
(

x, Y 1
ε2s

, ε
)

dt =
∫ ∞

0

∂y1
Ey1

a
(

x, Y 1
ε2s

, ε
)

dt

and

∂y1

∫ ∞

0

Ey1
∂xa

(

x, Y 1
ε2s

, ε
)

dt =
∫ ∞

0

∂y1
Ey1

∂xa
(

x, Y 1
ε2s

, ε
)

dt.

The same differentiability holds for higher-order derivatives for (x, ε) and the re-
sult follows. !
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