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Abstract

We present an efficient numerical algorithm for simulating chemical kinetic systems with multiple time scales. This algo-
rithm is an improvement of the traditional stochastic simulation algorithm (SSA), also known as Gillespie’s algorithm. It is
in the form of a nested SSA and uses an outer SSA to simulate the slow reactions with rates computed from realizations of
inner SSAs that simulate the fast reactions. The algorithm itself is quite general and seamless, and it amounts to a small
modification of the original SSA. Our analysis of such multi-scale chemical kinetic systems allows us to identify the slow
variables in the system, derive effective dynamics on the slow time scale, and provide error estimates for the nested SSA.
Efficiency of the nested SSA is discussed using these error estimates, and illustrated through several numerical examples.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The stochastic simulation algorithm (SSA in short), also known as the Gillespie algorithm and originally
introduced in the context of chemical kinetic systems, has found a wide range of applications in many different
fields, including computational biology, chemistry, combustion, and communication networks [20,10,11].
Besides being an effective numerical algorithm, SSA is also a model for chemical kinetic systems that takes into
account the discreteness and finiteness of the molecular numbers as well as stochastic effects. This feature makes
it an attractive alternative to the approach of using systems of deterministic ODEs, particularly in situations
when the stochastic effects are important [9]. In addition, since SSA uses less modeling assumptions and is there-
fore closer to the first principle models, it is often easier to determine the parameters in the model. In fact, the
main modeling parameters are the rate functions which can in principle be computed using the rate theories [21].
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The disadvantage of SSA is that it is computationally more expensive to handle than the systems of ODEs.
Besides being stochastic in nature, the system often involves many disparate time scales. This is easy to appre-
ciate, since chemical reaction rates often depend exponentially on the activation energy. For a deterministic
system of ODEs, this results in the stiffness of the ODEs, for which many efficient numerical methods have
been developed [12]. However, the situation for SSA is much less satisfactory.

In recent years, this issue has received a great deal of attention and some important progress has been
made. The main idea, pursued in different forms by many people, is to model the effective dynamics on the
slow time scale, by assuming that the fast processes are in quasi-equilibrium [13,25,22,3,4]. In [13], a multi-
scale simulation method was proposed in which the slow and fast reactions are simulated differently. The slow
reactions are simulated using Gillespie algorithm and the fast reactions are simulated using Langevin dynam-
ics. In [25], a similar multi-scale scheme is proposed in which the fast dynamics is simulated using deterministic
ODEs. Both the approaches in [13,25] require that the volume of the system be sufficiently large in addition to
having well-separated rates. [22] proposes a scheme based on the quasi-equilibrium assumption by assuming
that the probability densities of the fast species conditioned on the slow species is known exactly or can be
approximated, e.g. by normal distributions. The same quasi-equilibrium assumption is used in [3,4], except
that the probability density of the fast species conditioned on the slow species is computed via a modified pro-
cess called the virtual fast process.

The method proposed in [3,4] is more general than previous methods, but it still has limitations. It assumes
the equilibrium distributions of the fast processes can be approximated by simple functions and the fast species
are independent of each other at equilibrium. Moreover, the rate functions of the slow processes are also
assumed to be of special forms and are approximated empirically by solving a system of algebraic equations.
These limitations are removed in the recent work, [7], in which a nested SSA is proposed to deal with the time
scale issue. This work relies only on the disparity of the rates, and makes no a priori assumption on what the
slow and fast variables are, or the analytic form of the rate functions. The recent work in [23] is much closer to
our work in spirit. It also adopted a nested structure with inner loop on the fast reactions and the outer loop
on the slow reactions. However, the outer loop algorithm is significantly different from ours, without faithfully
capturing the effective dynamics on the slow time scale. In particular, they also resort to a partition into slow
and fast species, a partition that is avoided in our work.

It is worthwhile to emphasize that, as we will see in Section 3, the algorithm proposed in [7] is quite general
and seamless. In particular, it makes no explicit mentioning of the fast and slow variables. At a first sight, this
might seem surprising, since there are counterexamples showing that algorithms of the same spirit do not work
for deterministic ODEs with separated time scales [8] if the slow variables are not explicitly identified and
made use of. But in the present context, the slow variables are linear functions of the original variables, as
a consequence of the fact that the state change vectors {mj}s are constant vectors, and this is the reason
why the seamless algorithm works.

However, unlike the original SSA which is exact, the nested SSA is approximate and to understand the
errors in the nested SSA, it is important to understand what the slow and fast variables are and what the effec-
tive process is on the slow time scale. These issues were dealt with briefly in [7], and one main purpose of the
present paper is to study them in more detail. This will allow us to estimate the optimal numerical parameters
and the overall cost of the algorithm. In addition, we will discuss various extensions of the nested SSA, as well
as important implementation issues such as adaptively determining slow and fast processes.

The paper is organized as follows. In Section 2, we define the slow variables and derive the effective dynam-
ics on the slow time scale for chemical kinetic systems with two disparate time scales. Section 3 introduces the
nested SSA for the special case when the system has two disparate time scales. Error estimates for the nested
SSA are proved and illustrated through numerical examples. We also elaborate on why the nested SSA algo-
rithm is seamless, and when a similar seamless algorithm can be developed in the context of ordinary differ-
ential equation such as, for instance, the ones that arises from the chemical kinetic system in the large volume
limit. Then in Section 4, we show how to adaptively determine the partition of the system into slow and fast
reactions during the simulation. Finally, in Section 5, we discuss the effective dynamics and nested SSA for
system with multiple (more than two) well-separated time scales. In this case, both the averaging principle
and the nested SSA can be applied iteratively, similar to the case in iterated homogenization [1]. We also study
the system over the diffusive time scale.
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2. Chemical kinetic systems with two disparate time scales

We will discuss first the case when the chemical kinetic system has two well-separated time scales. Systems
with multiple (more than two) disparate time scales will be discussed in later sections.

2.1. The general setting

Let us first fix some notations. We will consider the time evolution of an isothermal, spatially homogeneous
mixture of chemically reacting molecules contained in a fixed volume V. Suppose there are NS species of mol-
ecules Si¼1;...;NS involved, with MR reactions Rj¼1;...;MR . Let xi be the number of molecules of species Si. Then the
state-space of the system is given by
X � NNS ð1Þ

and we will denote the elements in this state-space by x ¼ ðx1; . . . ; xNS Þ 2 X. Each reaction Rj can be charac-
terized by a rate function aj(x) and a state change (or stoichiometric) vector mj which satisfies xþ mj 2 X for all
x 2 X such that aj(x) 6¼ 0. We write
Rj ¼ ðaj; mjÞ; R ¼ fR1; . . . ;RMRg: ð2Þ

Given state x, the occurrences of the reactions on an infinitesimal time interval dt are independent of each
other and the probability for reaction Rj to happen during this time interval is given by aj(x)dt. The state
of the system after reaction Rj is x + mj. We assume that the state space is finite, as is the case for all chemical
reactions in real life. The rate functions usually take the form of polynomials of x.

Consider the observable uðx; tÞ ¼ Exf ðX tÞ, where Xt is the state variable at time t, and Ex denotes expecta-
tion conditional on Xt=0 = x. u(x, t) satisfies the following backward Kolmogorov equation:
ouðx; tÞ
ot

¼
X

j

ajðxÞðuðxþ mj; tÞ � uðx; tÞÞ ¼: ðLuÞðx; tÞ: ð3Þ
The operator L is the infinitesimal generator of the Markov process associated with the chemical kinetic
system.

Now we turn to chemical kinetic systems with two disparate time scales. Assume that the rate function of a
chemical kinetic system R = {(a,m)} has the following form:
aðxÞ ¼ ðasðxÞ; ��1afðxÞÞ; ð4Þ

where �� 1 represents the ratio of time scales of the system. The corresponding reactions and the associated
state change vectors can be grouped accordingly:
Rs ¼ fðas; msÞg; Rf ¼ 1

�
af ; mf

� �� �
: ð5Þ
We call Rs the slow reactions and Rf the fast reactions.
To illustrate these definitions, consider the following simple example system that we will investigate in more

detail later:
S1 ¢
a1

a2

S2; S2 ¢
a3

a4

S3; S3 ¢
a5

a6

S4: ð6Þ
The reaction rates and the state change vectors are
a1 ¼ 105x1; m1 ¼ ð�1;þ1; 0; 0Þ;
a2 ¼ 105x2; m2 ¼ ðþ1;�1; 0; 0Þ;
a3 ¼ x2; m3 ¼ ð0;�1;þ1; 0Þ;
a4 ¼ x3; m4 ¼ ð0;þ1;�1; 0Þ;
a5 ¼ 105x3; m5 ¼ ð0; 0;�1;þ1Þ;
a6 ¼ 105x4; m6 ¼ ð0; 0;þ1;�1Þ:

ð7Þ
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For this system, there are four species of molecules (NS = 4) and six reactions channels (MR = 6). From the
reaction rates, it can be seen that the first and the third isomerization reactions are faster than the second isom-
erization reaction. We can partition the reactions into fast and slow groups:
Rs ¼ fða3; m3Þ; ða4; m4Þg; Rf ¼ fða1; m1Þ; ða2; m2Þ; ða5; m5Þ; ða6; m6Þg: ð8Þ

If the initial values of the xis are of O(1), the ratio of the time scales is of the order � = 10�5. Notice that every
variable xi, i = 1, 2, 3, 4, is involved in at least one fast reaction so there is no slow species. On the other hand,
the variables y1 = x1 + x2 and y2 = x3 + x4 are conserved during the fast reactions. In other words, each xi,
i = 1, 2, 3, 4, evolves over the fast time scale of O(�) whereas yi, i = 1, 2 evolves over the slow time scale of
O(1). Fig. 1 gives the time evolution of y1 = x1 + x2 and x3 on an intermediate time scale of O(10�3) starting
from the initial value (x1,x2,x3,x4) = (13, 3,3,3). It can been seen that x3 changes its value many times while y1

keeps unchanged on this intermediate time scale.

2.2. Effective dynamics on the slow time scale

For the kind of systems discussed above, very often we are interested mostly in the effective dynamics over
the slow time scale. In this section we will derive the model for this effective dynamics.

The analysis is built upon the perturbation theory developed in [17,19,14–16]. First we need to understand
what the slow variables are in the system. Let v be a function of the state variable x, which we call an obser-
vable. We say v(x) is a slow observable if it does not change during the fast reactions, i.e. if for any x and any
state change vector mf

j associated with the fast reactions one has
v xþ mf
j

� �
¼ vðxÞ: ð9Þ
This is equivalent to saying that the slow observables are conserved quantities for the fast process Rf defined in
(5). A general representation of such observables is given by special slow observables which are linear func-
tions satisfying (9). We call such slow observables slow variables. It is easy to see that v(x) = b Æ x is a slow
variable if
b � mf
j ¼ 0; ð10Þ
for all fmf
jgs. The set of such vectors form a linear subspace in RNS . Let b1, b2, . . . ,bJ be a set of basis vectors of

this subspace, and let
yj ¼ bj � x for j ¼ 1; . . . ; J ; ð11Þ
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Fig. 1. Evolution of slow variable y1 = x1 + x2 and fast variable x3 on the intermediate timescale.
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then y1, y2, . . . ,yJ defines a complete set of slow variables, i.e. all slow observables can be expressed as func-
tions of y1, y2, . . . ,yJ. We define the slow variable y as
y ¼ ðy1; � � � ; yJ Þ ð12Þ

and we will denote by Y the space over which y is defined. The state exchange vectors associated with the slow
variables are naturally defined as:
�ms
i ¼ ðb1 � ms

i ; . . . ; bJ � ms
i Þ; i ¼ 1; . . . ;Ns: ð13Þ
We will also adopt the notion of virtual fast process, defined in [3]. This is an auxiliary process that contains
the fast reactions only, assuming, as we do now, that the set of fast and slow reactions do not change over
time. This turns out to be a quite restrictive assumption and in later sections we will discuss the modifications
needed when this assumption is no longer satisfied. Now we derive the effective dynamics on the slow time
scale using singular perturbation theory. We assume that, for each fixed value of the slow variable y, the vir-
tual fast process admits a unique equilibrium distribution ly(x) in the state space. We define a projection oper-
ator P by
ðPvÞðyÞ ¼
X
x2X

lyðxÞvðxÞ: ð14Þ
By this definition, for any v : X! R, Pv depends only on the slow variable y, i.e. Pv : Y! R.
The backward Kolmogorov equation for the multi-scale chemical kinetic system with reaction channels as

in (5) reads:
ou
ot
¼ L0uþ 1

�
L1u: ð15Þ
where L0 and L1/� are the infinitesimal generators associated with the slow and fast reactions, respectively: for
any f : X! R,
ðL0f ÞðxÞ ¼
XM s

j¼1

as
jðxÞðf ðxþ ms

jÞ � f ðxÞÞ;

ðL1f ÞðxÞ ¼
XM f

j¼1

af
jðxÞðf ðxþ mf

jÞ � f ðxÞÞ;
ð16Þ
where Ms is the number of slow reactions in Rs and Mf is the number of fast reactions in Rf. Look for a solu-
tion of (15) in the form of
u ¼ u0 þ �u1 þ �2u2 þ � � � ð17Þ

Inserting this into (15) and equating the coefficients, we arrive at the hierarchy of equations:
L1u0 ¼ 0;

L1u1 ¼ ou0

ot � L0u0;

L1u2 ¼ � � �

8><
>: ð18Þ
The first equation implies that u0 belongs to the null-space of L1, which by the ergodicity assumption of the
fast process, is equivalent to
u0ðx; tÞ ¼ Uðb � x; tÞ � Uðy; tÞ; ð19Þ

for some U yet to be determined. Inserting (19) into the second equation in (18), gives (using the explicit
expression for L0)
L1u1ðx; tÞ ¼
oUðb � x; tÞ

ot
�
XM s

i¼1

as
i ðxÞðUðb � ðxþ ms

i Þ; tÞ � Uðb � x; tÞÞ

¼ oUðy; tÞ
ot

�
XM s

i¼1

as
i ðxÞðUðy þ �ms

i ; tÞ � Uðy; tÞÞ: ð20Þ
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This equation requires a solvability condition, namely that the right-hand side be perpendicular to the left
null-space of L1. By the ergodicity assumption of the fast process, this amounts to requiring that
oU
ot
¼
XM s

i¼1

�as
iðyÞðUðy þ �ms

i Þ � UðyÞÞ; ð21Þ
where
�as
i ðyÞ ¼ ðPas

i ÞðyÞ ¼
X

x

as
i ðxÞlyðxÞ: ð22Þ
(21) is the effective dynamics on the slow time scale, and the effective reaction kinetics on this time scale are
given in terms of the slow variable by
R ¼ ð�asðyÞ;�msÞ: ð23Þ
The accuracy of the approximation of u by u0 can be estimated as follows. From (18) and (21), it follows that
o

ot
� L0 �

1

�
L1

� �
ðu� u0 � �u1Þ ¼ L0 þ

1

�
L1 �

o

ot

� �
ðu0 þ �u1Þ ¼ � L0 �

o

ot

� �
u1; ð24Þ
where u1 is to be obtained by solving (20). Assuming that u(x, 0) = u0(x, 0) = f(b Æ x), the above equality means
that on fixed time-intervals
u� u0 ¼ Oð�Þ: ð25Þ
2.3. Seamless form of the limiting theorem

The limiting dynamics in (21) can be reformulated on the original state space X. Indeed, it is easy to check
that (21) is equivalent to
ou0

ot
¼
XM s

i¼1

�as
i ðb � xÞðu0ðxþ ms

i Þ � u0ðxÞÞ; ð26Þ
in the sense that if u0(x, t = 0) = f(b Æ x), then
u0ðx; tÞ ¼ Uðb � x; tÞ; ð27Þ
where Uðy; tÞ solves (21) with the initial condition Uðy; 0Þ ¼ f ðyÞ. The fact that (21) can be reformulated as
(26) is the key reason why the nested SSA presented in Section 3 is a seamless algorithm that does not require
to explicitly determine what the slow variables y = b Æ x are.

2.4. The example revisited

We now go back to the example (6) to illustrate these constructions. The fast reactions Rf ¼ fð1
�
af ; mfÞg have

the following form:
af
1 ¼ 105x1; mf

1 ¼ ð�1;þ1; 0; 0Þ;
af

2 ¼ 105x2; mf
2 ¼ ðþ1;�1; 0; 0Þ;

af
5 ¼ 105x3; mf

5 ¼ ð0; 0;�1;þ1Þ;
af

6 ¼ 105x4; mf
6 ¼ ð0; 0;þ1;�1Þ:

ð28Þ
The slow reactions Rs = {(as,ms)} are
as
3 ¼ x2; ms

3 ¼ ð0;�1;þ1; 0Þ;
as

4 ¼ x3; ms
4 ¼ ð0;þ1;�1; 0Þ:

ð29Þ
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The slow variables are
y1 ¼ x1 þ x2; y2 ¼ x3 þ x4: ð30Þ

Notice that for each fixed set of values (y1,y2), the virtual fast process has a unique equilibrium distribution ly

given by:
ly1;y2
ðx1; x2; x3; x4Þ ¼

y1!y2!

x1!x2!x3!x4!
ð1=2Þy1ð1=2Þy2dx1þx2¼y1

dx3þx4¼y2
: ð31Þ
The effective dynamics on the slow time scale is given by the slow reactions with rate functions averaged with
respect to these distributions
�as
3 ¼ Px2 ¼

x1 þ x2

2
¼ y1

2
; �ms

3 ¼ ð�1;þ1Þ;

�as
4 ¼ Px3 ¼

x3 þ x4

2
¼ y2

2
; �ms

4 ¼ ðþ1;�1Þ:
ð32Þ
3. The nested stochastic simulation algorithm

In this section, we introduce a nested stochastic simulation algorithm for chemical kinetic systems with two
disparate rates. We discuss the convergence and efficiency of the scheme and illustrate them through an exam-
ple of a virus infection model.

3.1. The stochastic simulation algorithm (SSA)

First, let us review briefly the standard stochastic simulation algorithm for chemical kinetic systems, pro-
posed in [10,11] (see also [2]), also known as the Gillespie algorithm. Suppose we are given a chemical kinetic
system with reaction channels Rj = (aj,mj), j = 1, 2, . . ., MR. Let
aðxÞ ¼
XMR

j¼1

ajðxÞ: ð33Þ
Assume that the current time is tn, and the system is at state Xn. We perform the following steps:

(1) Generate independent random numbers r1 and r2 with uniform distribution on the unit interval (0,1]. Let
dtnþ1 ¼ �
ln r1

aðX nÞ
; ð34Þ

and kn+1 be the natural number such that

1

aðX nÞ
Xknþ1�1

j¼0

ajðX nÞ < r2 6
1

aðX nÞ
Xknþ1

j¼0

ajðX nÞ; ð35Þ

where a(0) = 0 by convention.

(2) Update the time and the state of the system by
tnþ1 ¼ tn þ dtnþ1; X nþ1 ¼ X n þ mknþ1
: ð36Þ
Then repeat.

3.2. Nested SSA for system with two separated time scales

In [7], a modified SSA with a nested structure is proposed to simulate the chemical kinetic systems with
multiple time scales. The process at each level of the time scale is simulated with an SSA with some possibly
modified rates. Results from simulations on fast time scales are used to compute the rates for the SSA at
slower time scale. For simple systems with only two time scales, the nested SSA consists of two SSAs
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organized with one nested in the other: An outer SSA for the slow reactions only, but with modified slow rates
which are computed in an inner SSA modeling fast reactions only. Let tn, Xn be the current time and state of
the system, respectively. The nested SSA for systems with two time scales does the following:

(1) Inner SSA: Run N independent replicas of SSA with the fast reactions Rf = {(��1 af,mf})} only, for a time
interval of T0 + Tf. During this calculation, compute the modified slow rates for j = 1,. . .,Ms
~as
j ¼

1

N

XN

k¼1

1

T f

Z T fþT 0

T 0

as
jðX k

sÞds; ð37Þ

where X k
s is the result of the kth replica of this auxiliary virtual fast process at virtual time s whose initial

value is X k
t¼0 ¼ X n, and T0 is a parameter we choose in order to minimize the effect of the transients to

the equilibrium in the virtual fast process.

(2) Outer SSA: Run one step of SSA for the modified slow reactions ~Rs ¼ ð~as; msÞ to generate (tn+1,Xn+1)

from (tn,Xn).

Then repeat.

Let us note that the algorithm as presented is completely seamless and general. We do not need to know
what the slow and fast variables are and certainly we do not need to make empirical approximations to get
the effective slow rates. The reason why the algorithm works stems from (26), which shows that the effective
equation for the slow variables living in Y can in fact be reformulated on the original state space X. However,
it is worth noting that this conclusion is specific to SSA and, it would in general not be true for systems
described by (ordinary or stochastic) differential equation rather than a Markov chain. We elaborate on this
point in Section 3.6.

Without fully realizing the effective dynamics (21), in the nested SSA proposed in [23], the outer SSA is
advanced by picking up the next slow reaction using rates without being averaged with respect to the fast reac-
tions, which will definitely induce a significant error in the scheme.

In the HMM (heterogeneous multi-scale method) [5] language, the macro-scale solver is the outer SSA, the
data that need to be estimated is the effective rates for the slow reactions. These data are obtained by simu-
lating the virtual fast process which plays the role of micro-scale solvers here.

3.3. Convergence of the nested SSA

The original SSA is an exact realization of the chemical kinetic system. The nested SSA, on the other hand,
is an approximation. The errors in the nested SSA can be analyzed using the same strategy as in [6].

To begin with, since the state space is finite, it is easy to show that the virtual fast process is u-irreducible
and satisfies the stability condition in [18]. Hence for any test function g : X! R, there exist positive con-
stants R and a such that
sup
x2X
ðeL1tgÞðxÞ � ðPgÞðb � xÞ
�� �� 6 Re�at: ð38Þ
Denote by ~X t the solution of the nested SSA. Consider the observable vðx; tÞ ¼ Exf ðb � ~X tÞ where the expecta-
tion for f is with respect to the randomness in the outer SSA only. v(x, t) satisfies a backward Kolmogorov
equation similar to (26), in which the averaged rate �as

j in (22) are replaced by the random rates ~as
j obtained

from (37) in the current realization of the inner SSA:
ovðx; tÞ
ot

¼ ~Lvðx; tÞ; ð39Þ
where
~Lvðx; tÞ ¼
XM s

j¼1

~as
jðb � xÞðvðxþ ms

jÞ � vðxÞÞ: ð40Þ
Let u(x, t) be the solution of the system (15) with u(x, 0) = f(b Æ x). We have the following theorem:
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Theorem 3.1. For any T > 0, there exist constants C and a independent of (N, T0,Tf) such that,
sup
06t6T ;x2X

Ejvðx; tÞ � uðx; tÞj 6 C �þ e�aT 0=�

1þ T f=�
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nð1þ T f=�Þ
p

 !
: ð41Þ
Proof. Let X k
t be the kth realization at the virtual time t in the inner SSA. We have
Ej~asðxÞ � �asðxÞj2 ¼ 1

N 2
Ex

1

T f

X
k

Z T 0þT f

T 0

ðasðX k
t Þ � �asðxÞÞdt

�����
�����
2

¼ 1

T 2
f N 2

X
k

Ex

Z T 0þT f

T 0

ðasðX k
t Þ � �asðxÞÞdt

����
����
2

þ 1

T 2
f N 2

X
k 6¼l

Ex

Z T 0þT f

T 0

ðasðX k
t Þ

� �asðxÞÞdt
Z T 0þT f

T 0

ðasðX l
t0 Þ � �asðxÞÞdt0

¼: A1 þ A2: ð42Þ
where Ex denotes expectation conditional on X k
t¼0 ¼ x. Using (38), we get the following estimate
A1 ¼
2

T 2
f N 2

X
k

Ex

Z T 0þT f

T 0

ðasðX k
t Þ � �asðxÞÞ � EX k

t

Z T 0þT f

t
ðasðX k

sÞ � �asðxÞÞdsdt
� �

6
2

T 2
f N 2

X
k

Ex

Z T 0þT f

T 0

jasðX k
t Þ � �asðxÞj

Z T 0þT f

t
Rjasje�aðs�tÞ=� dsdt

6
4Rjasj2 e�aT f=� � 1þ aT f=�


 �
NðaT f=�Þ2

6
C

Nð1þ T f=�Þ
: ð43Þ
At the same time, we have from (38)
A2 6
1

T 2
f N 2

X
k 6¼l

Ex

Z T 0þT f

T 0

ðasðX k
t Þ � �asðxÞÞdt

Z T 0þT f

T 0

ðasðX l
t0 Þ � �asðxÞÞdt0

����
����

6
1

T 2
f

E

Z T 0þT f

T 0

ðasðX k
t Þ � �asðxÞÞdt

����
����
2

6
R2jasj2e�2aT 0=�ð1� e�aT f=�Þ2

ðaT f=�Þ2
6

Ce�2aT 0=�

ð1þ T f=�Þ2
: ð44Þ
Hence we have
Ej~asðxÞ � �asðxÞj2 6 C
e�2aT 0=�

ð1þ T f=�Þ2
þ 1

Nð1þ T f=�Þ

 !
; ð45Þ
which implies that
Ek~L� PL0Pk 6 C0
e�aT 0=�

1þ T f=�
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nð1þ T f=�Þ
p

 !
: ð46Þ
The finiteness of the state space implies the boundedness of v. Let w(x, t) be the solution of the effective Eq.
(21) with w(x, 0) = f(x). We have
dEjv� wj
dt

¼ Ejð~L� PL0P Þvþ PL0P ðv� wÞj 6 CEjv� wj þ C
e�aT 0=�

1þ T f=�
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nð1þ T f=�Þ
p

 !
; ð47Þ
which, together with (25), gives (41). h
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3.4. Efficiency of the nested SSA

Now we discuss the efficiency of the nested SSA based on the error estimate (41). Given a chemical kinetic
system with R = {(aj,mj)}, we assume that the total rate aðxÞ ¼

P
ajðxÞ does not fluctuate a lot in time. Given

an error tolerance k, we choose the parameters in the nested SSA such that each term in (41) is less than O(k).
One possible choice of the parameters is
T 0 ¼ 0; N ¼ 1þ ��1T f ¼
1

k
: ð48Þ
The total cost for the nested SSA over a time interval of O(1) is
cost ¼ OðNð1þ T 0=�þ T f=�ÞÞ ¼ O
1

k2

� �
: ðnested SSAÞ ð49Þ
The cost of the direct SSA is
cost ¼ O
1

�

� �
; ðdirect SSAÞ ð50Þ
since the time step size is of order �. When �� k2, the nested SSA is much more efficient than the direct
SSA.

Next we discuss the influence of the other numerical parameters on the efficiency. The parameter T0 which
plays the role of numerical relaxation time does not influence much the efficiency. Given the same error tol-
erance k, for the last term in the error estimate (41) to be less than O(k), we need to have
Nð1þ ��1T fÞP O
1

k2

� �
: ð51Þ
This implies that the cost satisfies
cost P OðNð1þ ��1T fÞÞ ¼ O
1

k2

� �
; ðnested SSAÞ ð52Þ
which is the same as (50) regardless the value of T0. The above argument also implies that the cost of O(1/k2) is
optimal for the nested SSA to achieve an error tolerance of k.

We then move to the effect of parameter N, the number of realizations for inner SSA. Suppose we take
N = 1, i.e. only one realization of the fast process in the inner SSA. For the error estimate (41) to satisfy
the same error tolerance k, we have to choose
1þ ��1T f ¼
1

k2
: ð53Þ
The cost of the nested SSA is given by
cost ¼ OðNð1þ ��1T fÞÞ ¼ O
1

k2

� �
; ðnested SSAÞ ð54Þ
which is the minimum cost of SSA for error tolerance k as discussed above. This implies that using multi-
ple realizations in the inner SSA does not increase the efficiency of the overall scheme either. But using
multiple realizations allows us to speed up the computation on parallel computers. Suppose we use M

processors to simulate independent copies of the fast processes, then the computing time on each proces-
sor reduces to
cost ¼ O
1

Mk2

� �
; ðnested SSA per processorÞ ð55Þ
for simulating the inner SSA. Another technique for speeding up the computation of the nested scheme is to
establish an on-the-fly chart for ~asðyÞ and re-use the same data of ~asðyÞ whenever the slow process revisit the
same slow state y. This is especially effective when the state space is small.
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3.5. A numerical example: A virus infection model

A virus infection model was proposed in [24] as an example of the failure of modeling genetic reacting net-
works with deterministic dynamics. The model is studied in [13] as an example of reactions with disparate
rates. The reactions considered in this model (MR = 6) are listed in Table 1. The reacting species that need
to be modeled are genome, struct, template and virus (Ns = 4). Genome is the vehicle of the viral genetic infor-
mation which can take the form of DNA, positive-strand RNA, negative-strand RNA, or some other variants.
Struct represents the structural proteins making up the virus. Template refers to the form of the nucleic acid
that is transcribed and involved in catalytically synthesizing every viral component. The nucleotides and
amino acids are assumed to be available at constant concentrations.

When template > 0, the production and degradation of struct, which are the third and fifth reactions
marked with * in Table 1, are faster than the others. From the reaction rates, we can see that the ratio of time
scales is about � = 10�3. In the system that consists of only the fast reactions, struct has an equilibrium mea-
sure of a Poisson distribution with the parameter k = 500 · template such that
Table
Reacti
Ptemplateðstruct ¼ nÞ ¼ ð500� templateÞn

n!
expð�500� templateÞ: ð56Þ
Notice that struct only shows up in the last slow reaction. The reduced dynamics in the form of the slow reac-
tions (a1,2,4,6) with the rates averaged with respect to the quasi-equilibrium of the fast reactions (a3,5) can be
given as a system with four reactions given in Table 2.

To test the convergence and efficiency of the nested SSA and compare it with the direct SSA, we use the
mean value and the variance of template at time T = 20 as a benchmark. The initial condition is chosen to be:
ðstruct; genome; template; virusÞ ¼ ð0; 0; 10; 0Þ: ð57Þ

A computation of this average by a direct SSA using N0 = 106 realizations led to
template ¼ 3:7170� 0:005; varðtemplateÞ ¼ 4:9777� 0:005: ð58Þ

This calculation took 34806.39 s of CPU time on our machine. For the nested SSA, we make a series of sim-
ulations in which we choose the size of the ensemble and the simulation time of the inner SSA according to
ðN ; T 0; T=�Þ ¼ ð1; 0; 22kÞ; ð59Þ

for different values of k = 0, 1, 2, 3, . . .. The error estimate in (41) then implies that the error d should decay
with rate:
d ¼ Oð2�kÞ: ð60Þ
Table 3 gives the total CPU time and the obtained values of template and var(template) with the parameters of
inner SSA chosen according to (59) and using N0 = 106 realizations of the outer SSA (same as in the direct
SSA). The relative errors on template is shown in Fig. 2.
1
on channels of the virus infection model

Nucleotides ������!a1¼1:�template
genome

Nucleotides þ genome ������!a2¼:025�genome
template

Nucleotides þ aminoacids ��������!a3¼1000�template
struct	

Template �������!a4¼:25�template
degraded

Struct �������!a5¼1:9985�struct
degraded=secreted	

Genome þ struct ������������!a6¼7:5d�6�genome�struct
virus



Table 2
The reduced virus infection model

Nucleotides ������!a1¼1:�template
genome

Nucleotides þ genome �������!a2¼:025�genome
template

Template �������!a4¼:25�template
degraded

Genome þ struct �������������!a6¼3:75d�3�genome2�struct
virus
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3.6. Some remarks on the large volume limit

As explained in Section 2.3, because the limiting equation on the slow time scale can be written as (26)
on the original state space X, the nested SSA presented in Section 2.3 always works in the context of
chemical kinetic systems. This is somewhat surprising since similar statements do not hold in the case
of ordinary or stochastic differential equations with multiple time scales. Here we make some remarks con-
cerning this.

Consider the ordinary differential equation
Table
Efficien

Tf/�

CPU
templa
var (te
_X t ¼
1

e
f ðX tÞ þ gðX tÞ; ð61Þ
for some variable X t 2 Rn. Assume that there exists a vector valued function u : Rn ! Rmðm < nÞ such that:

(1) We have
f ðxÞ � ruðxÞ ¼ 0; ð62Þ

(2) For each fixed y 2 Rm, the dynamics
_X f
t ¼ f ðX f

t Þ; ð63Þ
is ergodic on the level set u(x) = y with respect to the equilibrium distribution dly(x) (which might not
be atomic).
Then Yt = u(Xt) are slow variables satisfying the following equation:
_Y t ¼ HðY tÞ; ð64Þ

where
HðyÞ ¼
Z

Rn
gðxÞ � ruðxÞdlyðxÞ: ð65Þ
(64) holds provided that conditions (1) and (2) are satisfied and the expectation in (65) is finite. The existence
of a limiting dynamics has been exploited in [26] to construct efficient algorithms for the simulation of (61)
when �� 1. However, these algorithms cannot, in general, be put in a seamless form because the mapping
u defining the slow variable is usually nonlinear, in contrast to what happens in the context of chemical kinetic
systems. In particular, it is easy to see that the equation
3
cy of the nested SSA for the virus infection model
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Fig. 2. Relative errors of template using the nested SSA for the virus infection model.
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_X t ¼ GðuðX tÞÞ; ð66Þ

where
GðyÞ ¼
Z

Rn
gðxÞdlyðxÞ; ð67Þ
will in general not be equivalent to (64) (in the sense that uðX tÞ 6¼ Y t), unless $u(x) is a function of y only, i.e.
ruðxÞ ¼ JðuðxÞÞ; ð68Þ

for some J : Rm ! Rn � Rm. Only if (68) is satisfied do we have H(y) = G(y)J(y) and uðX tÞ ¼ Y t.

Condition (68) is rather restrictive. Quite remarkably, however, it is satisfied for the system of ordinary dif-
ferential equations that arise from (15) in the large volume limit. Indeed, assuming that the number of mol-
ecules of each species is large, and after appropriate rescaling of the variables, it is well known that (15) leads
to
_X t ¼
1

�

XM f

j¼1

af
jðX tÞmf

j þ
XM s

j¼1

as
jðX tÞms

j: ð69Þ
These equations are in the form of (61), and it is easy to see that if (b1, . . . ,bm) is a basis of vector satisfying
bi � mf

j, then
ujðxÞ ¼ bj � x; ð70Þ
satisfy (62) and (68) (with J being the constant matrix with rows consisting of the vector bj). This suggests that,
in the limit as �! 0, the solution of (69) converges to the solution of
_X t ¼
XMs

j¼1

�as
jðb � X tÞms

j: ð71Þ
Here Z

�as

jðyÞ ¼
Rn

as
jðxÞdlyðxÞ; ð72Þ
where dly(x) is the equilibrium of the fast process
_X f
t ¼

1

�

XM f

j¼1

af
jðX f

t Þmf
j: ð73Þ
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Since (72) can be approximated by
~as ¼
1

T f

Z T f

0

as
jðX f

t Þdt; ð74Þ
for some appropriate Tf, this naturally leads to a very simple and seamless nested algorithm for simulating (69)
for small �: The inner loop solves the virtual fast system (63) for some time Tf; the outer loop solves (71), with
�as

J approximated by �as
jðyÞ ¼ as

jðX f
T f
Þ.

For instance, in the large volume limit, the ODEs corresponding to the simple example treated in Section
2.4 are
_X 1 ¼ 105ð�X 1 þ X 2Þ;
_X 2 ¼ 105ðX 1 � X 2Þ � X 2 þ X 3;

_X 3 ¼ 105ð�X 3 þ X 4Þ � X 3 þ X 2;

_X 4 ¼ 105ðX 3 � X 4Þ:

8>>><
>>>: ð75Þ
In this case, the slow variables are Y1 = X1 + X2 and Y2 = X3 + X4, and it is easy to see that the fast process
drives the variables toward the fixed point
X f
1 ¼ X f

2 ¼ Y 1=2; X f
3 ¼ X f

4 ¼ Y 2=2; ð76Þ
meaning that dly(x) is atomic in this case
dlyðxÞ ¼ dðx1 � y1=2Þdðx2 � y1=2Þdðx3 � y2=2Þdðx4 � y2=2Þdx1 dx2 dx3 dx4: ð77Þ
Hence from (64), the limiting dynamics is
_Y 1 ¼ �X 2 þ X 3 ¼ ð�Y 1 þ Y 2Þ=2;
_Y 2 ¼ �X 3 þ X 2 ¼ ðY 1 � Y 2Þ=2;

(
ð78Þ
which from (71), can also be written in terms of the original variables as
_X 1 ¼ 0;
_X 2 ¼ ð�X 2 þ X 3Þ;
_X 3 ¼ ð�X 2 þ X 3Þ;
_X 4 ¼ 0:

8>>><
>>>: ð79Þ
However, in general for the ODE systems, there might be additional independent slow variables beyond
those identified by the linear conserved variables y = b Æ x. Even though by assumption the original kinetic
chemical system is ergodic on the components indexed by y = b Æ x, this property may be lost in the infinite
volume limit leading to (69). In other words, the ergodicity condition (2) above may not be satisfied unless
additional, hidden slow variables are introduced. However, one can also show in this case the seamless
algorithm in the style discussed earlier is still valid provided that the virtual fast system is dissipative
on each of its ergodic component in the sense that the dynamics converges to unique steady states. This
can also be seen from (68), since the equilibrium distribution ly(dx) is a delta distribution centered on the
steady state.
4. Adaptively partitioning the set of slow and fast reactions

In this section, we discuss the generalization of the nested SSA to systems for which the set of fast reactions
changes over time. We would like the nested SSA to pick up the set of fast reactions dynamically. Consider the
following system:
S1 ¢
a1

a2

S2; S2 ¢
a3

a4

S3; 2S2 þ S3 ¢
a5

a6

3S4: ð80Þ
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The reaction rates and the state change vectors are
a1 ¼ x1; m1 ¼ ð�1;þ1; 0; 0Þ;
a2 ¼ x2; m2 ¼ ðþ1;�1; 0; 0Þ;
a3 ¼ 104x2; m3 ¼ ð0;�1;þ1; 0Þ;
a4 ¼ 104x3; m4 ¼ ð0;þ1;�1; 0Þ;
a5 ¼ 2x2ðx2 � 1Þx3; m5 ¼ ð0;�2;�1;þ3Þ;
a6 ¼ 2x4ðx4 � 1Þðx4 � 2Þ; m6 ¼ ð0;þ2;þ1;�3Þ:

ð81Þ
Suppose that we start with the following initial condition:
ðx1; x2; x3; x3Þ ¼ ð100; 3; 3; 3Þ: ð82Þ

At the beginning, when the concentration of S2 is low, only the transition between S2 and S3 is fast. As the
number of S2 grows, the last two reactions become faster and faster. Fig. 3 shows the evolution of the sum
of the reaction rates a1 + a2 and a5 + a6. It can be seen that the reaction rate a5 + a6 grows from O(1) to
O(105) on a time scale of O(1).

To test the nested SSA and compare it with the direct SSA, we use the mean and the variance at time T = 4
of x1, the number of species S1, as a benchmark. A computation of the direct SSA with N0 = 10,000 gives
x1 ¼ 27:62� 0:2; varðx1Þ ¼ 20:97� 0:2: ð83Þ

The calculation took 8781.83 s of CPU time on our machine.

In the nested SSA, we dynamically change the set of fast reactions by constantly monitoring the following
quantity
jðtÞ ¼
Z t

0

a5ðsÞ þ a6ðsÞ
a1ðsÞ þ a2ðsÞ

� �
expðs� tÞds: ð84Þ
The kernel exp(s � t) serves to smooth out the oscillation in the ratio a5þa6

a1þa2
. If j > 104, the last two reactions are

included in the set of fast reactions. If j < 103, the last two reactions are treated as slow reactions. Otherwise,
the direct SSA is adopted to simulate the whole system. Fig. 4 shows the above adaptive strategy. The indi-
cator is set to be 0 when j < 103, 2 when j > 104 and 1 when j is between 103 and 104. It can be seen that the
adaptive scheme first treats the last two reactions as being slow and then as being fast when the time scale
separation increases to the predetermined value of 104. The scheme oscillates between the direct and the nested
SSA during some brief period of time when the last two reactions evolve from being slow to being fast. This is
not a serious problem since the direct simulation is exact and there is still an efficiency gain due to the fact that
the nested SSA is used most of the time.
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Fig. 3. Time evolution of the reaction rates a1 + a2 and a5 + a6.
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Table 4
Efficiency and accuracy of the adaptive nested SSA

Tf/10�5 1 2 4 8 16 32 64

CPU 13.6 18.6 28.0 47.2 86.2 163.0 316.2
x1 27.50 27.55 27.44 27.51 27.55 27.55 27.61
var(x1) 20.58 20.65 20.82 20.57 20.84 20.58 21.01
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To test the nested SSA, we conduct a series of simulations in which the size of the ensemble and simulation
time of the inner SSA in the nested SSA scheme are chosen to be
ðN ; T fÞ ¼ ð1; 2k � 10�5Þ; ð85Þ

for different values of k = 0, 1, 2, . . .. The error should be
k ¼ Oð2k=2Þ: ð86Þ

Table 4 gives the CPU time and the values of the mean and variance of x1 using N0 = 10,000. The sum of the
relative errors of the mean and the variance is shown in Fig. 5.
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Fig. 5. Accuracy of the adaptive nested SSA.
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The strategy for adaptively determining the set of fast and slow reactions may not be the best one. Further
work in this direction is clearly needed.

5. Nested SSA for systems with multiple time scales

Now we discuss chemical kinetic systems with multiple (more that two) well separated time scales. For sim-
plicity, we focus on the instance when there are only three different time scales. The general case can be studied
similarly. We will provide the asymptotic analysis for the effective dynamics on slow time scales and present
the modified nested SSA for systems of this type.

5.1. Effective dynamics for systems with multiple time scales

Suppose we are given a chemical kinetic system with R = {(aj,mj)} in which the rates aj(x) fall into three
groups: One group corresponding to the ultra-fast processes with rates of order 1/�2; one group corresponding
to fast processes with rates of order 1/�; and one group corresponding to slow processes with rates of order 1:
aðxÞ ¼ asðxÞ; 1
�

afðxÞ; 1

�2
aufðxÞ

� �
: ð87Þ
The corresponding reactions and the associated state change vectors can then be grouped accordingly:
Rs ¼ fðas; msÞg; Rf ¼ 1

�
af ; mf

� �
; Ruf ¼ 1

�2
auf ; muf

� �
: ð88Þ
The backward Kolmogorov equation for the observable uðx; tÞ ¼ Exf ðX tÞ is then of the form:
ou
ot
¼ L0uþ 1

�
L1uþ 1

�2
L2u; ð89Þ
where L0, L1/� and L2/�2 are the generators of the Markov processes associated with Rs, Rf and Ruf. As before,
we can define a set of variables y which are slow compared with ultra-fast processes and are independent linear
functions conserved during the ultra-fast reaction Ruf. As in Section 2.2, we shall denote these variables by
yj ¼ bj � x ð90Þ
where (b1, . . . ,bJ) are a basis of the subspace of vectors such that b � muf
j ¼ 0 for all muf

j . Similarly, we can now
defined slow variables z compared to both the fast and ultra-fast reaction as being independent linear func-
tions conserved during the fast and ultra-fast reactions (Rf,Ruf). It is convenient to define the z variables as
linear combinations of the y:
zj ¼ cj � y ð91Þ

where (c1, . . . ,cK) are a basis of the subspace of vectors in RJ such that c � �mf

j ¼ 0 for all �mf
j ¼ ðb1 � mf

j; . . . ; bJ � mf
jÞ.

To derive the effective dynamics, let us expand u as
u ¼ u0 þ �u1 þ �2u2 þ � � � ; ð92Þ

and insert this expansion in (89). This leads to
L2u0 ¼ 0;

L2u1 ¼ �L1u0;

L2u2 ¼ ou0

ot � L1u1 � L0u0:

8><
>: ð93Þ
The first equation means that u0 belongs to the null-space of L2, i.e. u0ðx; tÞ ¼ Uðb � x; tÞ for some Uðy; tÞ yet to
be determined. Inserting this expression into the second equation in (93) and looking for the solvability con-
dition for the resulting equation, we arrive at
0 ¼ PL1U ¼
XM f

i¼1

�af
i ðyÞ Uðy þ �mf

i Þ � UðyÞ

 �

: ð94Þ
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Here �mf
i ¼ b � mf

i and
�af
i ðyÞ ¼

X
x2X

af
i ðxÞlyðxÞ: ð95Þ
where ly(x) is the equilibrium distribution of the fast process on the ergodic component indexed by y. (94)
implies that U belongs to the null-space of the following generator defined on function f : Y! R:
ðL1f ÞðyÞ ¼
XM f

i¼1

�af
i ðyÞ f ðy þ �miÞ � f ðyÞð Þ: ð96Þ
Assuming that the corresponding process generated by L1 is ergodic, with ergodic component indexed by z, i.e.
it means that UðyÞ is in fact a function of z = c Æ y, i.e.
Uðy; tÞ ¼ Uðc � y; tÞ; ð97Þ

for some Uðz; tÞ to be determined. Let us denote by �lzðyÞ the equilibrium distribution of the process generated
by (96) on the ergodic component indexed by z. Associated with lz(y) there is a projection operator Q defined
as follows: for any v : Y! R, it gives Qv : Z! R as
ðQvÞðzÞ ¼
X
y2Y

�lzðyÞvðyÞ: ð98Þ
The equation for U is obtained from the solvability condition for the third equation in (93), which is obtained
by projection this equation first by P, then by Q. It reads
oU
ot
¼ QPL1U ¼

XM s

i¼1

��as
i ðzÞ Uðzþ �ms

i Þ � UðzÞ
� �

: ð99Þ
Here ��ms
i ¼ c � ðb � ms

i Þ and
��as
i ðzÞ ¼

X
y2X

X
x2X

as
iðxÞlyðxÞ�lzðyÞ: ð100Þ
Notice that (99) is equivalent to following equation for ��uðx; tÞ on the original state-space X,
o��u
ot
¼
XM s

i¼1

��as
i ðc � ðb � xÞÞ ��uðxþ ms

i Þ � ��uðxÞ

 �

ð101Þ
in the sense that if we solve (101) with the initial condition ��uðx; t ¼ 0Þ ¼ f ðc � ðb � xÞÞ, then ��uðx; tÞ ¼
Uðc � ðb � xÞ; tÞ where U solves (99) with the initial condition Uðz; t ¼ 0Þ ¼ f ðzÞ. We will make use of (101)
in the following section. Notice also what we did above is an iterated averaging, a technique that has been
developed in the context of homogenization [1].
5.2. Multi-level nested SSA

When the assumptions for iteratively averaged dynamics (101) hold, we can generalize the nested SSA with
two levels proposed in Section 3 straightforwardly to handle multi-scale system (88) by using a nested SSA
with more than two levels. Here we consider three levels. The innermost SSA uses only the ultra-fast rates
and serves to compute the averaged fast and slow rates using formulas similar to (37). This will give us the
dynamics on the ultra-fast time scale and the following quantities
~as 
 Pas; ~af 
 Paf : ð102Þ
The inner SSA uses only the above averaged fast rates ~af and the results are used again to compute the aver-
aged slow rates (which are already averaged with respect to the ultra-fast reactions) as in (37):
âs 
 QPas: ð103Þ
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Finally, the outer SSA uses only the above averaged slow rates. The cost of such a nested SSA is independent
of �, and as before, precise error estimates can be given in the same form of (41) in terms of Tuf – (the time
interval over which the Innermost SSA is run and ð~as; ~afÞ is averaged), Nuf (the number of replicas in the Inner-
most SSA), Tf (the time interval over which the Inner SSA is run and âs is averaged), and Nf (the number of
replicas in the Inner SSA):
error 6 C �þ 1

1þ T f=�
þ 1

1þ T uf=�2
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N fð1þ T f=�Þ
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nufð1þ T uf=�2Þ
p

 !
: ð104Þ
Let us take a look at an example. Consider the following system
S1 ¢
a1

a2

S2; S2 ¢
a3

a4

S3; S3 ¢
a5

a6

S4: ð105Þ
with the reaction rates and state change vectors
a1 ¼ 2� 1010x1; m1 ¼ ð�1;þ1; 0; 0Þ;
a2 ¼ 1010x2; m2 ¼ ðþ1;�1; 0; 0Þ;
a3 ¼ 105x2; m3 ¼ ð0;�1;þ1; 0Þ;
a4 ¼ 2� 105x3; m4 ¼ ð0;þ1;�1; 0Þ;
a5 ¼ x3; m5 ¼ ð0; 0;�1;þ1Þ;
a6 ¼ x4; m6 ¼ ð0; 0;þ1;�1Þ:

ð106Þ
In this system, the first isomerization is ultra-fast, the second one is fast, the third one is slow, and � = 10�5.
The fast variables conserved during ultra-fast reactions are
ðy1; y2; y3Þ ¼ ðx1 þ x2; x3; x4Þ: ð107Þ
The slow variables conserved during fast and ultra-fast reactions are
ðz1; z2Þ ¼ ðy1 þ y2; y3Þ ¼ ðx1 þ x2 þ x3; x4Þ: ð108Þ
For each fast variable y, the ultra-fast reaction has an equilibrium distribution:
lyðx1; x2Þ ¼
y1!

x1!x2!
ð1=3Þx1ð2=3Þx2dx1þx2¼y1

dx3¼y2
dx4¼y3

: ð109Þ
So the effective rates on the fast time scale are
�af
3 ¼ P ð105x2Þ ¼

2� 105

3
y1; �mf

3 ¼ ð�1;þ1; 0Þ;

�af
4 ¼ P ð105x3Þ ¼ 2� 105y2; �mf

4 ¼ ðþ1;�1; 0Þ:
ð110Þ
For each slow variable z1, the above reaction admits a unique equilibrium in the space of fast variable y:
�lzðy1; y2Þ ¼
z1!

y1!y2!
ð3=4Þy1ð1=4Þy2dy1þy2¼z1

dy3¼z2
: ð111Þ
The effective rates on the slow time scale are:
��as
5 ¼ QPðx3Þ ¼ Qðy2Þ ¼

z1

4
; ��ms

5 ¼ ð�1;þ1Þ;
��as

6 ¼ QPðx4Þ ¼ Qðy3Þ ¼ z2; ��ms
6 ¼ ðþ1;�1Þ:

ð112Þ
Suppose that we take the total number of molecules in the system to be N = 1. Then when the whole system is
at equilibrium on the slow timescale, the overall equilibrium distribution is
l ¼ ð:2; :4; :2; :2Þ: ð113Þ
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To test the convergence and efficiency of the nested SSA, we take the following initial values
Fig. 6.
exact,
ðx1; x2; x3; x4Þ ¼ ð1; 0; 0; 0Þ; ð114Þ

and run the nested SSA to some long time on the slow time scale, say T = 104 using the parameters:
ðN f ;N uf ; T f ; T ufÞ ¼ ð1; 1; 10�2; 10�7Þ: ð115Þ

We estimate the average equilibrium values of xi by recording the visiting frequency of the states. With the
above parameters, we obtain the following results:
l ¼ ð:1999; :3994; :1991; :2017Þ: ðthree-level nested SSAÞ ð116Þ

The maximum error is about 0.0085 compared with the exact values given by (113). In contrast, it is almost
impossible to run the direct SSA to T = 104. To compare the efficiency of the nested SSA with the direct SSA,
we fix the total number of iterations in the calculations. The calculation with the nested SSA with the param-
eters in (115) requires O(1010) iterations. With the same number of iterations, the direct SSA only advanced up
to time T 00 ¼ Oð1Þ, which is way too small to produce an accurate estimate for the equilibrium distribution.
Fig. 6 shows this result. It can be seen that result from direct SSA is far from being accurate.

5.3. Nested SSA for the diffusive limit

In this section, we discuss the situation where the following centering condition holds
PL1U ¼ 0; ð117Þ

which means that (94) is trivially satisfied. In this case, there is no need to introduce z variable as the slow
dynamics on the O(1) time scale involves the y variables themselves. If (117) is satisfied, the second equation
in (93) can be formally solved as
u1 ¼ �L�1
2 L1U : ð118Þ
Inserting this expression into the third equation in (93), and looking for the solvability condition for the result-
ing equation, we arrive at the following equation for U :
oU
ot
¼ PL0U � PL1L�1

2 L1U : ð119Þ
The generators at the left hand side of this equation can be expressed more explicitly. The first one is simply
PL0U ¼
XM s

j¼1

�as
jðyÞ Uðy þ �ms

j; tÞ � Uðy; tÞ
� �

; ð120Þ
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Empirical distributions obtained by nested SSA and direct SSA at the same cost. The distribution produced by nested SSA is nearly
whereas the one produced by direct SSA is totally inaccurate.
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where �ms
j ¼ b � ms

j and
�as
jðyÞ ¼

X
x2X

as
jðxÞlyðxÞ: ð121Þ
As for the second term in (119), let us denote by X uf
x;t a sampling path of the process involving only the ultra-fast

reactions associated with L2 starting from x. Then for any v : X! R such that
P

x2XvðxÞlyðxÞ ¼ 0, we have
ð�L�1
2 vÞðxÞ ¼

Z 1

0

ðeL2tvÞðxÞdt ¼
Z 1

0

E vðX uf
x;tÞdt: ð122Þ
Using this expression together with condition (117), after some algebra one arrives at
�PL1L�1
2 L1U ¼

XM f

j¼1

AjðyÞ Uðy þ �mf
j; tÞ � Uðy; tÞ

� �
; ð123Þ
where �mf
j ¼ b � mf

j and
AjðyÞ ¼
X
x2X

lyðxÞ
XM f

i¼1

af
i ðxÞ

Z 1

0

E af
jðX uf

xþmf
i ;t
Þ � af

jðX uf
x;tÞ

� �
dt: ð124Þ
(119) is equivalent to the following equation for �uðx; tÞ on the original state-space X
o�u
ot
¼
XM s

j¼1

�as
jðb � xÞ �uðxþ ms

j; tÞ � �uðx; tÞ
� �

þ
XM f

j¼1

Ajðb � xÞð�uðxþ mf
j; tÞ � �uðx; tÞÞ; ð125Þ
in the sense that the solution of (125) with the initial condition �uðx; 0Þ ¼ f ðb � xÞ is Uðy; tÞ, the solution of (119)
with the initial condition Uðy; 0Þ ¼ f ðyÞ. (125) is a chemical kinetic system with the following reaction
channels
R ¼ ðð�as; msÞ; ðA; mfÞÞ: ð126Þ

Based on the effective dynamics (125), a nested SSA for diffusive limit can be formulated. The nested SSA still
consists of two levels of SSA. The inner level runs the ultra-fast reactions and the outer level runs the fast and
slow reactions with modified rates estimated from the ultra-fast simulations using the following estimator for
�as

j and Aj:
~as
j ¼

1

N

XN

k¼1

1

T uf

Z T uf

0

as
j X k

s


 �
ds;

~Aj ¼
1

N

XN

k¼1

1

T uf

Z T uf

0

XM f

i¼1

af
i ðX k

sÞ
Z T 0

uf

0

af
j Y k

sþx


 �
� af

jðX k
sþxÞ

� o
dxds;

ð127Þ
where ðX k
s ; Y

k;i
sþxÞ is the kth replica of the virtual ultra-fast process Ruf with initial values X k

s¼0 ¼ X n (the current
state in the effective dynamics) and Y k;i

0 ¼ X k
0 þ mf

i . T 0uf is the virtual time we use to truncate the integral in
(122). We can also obtain an error estimate for this scheme:
error 6 C �þ 1

1þ T uf=�2
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nð1þ T f=�2Þ
p þ e�aT 0

uf
=�2

 !
: ð128Þ
For an explicit example, consider the following system
S1 ¢
a1

a2

S2; S2!
a3 S3: ð129Þ
with the reaction rates and state change vectors
a1 ¼ 105x1; m1 ¼ ð�1;þ1; 0Þ;
a2 ¼ 1010x2; m2 ¼ ðþ1;�1; 0Þ;
a3 ¼ 105x2; m3 ¼ ð0;�1;þ1Þ:

ð130Þ
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Fig. 7. Time evolution of the slow variable y1 = x3 on the diffusive timescale.
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For the above system, L0 = 0 and � = 10�5. We can eliminate variable x1 by the conservation of the total num-
ber of molecules x1 + x2 + x3 = M0 hence the ultra-fast variable is (x2,x3). The fast variable that keeps con-
stant in the ultra-fast reaction is y1 = x3. The equilibrium distribution of x2 for the virtual ultra-fast process is
that of a one direction birth-death process such that
Probðx2 ¼ 0Þ ¼ 1: ð131Þ

The action of P is then simply taking x2 = 0. The solvability condition (117) is satisfied since
PL1U ¼ P ðx1ðUðy1; tÞ � Uðy1; tÞÞ þ x2ðUðy1 þ 1; tÞ � Uðy1; tÞÞÞ ¼ 0: ð132Þ

The solution of �L2v = x2 is v ¼ �L�1

2 x2 ¼ x2, which leads to
A3ðyÞ ¼ P ðM0 � x2 � x3Þ ¼ M0 � y1: ð133Þ

Thus the only reaction channel in the diffusive limit is
R ¼ ðM0 � x3; m3Þ; ð134Þ

which is also a one direction birth-death process. For the nested SSA, we choose the parameters:
ðN ; T uf ; T 0ufÞ ¼ ð1; 2� 10�9; T extinctÞ; ð135Þ

where T 0uf ¼ T extinct means x2 is run till extinction in the ultra-fast simulation. Fig. 7 shows the time evolution
of the slow variable x3 on the slow time scale obtained by the nested and direct SSA simulations. The mean
relative error for the nth jumping time of x3 is less than 0.067. The computation of the direct SSA takes 131.2 s
of CPU time while the nested SSA takes only 0.37 s.

6. Conclusion

We analyzed a nested stochastic simulation algorithm proposed in [7] for multi-scale chemical kinetic sys-
tems. Convergence and efficiency are proved and illustrated through examples. Generalizations to systems
with dynamic partition and multiple time scales of the fast and slow reactions are discussed.
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