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Abstract. We show that there exist classes of explicit numerical integration methods that
can handle very stiff problems if the eigenvalues are separated into two clusters, one containing the
“stiff,” or fast, components, and one containing the slow components. These methods have large
average step sizes relative to the fast components. Conventional implicit methods involve the solution
of nonlinear equations at each step, which for large problems requires significant communication
between processors on a multiprocessor machine. For such problems the methods proposed here
have significant potential for speed improvement.
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1. Introduction. In this paper we consider explicit numerical methods for prob-
lems with a large gap between the time constants of the fast components (which are
assumed to be damped out after a short time) and the time constants of the slow,
active components (those still present in the solution). The fast, damped components
arise from eigenvalues with large negative real parts, while the active components can
arise from driving terms in a nonautonomous system or from eigenvalues of smaller
magnitude. It will be convenient to think of the problems as having two sets of eigen-
values: one with very negative real parts and a second set that are close to the origin.
The gap is, loosely, the distance between these sets. The existence of such spectral
gaps is germane to the theory of inertial manifolds for dissipative PDEs [12, 2] and
of approximate inertial forms for their discretizations.

In the absence of fast driving terms, the fast components in the true solution
corresponding to the large eigenvalues will be rapidly damped. If we had a very good
numerical integrator for the fast region, the numerical solution would have the same
properties. Such an “inner” integrator could be an explicit one, using step sizes of
the same order of magnitude as the fast time constants. It could, however, be any
method, provided that it is accurate and damping. For example, it might involve
the simulation of the underlying system at a different level of modeling detail: it
could be a lattice-Boltzmann simulation or even a molecular dynamics simulation of
a flow, a more fine-grained model than the Navier–Stokes description of the same
problem. Indeed, a major motivation for this approach, which will be pursued in
other publications, is the desire to be able to exploit short-term simulation results
of existing “fine” microscopic model codes and to derive from them results over long
time scales. This will be done by a “coarse-motivated” postprocessing through the
“outer” integrator, as discussed in [6].

Once beyond the region where the fast components are active, we would like to
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use step sizes in a numerical integration commensurate with the slow components.
Conventional wisdom (see, e.g., Gear [4, Chapter 11]) tells us that we have to use
implicit methods in this case, and then solve the resulting coupled nonlinear equations
using some approximation to the system Jacobian or of the subspace corresponding
to the large eigenvalues (e.g., by a Krylov technique through an approximation of the
dominant subspace of the Jacobian). The methods we propose do not require any
approximation to the Jacobian or any representation of its dominant subspace.

We are concerned with the integration of the initial value ODE

y′ = f(y), y(0) = y0,(1)

where y and f are n-dimensional vectors and n is typically large.
We wish to consider problems in which it is not practical to use implicit methods.

This could occur because we already have a large legacy code that implements an
explicit integration and it is not practical to reengineer that code; it could occur
because of the size of the problem, or because nonlinearities make the solution of
the system of nonlinear equations impossible when large steps are used. (Although
we will talk in terms of ODEs, the primary application is undoubtedly to problems
arising from the semidiscretization of PDEs.)

Intuitively, the idea is very simple: we take a small number of steps of an in-
ner integrator at a time scale corresponding to the fast time constants until those
components are heavily damped. Then we perform a (polynomial) projection (or ex-
trapolation) forward over a long step commensurate with the slow time constants from
the results of the inner integration. The inner integrator can be an explicit method
since it is using a small step (although it does not have to be). The interesting feature
of the method is that the linear stability region is (roughly) composed of the stability
regions of the two (inner and outer) methods so that it can accommodate problems
with two clusters of eigenvalues. (Of course, a linear stability analysis does not guar-
antee stability for nonlinear/strongly time-dependent problems, but it is seldom a
good idea to use a method that is not stable for linear problems! Further analysis
is needed to understand the method’s behavior on nonlinear problems, but standard
analysis will show that mild nonlinearities or time-dependencies will not destroy the
stability if the linearized eigenvalues lie sufficiently inside the linear stability region.)

The extrapolation can be viewed as an outer integrator. In this view, the steps
of the inner integrator serve to damp the fast components and develop the numerical
solution of the slow components over a small interval. That (numerical) solution is
then processed to get the derivatives needed for the outer integrator. This processing
avoids some of the error amplification inherent in an evaluation of f(y) due to the
large eigenvalues of the Jacobian ∂f/∂y.

The reader might think that these should be called “extrapolation methods,” but
that name has already been used [1] for methods which estimate the error terms by
extrapolation to h = 0, an unrelated class of methods. Hence we call the proposed
methods projective integration methods.

These methods have some similarities with methods in the literature. We will
mention a few recent papers containing ample references to earlier ones. Many of
the related literature methods generate the dominant subspace of the Jacobian (the
subspace spanned by the eigenvectors corresponding to the large eigenvalues) and
then solve for the fast components in that (usually lower-dimensional) subspace. They
often form the subspace from the Krylov sequence (see [7], [8], and [3]), or they may
use Chebyshev polynomials to get a lower-dimensional approximation to the solution
operator in the fast subspace [10].



PROJECTIVE METHODS FOR STIFF DIFFERENTIAL EQUATIONS 1093

G1

Complex λ − plane

•
= -Sλ 1

λr= D⋅S

G0

λ 0=-1•

Fig. 1. Regions G0 and G1.

A related set of papers [9, 11, 14] addresses the issue of greatly extending the
region of stability along the negative real axis by using a set of steps of varying sizes
so that the region is suitable for parabolic equations. The set of step sizes determines
the polynomial approximation to the exponential operator and is chosen to make
this approximation less than one in magnitude in the desired regions. Reference [9]
indicates how the regions can take a number of shapes. Such methods could be used
to generate the shape of the stability region that we address. However, the methods
we will use are quite different and rely on only the basic stability properties of the
explicit integrators we will use, not on a special collection of step sizes.

We assume that the stability of the differential system (1) and the numerical
method can be approximated by studying the stability of a local linearization, and
that the eigenvalues of the Jacobian J = ∂f/∂y are clustered into two groups G0

and G1. We assume that there is a large separation, or gap, (relative to the size of
the clusters) between the clusters (see Figure 1); that G0 is in the neighborhood of
the origin, corresponding to the slow components; and that G1 is well into the left
half-plane. (If there are driving terms, the time constants of the driving terms should
be viewed as if they were additional eigenvalues in the G0 cluster in this discussion,
since we will be concerned with methods that are accurate for the components in G0.)

In the methods proposed below, we are happy to use conventional integrators in
the region where the fast components are active since a small step size is needed in
this region. When the problem becomes stiff, i.e., when the fast components become
negligible at the accuracy desired, the conventional inner integrator damps the fast
components, and thus avoids any direct representation of the dominant subspace.
Taking advantage of this, we can achieve an explicit outer integrator that is stable
even at large step sizes. The slightly surprising result is that the stability region for
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the outer integrator is essentially the same as that for the related conventional explicit
integrator for just the slow components.

In the next section we will consider the simplest realization of the proposed
method and analyze its stability. Then we will examine a number of extensions of the
method and show that the behavior of the simplest method is not a special case but
is typical of many possible realizations.

Finally we will apply the method to some examples.

2. The projective forward Euler method. One outer integration step of the
projective forward Euler (PFE) method integrates over k+1+M steps of size h from
tn to tn+k+1+M in the following manner:

1. Using a suitable inner integrator, integrate for k steps from tn to tn+k. It
does not matter in our discussion what method is used for this inner integrator except
that it is stable and of at least first order. (We will also assume that it is linear, as
described below.)

2. Perform one more inner integration to compute yn+k+1 from yn+k.
3. Now perform an extrapolation over M steps using yn+k+1 and yn+k to com-

pute yn+k+1+M as

yn+k+1+M = (M + 1)yn+k+1 −Myn+k.(2)

We call this outer procedure a “forward Euler” method because we could also write
it as

yn+k+1+M = yn+k+1 + (Mh)y′n+k+1,

where the derivative approximation is given by

y′n+k+1 =
yn+k+1 − yn+k

h
.

The k steps of the inner integrator must damp the fast components sufficiently
to offset the growth of the same components in the extrapolation step. In fact, each
application of the inner integrator multiplicatively reduces the fast components, so
the error reduction scales with a power of k, whereas the growth in the extrapolation
is linear in M . This will be seen in the simple analysis below.

We will assume that the inner integrator is a linear method. This is defined to be
a method that commutes with a linear transformation of the dependent variables in
the equations. That is, applying the numerical method to the differential equation (1)
to get yn and then computing zn = Qyn for some nonsingular, constant transforma-
tion Q gives the same results (within roundoff error) as applying the method to the
transformed differential equation z′ = Qf(Q−1z). Most numerical integration meth-
ods are linear. When a linear method is applied to the linear, constant coefficient
equation y′ = Ay, it is equivalent to applying it separately to the set of scalar equa-
tions y′ = λy, where the λ are the eigenvalues of A. Hence, we can do linear stability
analysis of linear methods by analyzing their effect on the scalar test equation

y′ = λy(3)

for each of the eigenvalues λ of the problem.
One step of the inner integrator applied to (3) over step size h starting from

y = yn will give

yn+1 = ρ(hλ)yn,
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where ρ is the amplification of the method. For the “perfect” integrator, ρ(hλ) =
exp(hλ), but this is not achievable unless the problem can be integrated explicitly.

We now consider the error propagation of PFE for a linear equation. Suppose
that the error at tn in an eigencomponent corresponding to eigenvalue λ is εn. (We
must consider the behavior for each λ in G0 and in G1.) After k inner integration
steps, the error is “amplified” (normally, that will be a decrease) to

εn+k = ρkεn.

(We write ρ to mean ρ(hλ).) When the extrapolation (2) from step k and k + 1 to
k + 1 +M is performed, that error will be amplified to

εn+k+1+M = (M + 1)εn+k+1 −Mεn+k = [(M + 1)ρ−M ]ρkεn.

Hence, the error amplification in the compound step, which we will denote by
σ(hλ), is given by

εn+k+1+M = σ(hλ)εn,

where

σ(hλ) = [(M + 1)ρ−M ]ρk.(4)

The method is absolutely stable if |σ(hλ)| ≤ 1. Absolute stability depends on the
value of hλ. The region of absolute stability (hereafter called the stability region) in
the hλ-plane is the set of hλ for which (4) gives |σ(hλ)| ≤ 1. We can find this region
by plotting the locus of all hλ for which |σ| = 1. This locus will divide the hλ-plane
into two or more regions. By continuity, if any point in a region is stable, then all are.

This region depends on the form of the inner integrator. If the inner integrator is
perfect, we get the stability regions shown in Figure 2 for PFE methods with k = 2
and M = 5, 7, and 9. We refer to this class of methods as Pk-M methods. Note that
only the strip for imaginary values in [−iπ,+iπ] is shown. This strip is repeated at a
spacing of 2iπ. We see that, for M = 3 and 5, the plane is divided into two regions.
Since the point at −∞ gives ρ = 0 for the perfect integrator, the region to the left
of the boundary is the stability region. When M = 9, the stability region has split
into multiple parts—the interior of the closed contour on the right-hand side of the
graph, which is repeated every 2iπ, and the semi-infinite part on the left. Now there
is a gap in the hλ values on the negative real axis for which the method is stable.

It is impossible to find even an approximation to a perfect integrator for large
values of hλ except for trivial problems, and thus the apparent infinite stability region
in this hλ-plane is somewhat misleading.

We can, instead, plot these stability regions for any specific inner integrator. For
example, Figure 3 shows the stability regions for the same three methods (P2-5, P2-7,
and P2-9) if the inner integrator is the forward Euler (FE) method. (For reasons
which will be apparent shortly, the regions are displaced by distance of one to the
right so that the origin in the hλ-plane appears at the point (0, 1).) Notice now that
the regions (which are the interior(s) of the curves shown) are finite because the FE
method used as the inner integrator is unstable for large hλ.

The stability regions in the hλ-plane are determined by two factors—the form
of the outer integrator and the form of the inner integrator. In analyzing specific
methods, it will be necessary to consider the impact of the inner integrator and its
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Fig. 2. Complex hλ-plane stability for the P2-M method with perfect inner integrator for
M = 5 (dashes), 7 (dots), and 9 (solid lines); [−iπ, iπ] strip only.

effect on the stability regions. Fortunately we can consider the impact of the outer
integrator independently of that of the inner integrator by considering the stability in
the ρ-plane using (4). The stability region is the set of values of (inner) ρ for which
the (outer) σ ≤ 1. Because FE gives ρ(hλ) = 1 + hλ, it is simply a shift by 1 of the
stability plots of the method using FE as the inner integrator, which we have shown
in Figure 3. To find the (overall) stability region for any specific inner integrator, it
is sufficient to map back from the ρ-plane to the hλ-plane using the particular form
of ρ(hλ) for the inner integrator. Thus Figure 2 is simply the logarithm of Figure 3.

We notice that, asM gets larger, the stability region breaks into two. It is easy to
show that, no matter what the value of k, for sufficiently large M the stability region
will separate in this way, as it has in Figure 3 when M = 9. In fact, the regions split
when M is around 3.6k for large k. (Asymptotically for large k, the split occurs when
M > γk, where γ is the real root of γ = exp(1 + 1/γ). See section 4.) However, as
long as we have a gap in the spectrum and can arrange for cluster G1 to be in the
left-hand region, and cluster G0 to be in the right-hand region, the method will be
stable.

M will be chosen so that the “effective step size” of the outer integrator, Mh,
is commensurate with the slow components; that is, Mh = ∆/λ0, where λ0 is an
eigenvalue in the slow cluster G0 and ∆ is chosen for error control, typically in the
range 0.001 < ∆ < 0.2. If there is a large gap in the spectrum, then M can be large
(and considerable savings in integration can be achieved).

We show in section 4 that, however large M , we can always choose k so that the
method is stable, provided that the step size of the inner integrator can be chosen so
that ρ < 1 for all eigenvalues in G1. The result follows from the lemma in section 4
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Fig. 3. Complex ρ-plane stability for the P2-M method with M = 5 (dashes), 7 (dots), and 9
(solid lines).

that says that, as M becomes large, the stability regions of the PFE method in the
ρ-plane approach two disks, one centered at the origin with radius 1/M1/k, and the
other centered at 1 − 1/M with radius 1/M . Figure 3 with M = 9 illustrates this,
although M is still relatively small there and thus the regions are far from circular
(this is an asymptotic result).

The effective outer integrator step size is Mh. Hence it is interesting to consider
stability in the Mhλ-plane and ask where the eigenvalues in G0 must lie. This map
depends on the form of the inner integrator. If the inner integrator is the FE method
and we map the second (right-hand) disk into theMhλ-plane, we get a circle centered
at −1 and having radius 1. This is precisely the stability region for FE at step sizeMh.

Interestingly, this result is also true asymptotically for any inner integrator that
is at least first order. This occurs because its being first order implies that ρ(hλ) =
1+hλ+O(hλ)2. IfMhλ is fixed asM becomes large, this implies ρ = 1+(Mhλ)/M+
(Mhλ)2O(M−2). Hence, the map of the stability region from the ρ-plane to theMhλ-
plane in any fixed regions of the Mhλ-plane asymptotically approaches the stability
region of the FE method.

The radius of the first (left-hand) disk shrinks as M increases. We must choose a
k large enough to shrink the ρk values corresponding to the eigenvalues in cluster G1

into this disk. As long as the maximum ρ corresponding to any of these eigenvalues
is less than one, this is possible, and we have

k ≥ k1 =
−log(M)

log(ρmax )
,(5)

where ρmax is the maximum value of |ρ(hλ)| for eigenvalues λ in the set G1.
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3. Higher-order outer methods. We are not usually content with a first-
order integration method, so we naturally ask about higher-order methods. Here
we are referring to the “outer integrator,” since the inner integrator method can be
chosen independently of the outer one. What is important for the inner integrator is
its ability to damp the fast components quickly. Since its step size is small compared
to the outer step, accuracy is almost certainly assured for the slow components in the
inner steps.

In the Pk-M method, the inner integrator computed two important pieces of
information from the value yn for the outer integrator: approximations to yn+k and
to y′n+k. The approximation to yn+k provides damping of the fast components by k ap-
plications of the inner integrator, while the approximation to the derivative was used
in the outer integration formula. The obvious extension of this first-order method is
to ask the inner integrator to provide approximations to additional derivatives at tn+k

and use these in a Taylor series to compute yn+k+M . Each additional derivative will
require one more inner integration step.

If we do q additional inner integration steps after the initial k such steps, we
can estimate the first q derivatives at tn+k. An alternative view is that we do a qth-
order extrapolation forward a distance Mh from the values yn+k, yn+k+1, . . . , yn+k+q

to form yn+k+q+M . We will call this a Pk-q-M method (so that the previous method
is a Pk-1-M method). This method has properties similar to the Pk-M method:
for small M there is a single stability region, and for large M its stability region
consists of two regions in the ρ-plane, a region around the origin in the ρ-plane that
is approximately a disk of radius

r =

[
q!

Mq

]1/k

(6)

and a region containing ρ = 1 on its boundary that approximately maps to the
stability region of the qth order Taylor series method in the Mhλ-plane. This region
is the set of µ such that ∣∣∣∣1 + µ+

µ2

2!
+

µ3

3!
+ · · ·+ µq

q!

∣∣∣∣ ≤ 1

in the µ-plane. Figure 4 shows the stability regions of the P4-4-M methods with
M = 6, 8, and 10. In the case of M = 6 and 8 there is a single stability region.
In the case of M = 10 the region has split into two. For comparison purposes, the
stability region of the four-stage, fourth-order Runge–Kutta method is also plotted,
scaled by 0.1 (corresponding to 1/M). Note that it is similar to the rightmost of the
regions of the P4-4-10 method, as predicted (although, since M is not large, it still
differs significantly).

Note from (6) that we now need to choose a k such that

ρkmax <
q!

Mq
(7)

or

k ≥ kq =
−q log(M)

log(ρmax )
+

log(q!)

log(ρmax )
.

Comparing this with (5), we see that

k1 >
k2

2
>

k3

3
> · · · > kq

q
,
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Fig. 4. ρ-plane stability for the P4-4-M method with M = 6 (dashes), 8 (dots), and 10 (solid
lines), as well as the scaled RK4 stability region (dot-dashed line).

so that the number of inner integration steps, k+ q, increases more slowly than q, the
order.

3.1. Implicit methods. The Pk-q-M method is closely related to qth-order
Taylor series methods. The implicit extension of a Taylor series method uses deriva-
tives from both ends of the interval in the approximation. The simplest of these is
the trapezoidal rule (called the Crank–Nicolson method in the PDE community); it
uses the first derivative from each end. The general form of the implicit Taylor series
method is

yn+1 = yn + hβ01y
′
n + · · ·+ hq0β0q0y

(q0)
n + hβ11y

′
n+1 + · · ·+ hq1β1q1y

(q1)
n+1.(8)

Viewing the inner integrator as a device that can approximate derivatives, we can
implement a projective analogue of the implicit method. It is described in more de-
tail in the report on which this paper is based [5]. It might seem that an implicit
method would require the implicit solution of nonlinear equations at each (outer)
step—precisely what we are trying to avoid. It turns out that a “predictor-corrector”
iteration can be used that will converge, provided that the eigenvalues are within the
two clusters. We have not yet conducted experiments to determine whether the addi-
tional accuracy of a predictor-corrector method justifies the additional computation
(which it often does in standard integrators).

4. Analysis of general methods. This section will sketch the proofs of results
stated in previous sections and discuss some of the methods in more generality. It
can be skipped by readers not interested in the general theory.
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4.1. Stability region gap. In section (2) we noted that, in the Pk-M method,
anM larger than about 3.6k would cause the stability region to break into two pieces.
This can be seen by considering (4) and asking when the locus of ρ can cross the real
axis as σ traverses the unit circle. Clearly, there can only be a real root ρ of (4) when
σ is real, namely, +1 or −1. Graphically it is easy to see that, when σ = +1, there
is a real root at ρ = +1 and one more real root at ρ ≈ −1/M1/k (if k is odd) or no
other real roots (if k is even). When σ = −1, we can rewrite (4) as

1

ρk
=M − (M + 1)ρ.(9)

The graph of the left-hand side is independent of M and composed of two pieces,
one piece in the positive half-plane that is convex downwards and a second piece in
the negative half-plane that is convex upwards and negative if k is odd, or is convex
downwards and positive if k is even. AsM increases from zero, the graph of the right-
hand side, which is a straight line passing through (1,−1) and (0,M), slowly tilts up
until it intersects the graph of the left-hand side in the right half-plane atM =Mcrit .
For positive M < Mcrit there are no positive real roots for ρ. For M > Mcrit there
are two positive real roots. There is one negative real root for any positive M if k
is even, and none otherwise. Hence the real axis in the ρ-plane is cut in only two
places by the boundary of the stability region for M < Mcrit , as shown in Figure 3
for M = 5 and 7. For M > Mcrit the stability region boundary intersects the real
axis in four places, and we have the situation shown in Figure 3 with M = 9. The
critical value of M is at the point where (9) has repeated real roots.

We can compute this value by asking that the right-hand side of (9) be tangential
to the left-hand side, or that (9) and

k

ρk+1
=M + 1(10)

be satisfied simultaneously. Eliminating ρ, we get

[
(M + 1)

M

]k
=

M

k + 1

[
k

k + 1

]k
.

Setting M = γk, we get

[
1 +

1

γk

]k
= γ

[
1− 1

k + 1

]k+1

.

As k → ∞ we see that γ tends to the solution of

γ = exp

(
1 +

1

γ

)
.

The behavior of the stability regions as M gets large is given by the following
lemma.

Lemma 1. For large M the roots ρj, j = 0, . . . , k, of (4) when σ = exp(iθ),
θ ∈ (0, 2π), are given by

ρ0 = 1− 1

M
+
exp(iθ)

M
+O

(
1

M2

)
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and

ρj =
exp(i(θ/k + 2πj/k))

M1/k
+O

(
1

M2/k

)
, j = 1, . . . , k.

The proof follows by simple asymptotic expansions.

4.2. Stability regions for higher-order explicit methods. From the qth-
order extrapolation formula using forward differences, the error amplification for the
Pk-q-M method can be seen to be

σ =

[
1 + (M + q)(ρ− 1) + · · ·+ (M + q)(M + q − 1) · · · (M + 1)(ρ− 1)q

q!

]
ρk.(11)

The stability region is the set of ρ for which σ is in the unit disk, and can be found
once again by forming the locus of the values of ρ when σ = exp(iθ), θ ∈ [0, 2π). The
regions are shown in Figure 4 for q = 4, k = 4, and M = 6, 8, and 10. Once again
we note that, as M increases, the stability region “pinches off” and breaks into two
regions.

As before, we can analyze the behavior asymptotically in large M . By series
expansion we can demonstrate that the k + q roots of (11) are

ρi =

[
σq!

Mq

]1/k

+O(M−(q+1)/k), i = 1, . . . , k,(12)

(the kth root yields k different values) and

ρj = 1 +
γj
M

+O(M−2), j = k + 1, . . . , k + q,(13)

where the γj are the q roots of

σ = 1 + γ +
γ2

2!
+ · · ·+ γq

q!
.(14)

The locus of γ is precisely the boundary of the stability region of the qth-order Taylor
series method, so that the scaling of γ by 1/M in (13) maps the usual stability plot
into the scaled version in the ρ-plane, as stated earlier.

5. Examples.
Example 1 (the Brusselator with rapidly replenished source). The simple Brus-

selator models a chemically reacting system with two time-varying concentrations X
and Y , two “source materials,” and two final products. The differential equations are

X ′ = A− (B + 1)X +X2Y,

Y ′ = BX −X2Y,

where the concentrations A and B of the source materials are usually assumed to be
constant (and thus parameters). One might expect the A and B concentrations to
be depleted locally as they are used in the reaction, although in the presence of a
large supply reservoir they will be replenished by diffusion and/or convection. We
will add to this model a term for the depletion of the concentration B, followed by
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Table 1
Results at t = 10 for Example 1 with k = 4.

M X Y B
10 0.48766 2.7234 2.9999
20 0.48794 2.7217 2.9999
40 0.48851 2.7181 2.9999
80 0.48970 2.7108 2.9999

160 0.49220 2.6960 2.9999
320 0.49777 2.6659 2.9999
640 0.51098 2.6037 2.9998

1280 0.55843 2.4536 2.9998
2560 0.48792 4.4590 2.9999

a replenishment at an exponential rate as might be expected with diffusion from a
reservoir. The additional equation is

B′ =
B0 −B

ε
−BX.

Thus, the concentration B is reduced through its reaction with X but restored to its
“base” level B0 with a time constant of ε. This introduces a fast term, or stiffness,
into the reaction.

For values A = 1, B0 = 3 the system has an unstable equilibrium at X = A,
Y = B0/A, B = B0, but from any other starting point it tends to a limit cycle
in which X ranges from about 0 to 4 and Y ranges from about 1 to 5. (See [13,
pp. 56–60], for example.)

The system was integrated over the interval [0, 10] starting from X = A + 0.1,
Y = B0/A + 0.1, B = B0. In the first two tests the inner integrator was the FE
method with h = ε = 10−4 and k = 1 and 4. (All calculations were done in Matlab
on a Pentium III.)

For k = 4 we got the results at t = 10 shown in Table 1. In order to reach the
end point exactly, the final outer step was modified as follows: if k + 1 inner steps of
size h would pass the end point, the inner step size was reduced so that k + 1 steps
got there exactly and no outer step was taken; otherwise, M for the last outer step
was reduced to that needed to reach the end point exactly. In a production code,
one would interpolate to hit desired output points. The last line in Table 1 with
M = 2560 corresponds to an outer integrator step size of 0.256, which is much too
large for a first-order method in a problem with active eigenvalues of the size found
in this problem. (At X = 0.49, Y = 2.7, B = 3 the eigenvalues of the Jacobian are
−0.7677± 4.8395i and −1004.9.)

The behavior of the columns in Table 1 may not appear to represent a first-order
method. This is because there is a significant influence of the errors from the inner
method whose step size is not changing. An analysis in [5] shows that we are seeing
a combination of first-order error change in the outer integrator plus constant error
from the inner integrator.

The results for k = 1 for the above are similar. This is to be expected because
(a) there is a single large eigenvalue, and thus we can choose an h for the FE inner
integrator to make ρ = 0, (b) the eigenvector corresponding to the large eigenvalue
(the dominant eigenvector) does not vary much, and (c) the problem is only mildly
nonlinear in its fast components. Real-world problems are unlikely to be this coop-
erative. To illustrate the impact of a nonzero ρ, we ran the problem with an inner
step size of h = ε/2. This means that ρ for the large eigenvalue is about 1/2 (actually
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Table 2
Minimum k for stability with various M when ρmax ≈ 0.5.

M 320 640 1280 2560
kcomp 8 9 10 10

k1 8.32 9.32 10.03 11.32

Table 3
Results for Example 1 with k = 4 and ε = 10−6.

M X Y
100 8.5777e-8 -5.4912e-6
200 4.1974e-8 -5.3997e-6
400 2.3872e-9 -5.2624e-6
800 2.1634e-7 -5.6259e-6

1600 1.4048e-7 -4.5435e-6
3200 2.7148e-6 -7.9766e-6
6400 1.4444e-5 -2.5224e-5

12800 5.8682e-5 -8.6436e-5
25600 2.5100e-4 -3.6538e-4
51200 9.8082e-4 -1.2701e-3

1 − 1004.9/2000 at the end of the interval). For large M we must have ρk < 1/M
according to the theory. To test this, we integrated the problem using Pk-1-M with
M = 320, 640, 1280, and 2560 with various k to determine the first k for which the
results were stable (which was evaluated to be the first k for which the computed X
and Y were not NaNs (not-a-number’s). The results are shown in Table 2 as kcomp .
The k1 shown on the third line in this table is the minimum predicted by (5).

(The numerical result for M = 2560 and k = 10 was grossly in error—the final
value of B was 7.1. With k = 11, better results were obtained, although M = 2560
corresponds to such a large outer step size that accuracy can hardly be expected.)

We used the second-order projective method on the same problem with ε =
0.000001 and k = 4. The smaller value of ε was used so that the inner step (which
was equal to ε) was small enough that the error from the inner steps did not dominate
the error from the outer steps. The second-order behavior can be observed for a short
range of M from M = 6400 to 51200, as shown in Table 3. For smaller M the errors
from the inner integrator appear to dominate. (The final value of B was 3.0 to the
precision printed in all cases, so its error is not shown. The other errors are based on
the final value computed by LSODE as X = 0.48739228, Y = 2.725322.)

Example 2 (an index-reduced differential algebraic equation). We will consider a
pendulum described by ODEs derived via Euler–Lagrange equations with constraints.
This is one of the simplest sets of Euler–Lagrange systems. We present this example
because the eigenspace of the stiff components is slowly rotating (rotating with the
pendulum, in fact), and this is an example of a time-dependent behavior that requires
a larger value of k. For a general HamiltonianH(p, q) subject to holonomic constraints
C(q) = 0 we have

q′ = Hp,

p′ = −Hq − λCq,

C(q) = 0.
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This is an index-3 differential-algebraic equation (DAE). Alternatively, we can
replace the last equation with

ε2λCT
q Cq = C(q) + 2εCT

qHp

to get an easily solved index-1 DAE. Under some conditions with a small ε there is
a “boundary layer” (whose width is order ε) after which the solution is an order-ε
perturbation of the solution of the original problem. The eigenvalues corresponding
to the fast components are approximately −1/ε, so h can be chosen to be ε in the
inner integrator. (Note that this technique is proposed only to give an illustration of
the algorithm. It is not a good way to solve such problems over long time periods
because it is equivalent to replacing the constraint with a “stiff” near-constraint that
forces the solution back onto the manifold of the constraint very rapidly (rate 1/ε) and
with damping so that the corresponding eigenvalues are real. However, the damping
is absorbing small amounts of energy so the system is no longer Hamiltonian, and
energy is slowly dissipated.)

The pendulum problem—normalized with unit length rod and unit mass—is given
by H(p, q) = (u2+ v2)/2+ y and C(q) = x2+ y2 − 1, where q = (x, y) and p = (u, v).
Thus the equations of the modified system are

x′ = u, y′ = v,

u′ = −2λx, v′ = −1− 2λy,

with

λ =
(x2 + y2)− 1 + 4ε1(xu+ yv)

4ε2(x2 + y2)
(15)

with ε1 = ε.
This was integrated using the Pk-q-M method for several values of the parameters

k, q, and M , and also for several values of ε. The initial conditions at t = 0 were
x = 0, y = −1, u = 2, and v = 0. The analytic solution for ε = 0 is x = sin(θ),
y = cos(θ), where θ(t) = 4 tan−1(exp(−t)). Hence at t = tend = −log(tan(π/8)),
y should be 0.

The system has four eigenvalues. They are, asymptotically in ε, ±i cos(θ) and two
values of −1/ε. (These equal values can be separated by changing ε1 in (15) to γε,
with γ close to one. Values of γ larger than one separate the values on the real axis;
values less than one separate them into the complex plane. The effect is similar to
that of γ in [ελ]2 + 2γ[ελ] + 1 = 0.)

The inner step size was taken to be ε in an FE method, and a range of M was
chosen dependent on ε.

Tables 4 to 6 show the values of y at t = tend and k = 3, 4, 5, and 6. Note
that in Table 4 the outer steps range from 10−3 to 0.512. Since the active eigenvalues
have magnitude 1.0 at the start of the interval, we should not expect much accuracy
for the larger values of M is this table. In Tables 5 and 6 the outer step size ranges
from 10−4 to 0.0512. The error for different k and ε for the same outer step sizes is
comparable when small k does not lead to failures.

The “failure” entries in the lower left of the table indicate that the errors grew
so large that the solution is, if not actually unstable, meaningless. Even though the
linear theory indicates that k = 1 should be sufficient in this case, nonlinearities
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Table 4
Error for Example 2 with Pk-1-M , ε = 10−3.

k
M 3 4 5 6
1 0.004329 0.004121 0.003973 0.003860
2 0.006189 0.005742 0.005406 0.005146
4 0.010851 0.009976 0.009274 0.008701
8 0.021797 0.020340 0.019065 0.017970

16 0.044852 0.043936 0.041960 0.040192
32 0.056660 0.095381 0.092707 0.089971
64 -0.402159 0.206593 0.202625 0.198990

128 failure 0.453308 0.407696 0.421408
256 failure failure -0.373756 0.638664
512 failure failure -1.900817 0.245407

Table 5
Error for Example 2 with Pk-1-M , ε = 10−4.

k
M 3 4 5 6
1 0.000434 0.000413 0.000399 0.000388
2 0.000620 0.000576 0.000543 0.000517
4 0.001086 0.000999 0.000930 0.000874
8 0.002172 0.002029 0.001906 0.001799
16 0.004536 0.004335 0.004150 0.003983
32 0.009415 0.009205 0.008967 0.008742
64 0.018221 0.019207 0.018932 0.018665
128 0.000363 0.039682 0.039371 0.039066
256 -0.417386 0.082059 0.081695 0.081346
512 failure 0.172150 0.170969 0.170939

Table 6
Error for Example 2 with Pk-1-M , ε = 10−5.

k
M 3 4 5 6
10 0.000275 0.000258 0.000244 0.000232
20 0.000574 0.000552 0.000532 0.000514
40 0.001188 0.001162 0.001137 0.001114
80 0.002423 0.002399 0.002371 0.002344
160 0.004795 0.004887 0.004858 0.004829
320 0.006003 0.009892 0.009861 0.009830
640 -0.084920 0.019992 0.019960 0.019930
1280 -0.628337 0.040548 0.040514 0.040481
2560 failure 0.083090 0.082933 0.082959
5120 failure 0.216302 0.137220 0.172793

or time-dependency of the differential equation can require a larger k. In this case,
the eigenspace corresponding to the two large eigenvalues is changing with time. The
projective outer step amplifies an error in this eigenspace as it projects forward in time,
but at the new time some of this error is in the eigenspace of the small eigenvalues,
and the numerical method does not damp these rapidly. Hence more inner steps are
needed to damp them.

6. Conclusion. We have shown that it is possible to integrate stiff equations
with “explicit” methods, provided that there is a gap in the spectrum. By “explicit”
we mean that no use is made of any approximation to the Jacobian or spaces repre-
sentative of some of the eigenvectors. The size of the gap will determine how efficient
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these methods are, compared with the underlying explicit integrator. Whether or not
they are competitive with existing methods will depend very strongly on how difficult
it is to handle the stiff components by more conventional methods, and so in effect it
will depend on the size and structure of the Jacobian. It will, of course, also depend
on how effectively the proposed methods can be implemented in automatic codes, and
we are not yet ready to report on that.
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