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Summary. This paper gives a systematic introduction to HMM, the heterogeneous
multiscale method, including the fundamental design principles behind the HMM
philosophy and the main obstacles that have to be overcome when using HMM
for a particular problem. This is illustrated by examples from several application
areas, including complex fluids, micro-fluidics, solids, interface problems, stochastic
problems, and statistically self-similar problems. Emphasis is given to the technical
tools, such as the various constrained molecular dynamics, that have been developed,
in order to apply HMM to these problems. Examples of mathematical results on the
error analysis of HMM are presented. The paper ends with a discussion on some of
the problems that have to be solved in order to make HMM a more powerful tool.
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1 Introduction

The heterogeneous multiscale method, or HMM, proposed in [EE03a] is a gen-
eral framework for designing multiscale methods for a wide variety of applica-
tions. The name “heterogeneous” was used to emphasize the “multi-physics”
applications that it targets, namely that the models at different scales may
be of very different nature, e.g. molecular dynamics at the microscale and
continuum mechanics at the macroscale. Since its inception, there has been
substantial progress on multiscale modeling using the philosophy of HMM.
The HMM framework has proven to be very useful in guiding the design and
analysis of multiscale methods, and in several applications, it helps to trans-
form multiscale modeling from a somewhat ad hoc practice to a systematic
technique with a solid foundation. Yet more possibilities are waiting to be
explored, particularly in the application areas. Many new questions of phys-
ical, numerical or analytical nature have emerged. All these make HMM an
extremely fruitful and promising area of research and development.

The purpose of this article is to give a coherent summary of the status
of HMM. It is our hope that this summary will help to understand the de-
sign principle behind the HMM philosophy, the main obstacles that one has
to overcome when using HMM for a particular problem, and the immediate
problems that we have to solve in order to make HMM a more powerful tool.

Just what is HMM? After all most of the multiscale modeling strategies
discussed in the applied communities are heterogeneous in nature, i.e. they
involve models of different nature at different scales. So is HMM something so
broad that it lacks specifics? Or is it so narrow that it has only very limited
applications? Through this review we will show that HMM is a specific frame-
work that can be applied to a wide variety of applications. Its effectiveness
rests upon the fact that it allows us to make maximum use of the knowledge
that we have about the particular problem at all scales, macro and micro,
as well as the special features that the problem might have, such as scale
separation or self-similarity. For instance if the macro and micro time scales
are separated, they are automatically decoupled in HMM. In addition, HMM
also suggests a unified approach for carrying out error analysis for multiscale
methods.

Despite all that, we will also see from this review that HMM only gives us a
good starting point, applications of HMM to specific problems can be a highly
non-trivial task. Issues of how do we formulate the constrained microscale
problem have to be resolved and technical tools have to be developed along
the way. The situation is similar to that of finite element method: On one
hand, finite element offers a very attractive framework for designing numerical
methods for a wide variety of problems; on the other hand, applying this
framework to specific problems can be quite non-trivial.

Very briefly let us summarize the main features of HMM. HMM is a frame-
work for linking models at different scales. It follows a top-down strategy:
The basic starting point is an incomplete macroscale model, with the mi-
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croscale model used as a supplement. It consists of two main components:
The macroscale solver and a procedure for estimating the missing numerical
data from the microscale model. The macroscale solver is knowledge-based,
namely its design takes into account as much as possible the knowledge we
have about the macroscale process. The key to the data estimation step is the
design of the constrained microscale solver. The constraints are necessary in
order to ensure that the microscale solution lives in an environment that is
consistent with the macroscale state of the system. This is often the most dif-
ficult step in HMM technically, and its details are highly problem-dependent.
Overall the coupling between the macro and microscales is accomplished as
follows: The macro state provides the environment (the constraints) for the
microscale solver; the microscale solver provides the data (such as numeri-
cal fluxes, forces, stiffness matrices, etc) for the macroscale solver. Such a
data-based coupling strategy provides much needed flexibility compared with
solution-based coupling strategies used in [ABB99, KGH03, OT95].

In the last few years, a general strategy has emerged for the design of mul-
tiscale methods by linking together microscale solvers on boxes distributed
over the entire computational domain in order to capture the macroscale be-
havior of the solutions. The quasicontinuum method [KO01], kinetic scheme,
HMM, and the gap-tooth scheme [KGH03] all make use of this idea. In general
there are two steps in such a computational procedure. The first is to localize
the microscale problem. The second is to assemble the information from the
different microscale solvers. It is fair to say that HMM has proven to be a
very effective tool for the second task. The first task, as we mentioned above,
depends on the particular problem, and is certainly not to be neglected.

1.1 Classical and new multiscale methods

Almost all problems in science and engineering are multiscale in nature.
Things are made up of atoms and electrons at the atomic scale, and at the
same time are characterized by their own geometric dimensions which are
usually several orders of magnitude larger. In the same way, atomic processes
occur at the time scale of femto-seconds (10−15 second), but events in our
daily lives are happening at a much slower pace. Thus for every specific prob-
lem that we encounter, we speak of the macroscopic scale as the particular
scale that we are interested in. All smaller scales are referred to as microscopic
scales.

For many problems though, this multiscale nature is not that important.
Effective models can be obtained with satisfactory accuracy to account for the
effects of microscopic processes. In fact most scientific models are of this type.
Consider the example of classical molecular dynamics. There we are interested
in the positions and momenta of the nuclei; the effects of the electrons, which
are at the microscale compared with the nuclei, are modeled by empirical
potentials. In fluid mechanics, we are interested in the density and velocity
fields of the fluid; the effect of the molecular processes are modeled by the
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equations of state and the constitutive relations. Most of these effective models
are empirical, but there is also a substantial amount of work on analytical
derivations of these effective models from microscopic theories [Spo91, Yau00].

In spite of their tremendous successes, the effective models also have their
limitations. One main limitation is accuracy. This is particularly an issue for
complex systems, such as complex fluids. When the modeling error is larger
than the solution error, the usefulness of the model becomes a concern. A
second limitation is the complete neglect of microscopic mechanisms which
are sometimes of interest. Take the example of polymeric fluids. It is often
of interest to know the microstructural information such as the conformation
of the polymers, not just the macroscopic flow field. The third limitation is
associated with the empirical nature of the models – especially for complex
systems: These effective models often do not have a solid foundation. For these
reasons, one might be tempted to switch completely to a microscopic model
that has better accuracy, better physics and better foundation. However this
is not an optimal strategy not only because the microscopic models are often
too complex to be dealt with, but also because the answers we get will likely
contain too much information that is of little interest, further complicating
the task of extracting useful data. Indeed if we simulate crack propagation
in a solid using molecular dynamics, the data we obtain will be overwhelmed
by the trajectories of atoms away from the crack tip, which are of very little
interest.

This is where multiscale modeling comes in. By coupling macroscopic and
microscopic models, we hope to take advantage of both the simplicity and ef-
ficiency of the macroscopic models, as well as the accuracy of the microscopic
models. Indeed the basic task of multiscale modeling is to design combined
macroscopic-microscopic computational methods that are much more efficient
than solving the full microscopic model and at the same time gives the infor-
mation we need to the desired accuracy.

From the viewpoint of numerical methods, there has already been a long
history of using multiscale ideas in methods such as the multi-grid method,
fast multipole method and adaptive mesh refinement. Wavelet representation
makes the multiscale idea even more explicit. So what is new in the new breed
of multiscale methods, such as the quasi-continuum method and HMM? How
are they different from the more traditional multiscale methods such as multi-
grid [Bra77, Xu96]?

The difference between traditional multiscale methods such as multi-grid,
and the new multiscale methods is that traditional multiscale methods are
microscale solvers. Their purpose is to resolve the details of the solutions of
the microscale model and as a result, their cost is that of a full microscale
solver. The recently developed multiscale methods aim at one step further:
Their objective is to capture the macroscale behavior of the system with a
cost that is much less than the cost of full microscale solvers. Specifically the
new multiscale methods are designed to satisfy the minimum requirement:
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cost of multiscale method

cost of microscale solver
� 1 (1)

This is achieved only at some expenses:

1. We have to ask for less about the solutions of the microscale problem,
e.g. we have to be satisfied with getting only the gross behavior of the
solutions, not the details.

2. We must explore possible special features of the microscale problem, such
as scale separation, self-similarity, etc.

To put it differently, multiscale problems are commonly recognized for their
complexity, yet the main challenge in multiscale modeling is to recognize their
simplicity, and make use of it. This has been a common theme in modern
multiscale modeling. The disparity of time scales, for example, has long been
a major obstacle in atomistic simulations such as molecular dynamics. But in
methods such as HMM, it is used as an asset.

To be more concrete, let us first discuss this point at the level of sig-
nal representation. Consider the signals shown in Figure 1. They all have
multiple scales. For the first signal, a traditional method along the lines of
adaptive mesh refinement already gives an optimal representation. There is
little room for improvement. For the second and third signals, traditional real
space adaptive mesh refinement would represent the signal on a grid that is
fine everywhere, with a cost of O(ε−1) where ε is the size of the small scale.
In contrast, modern multiscale techniques would recognize the fact that the
microstructure itself varies only on a large scale, and use this feature to arrive
at a much more efficient representation, by recording the microscale informa-
tion on a coarsely-distributed fine grid, as shown in the figure, and therefore
avoiding repetitive calculation at the microscale level. This idea is used in
many modern multiscale methods and analysis, such as the quasi-continuum
method [TOP96], two-scale regularity analysis [MM02], HMM [EE03a] and
the gap-tooth scheme [KGH03] (see Figures 5, 6).

To look at this point further at the level of modeling, consider the classical
elliptic problem

−∇ · (a(x)∇u(x)) = f(x) (2)

on a smooth domain Ω with some boundary conditions. We will assume that
f as well as the boundary conditions are nice, with no small scales. But for
a, let us distinguish three different cases:

• The first is when a is a nice function with no small scales.
• The second case is when a has small scales, but the small scales have some

special features such as separation of scales. In this case, we write a = aε

where ε signifies the small scale.
• The third case is when a has small scales and the small scales do not have

any special features.

The first case is clearly the simplest and the third case the most difficult.
But despite that the method for dealing with problems in these two extreme
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Fig. 1. Multiscale data representation: The signal in the top figures is represented
very efficiently by traditional adaptive real space mesh refinement methods. The
data in the middle and bottom figures are represented more efficiently on a coarsely-
distributed fine mesh by noting that the microstructure itself varies on a large scale

cases are not very different: We just have to use efficient fine scale solvers,
such as multi-grid and adaptive mesh refinement methods. Even though in
the third case the problems contain multiple scales, it is not very helpful to
write a = aε since no particular values of ε matter and we just have to think
of it as a very tough problem.

The minimum requirement in this case amounts to “beat the multi-grid
method”, and we see that this is only possible for the second class of problems.
In this case, we have the possibility of capturing the large scale features of the
solutions, using methods that are much less costly than full fine scale solvers.
This is the focus of methods such as HMM.

To summarize what is said so far, we should distinguish the practice of
solving multiscale problems from that of developing multiscale methods. Many
multiscale problems are currently solved using ad hoc methods. A good exam-
ple is fully developed turbulent flows which are typically treated using ad hoc
turbulence models. One purpose of multiscale modeling is precisely to change
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Table 1. Classical and modern multiscale techniques. Classical multiscale tech-
niques focus on resolving the fine scale problem. The more recent multiscale tech-
niques aim at reducing the computational complexity further by using special fea-
tures in the fine scale problem, such as scale separation

Classical Techniques Recent Techniques

Multigrid Method Car - Parrinello Method
Domain Decomposition Quasi-continuum Method
Wavelet-based Methods Optimal Prediction
Adaptive Mesh Refinement Heterogeneous Multiscale Method
Fast Multipole Method Gap-Tooth Scheme
Conjugate Gradient Method Coarse-grained Monte Carlo Models

Adaptive Model Refinement

that, and to remove as much as possible the ad hoc steps in the modeling pro-
cess. This can be done in two ways: Either we go back to the original problem
and develop efficient and accurate ways of resolving the details, or look for
special features that help us to simplify the problem. These features can then
be used in developing multiscale modeling strategies.

1.2 Classification of multiscale problems

As we just discussed, the first step in multiscale modeling is to recognize
the special features of the problem that one might take advantage of in or-
der to design multiscale methods that satisfy the minimum requirement. For
this purpose, it is useful to divide multiscale problems into several categories
according to their common features:

Type A: These are problems that contain isolated defects or singularities
such as cracks, dislocations, shocks and contact lines. For these problems, the
microscopic model is only necessary near defects or singularities. Further away
it is adequate to use some macroscopic model. Such a combined macro-micro
strategy should satisfy the minimum requirement if the microscale model is
limited to a small part of the computational domain.

Type B: These are problems for which a closed macroscopic model should
exist for a properly selected set of macroscopic variables, but the macroscale
model is not explicit enough to be used directly as an efficient computational
tool. One example is the homogenization problem for equations of the type
(2). If the coefficient is of the form aε(x) = a(x, x

ε ) where ε is the scale of
the microstructure, and if the dependence of a on the fast variable y = x

ε has
certain structure such as periodicity, then there exists an effective equation,
the homogenized equation, for the leading order behavior of the solutions of
(2) [BLP78]. The homogenized equation takes the form

−∇ · (A(x)∇U(x)) = f(x) (3)

where A(x) is called the homogenized coefficient. Even though the homoge-
nized coefficient can in principle be expressed in terms of the solutions of the
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so-called cell problems, they are not explicitly given except for very special
problems such as one-dimensional problems. Therefore it is difficult to make
use of (3) directly as a computational tool.

The task of multiscale modeling is to carry out macroscale simulations
without making use of ad hoc constitutive relations. Instead, the necessary
macroscale constitutive information is extracted from the microscale models.

The existence of a closed macroscopic model is often associated with time
scale separation, and this can be exploited in order to design multiscale meth-
ods that satisfy the minimum requirement.

Type C: These are problems that have features of both type A and type
B.

Type D: These are problems that exhibit self-similarity in scales. Exam-
ples include critical phenomena in statistical physics, fractals and turbulent
transport.

Problems in each category share some common features that can be used
when designing multiscale methods. For type A and type B problems, the
special feature is scale separation. For type D problem, the special feature is
statistical self-similarity.

Clearly as multiscale research goes on, other types of problems will be
identified.

1.3 Sequential and concurrent coupling

Most current work on multiscale modeling is in the setting of the so-called
“concurrent coupling” methods [ABB99], i.e. the microscale and the macroscale
models are linked together “on-the-fly” as the computation goes on. More re-
cently, this approach has also been referred to as “solving equations without
equations” or “equation-free” [KGH03]. This is in contrast to the “sequential
(serial) coupling” method which determines an effective macroscale model
in a pre-processing step from the microscale model and uses the resulted
macroscale model in further applications. Sequential coupling methods have
been largely limited to “parameter passing”, and as such it is very widely
used in applications, such as constructing empirical atomistic potentials from
quantum mechanics simulations, assigning hopping rates in kinetic Monte
Carlo schemes using data from molecular dynamics, computing transport co-
efficients using microscopic models, etc. But there is no reason why it should
be limited to this case. As long as the needed constitutive equation is known
to depend on very few variables, sequential coupling provides a viable alter-
native to concurrent coupling techniques. Concurrent coupling methods are
preferred when the constitutive relation depends on many variables so it is
difficult to extract it by precomputing.

From a numerical viewpoint, the two strategies are very much related.
For both sequential and concurrent coupling methods, the key issue is to
design microscopic simulations that would give us the needed macroscopic
data. In addition, the results of a concurrent simulation can be used to suggest
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the function form of the constitutive relation, which can then be used in a
sequential coupling method. Therefore the two strategies can be combined to
yield optimal efficiency.

The HMM framework can be used both for concurrent and sequential
coupling methods.

In the following, we will first present the HMM framework, illustrated
by some relatively simple examples, both for type A and type B problems.
We then discuss the heterogeneous multiscale finite element method, with
application to the elliptic homogenization problem. After that we focus on
the two main applications of HMM that have been pursued so far: coupled
molecular dynamics and continuum mechanics modeling of fluids and solids.
This is followed by three additional areas of application: Interface problems,
stochastic ODEs and statistically self-similar problems. Error analysis and
limitations of HMM are discussed next, followed by a summary and some new
directions of research.

2 The HMM framework

2.1 The structure of HMM

We now turn to the framework of HMM. The general setting is as follows. We
are given a microscopic system whose state variable is denoted by u, together
with a microscale model, which can be abstractly written as

f(u, b) = 0 (4)

where b is the set of auxiliary conditions, such as initial and boundary con-
ditions for the problem. We are not interested in the microscopic details of
u, but rather a coarse-grained state of the system which we denote by U . U
satisfies some abstract macroscopic equation:

F (U, D) = 0 (5)

where D stands for the macroscopic data that are necessary in order for the
model to be complete.

Given a multiscale problem, the first question one should ask is: What is U?
For type B problems, the answer is in principle straightforward: U should be
the macroscopic state variables with which a closed macroscale model should
in principle exist. These are often averaged quantities. For type A problems,
it is less straightforward, since in this case we are also interested in some
microstructural information that characterizes the defects. In any case, let us
denote by Q the compression operator that maps u to U , and R any operator
that reconstructs u from U :

Qu = U, RU = u (6)
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Q and R should satisfy: QR = I where I is the identity operator. Q is called a
compression operator instead of a projection operator since it can be more gen-
eral than projection. Nevertheless in many cases, it is a projection operator.
The terminology of reconstruction operator is adopted from Godunov schemes
for nonlinear conservation laws [LeV90] and gas-kinetic schemes [SP94]. Com-
pression and reconstruction operators are the same as the projection and pro-
longation operators used in multi-grid methods, or the restriction and lifting
operators in [KGH03].

Examples of Q and R were given in [EE03a].

U F(U, D) = 0

u f(u, d) = 0
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Fig. 2. Schematics of HMM framework

The goal of HMM is to compute U using the abstract form of F and the
microscale model. It consists of two main components.

1. Selection of a macroscopic solver. Even though the macroscopic model is
not available completely or is invalid on part of the computational domain,
one uses whatever knowledge that is available on the form of F to select
a suitable macroscale solver.

2. Estimating the missing macroscale data D using the microscale model.
This is typically done in two steps:
a) Constrained microscale simulation: At each point where some macro-

scale data is needed, perform a series of constrained microscopic sim-
ulations. The microscale solution needs to be constrained so that it is
consistent with the local macroscopic state, i.e. b = b(U). In practice,
this is often the most important technical step.

b) Data processing: Use the microscale data generated from the micro-
scopic simulations to extract the needed macroscale data.

The data estimation can either be performed “on the fly” as in a concurrent
coupling method, or in a pre-processing step as in a serial coupling method.
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The latter is often advantageous if the needed data depends on very few
variables.

The guidelines for selecting the macroscale solver are that it should be
stable and it should facilitate the task of coupling with the microscale solver
[EL04a].

Some remarks are in order. First of all, as we can already see, HMM is a
top-down procedure, i.e. it is based on the macroscale process and it goes down
to the microscale model only when necessary. Secondly, HMM is an example
of data-driven coupling methodology, i.e. the link between different models at
different scales is done through the data, which can be stresses, fluxes, forces or
elastic coefficients, etc. This is in contrast with many other methods proposed
in the literature for which the linking between different scales is done through
the solutions directly [ABB98, ABB99, KGH03, WL03]. Thirdly, the influ-
ence of the macroscale state on the microscale model is manifested through
the constraints on the microscale solver. These constraints play the role of
constitutive assumptions in HMM. Therefore HMM does require specifying
what macroscale variables the needed data should depend on. But it does not
require knowing the functional form of the dependence.

Before we turn to concrete examples, we should emphasize that HMM
is not a specific method, it is a framework for designing methods. For any
particular problem, there is usually a considerable amount of work, such as
designing the constrained microscopic solvers, that is necessary in order to
turn HMM into a specific numerical method.

In the remaining part of this section, we will discuss examples of how
HMM can be used for some relatively simple problems.

2.2 Type B examples

ODEs with multiple time scales

We will discuss two simple examples of ODEs with multiple time scales. The
first is stiff ODEs with spectrum on the negative real axis, a prototypical
example being: {

ẋ = −1

ε
(x − f(y))

ẏ = g(x, y)
(7)

The second is ODEs with oscillatory solutions. In this case the spectrum is
located close to the imaginary axis. A prototypical example is

{
ϕ̇ =

1

ε
ω(I) + f(ϕ, I)

İ = g(ϕ, I)
(8)

in action-angle variables, studied in averaging methods [Arn89]. Here f and
g are assumed to be periodic in ϕ with period 2π and bounded as ε → 0. In
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these examples x and ϕ are the fast variables, y and I are the slow variables,
which are also our macroscale variable U .

Analytical and numerical issues for these problems have been studied for a
long time. We refer to standard reference books such as [Arn89, HW91] where
limiting equations as ε → 0 are given for both (7) and (8). For (7), the fast
variable x is rapidly attracted to the slow manifold where x = f(y) and the
effective equation for y is

ẏ = g(f(y), y) =: G(y). (9)

For (8), the quasi-periodic motion of ϕ can be averaged out as ε → 0 and the
effective equation for I reads

İ = G(I) where G(I) :=
1

2π

∫ 2π

0

g(ϕ, I)dϕ. (10)

The idea of HMM is to use the existence of the limiting equations such
as (9) or (10), and some knowledge about their explicit form, to construct nu-
merical schemes for (7) or (8). These schemes will be useful for more complex
situations where the limiting equations are not given explicitly.

Consider (7) first. As the macroscale solver, we may select a conventional
explicit ODE solver such as a Runge-Kutta scheme or a linear multi-step
method. We may also select special purpose solvers such as the symplectic
integrators. For illustration, let us assume that we will use forward Euler as
the macroscale solver. We can express it as

yn+1 = yn + ∆tG̃n(yn) (11)

The time step ∆t resolves the macroscale dynamics of interest, but not the
small scales.
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Macroscale solver
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t n t n+1 ∆t
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Fig. 3. Schematics of HMM for ODEs

The data that need to be estimated from the microscale model are the
forces G̃n(yn) ≈ G(yn). To estimate this data, we solve a modified microscale
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model with the constraint that the slow variables are kept fixed. For the
example (7), this modified microscale model is simply the equation for x,
with y kept fixed, e.g.

xn,m+1 = xn,m − δt

ε
(xn,m − f(yn)) (12)

m = 0, 1, · · · , N − 1. N should be large enough such that xn,m has converged
to a stationary value with the desired accuracy. We then take

G̃(yn) = g(xn,N , yn) (13)

Notice that N is still independent of ε, which indicates that the overall cost
of HMM is independent of ε. This is the reason for the gain in efficiency when
ε � 1.

The case of (8) can be treated similarly. Assuming that we use forward
Euler as the macroscale solver, we have

In+1 = In + ∆tG̃n(In) (14)

where G̃n(In) ≈ G(In) must be estimated from the microscale model. This
can be done using

ϕn,m+1 = ϕn,m +
δt

ε
ω(In) + δtf(ϕn,m, In)

The difference with the previous example is that the estimate of G̃n(In) must
now involve an explicit time-averaging:

G̃n(In) =
1

N

N∑

m=1

Km,Ng(ϕn,m, In) (15)

where the weights {Km,N} should satisfy the constraint

1

N

N∑

m=1

Km,N = 1 (16)

The specific choice of {Km,N} will affect the overall accuracy of HMM. (15)
is called an F -estimator [EE03a]. Extensive analytical and numerical results
using this methodology can be found in [ET04].

The choice of (13) can be viewed as a special case of (15) when Km,N = 1
for m = N and Km,N = 0, otherwise. This choice is optimal for stiff ODEs
since the fast variable exhibits a purely relaxational behavior.

The above strategy can be easily extended to more general problems in
the form

ż = h(z, ε) (17)
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provided that one has explicit knowledge of the slow variables in the system,
which will be denoted by y = Y (z). Note that h(z, ε) is in general unbounded
as ε → 0 due to the existence of fast dynamics. Again, let us use the forward
Euler as the macro solver for illustration:

yn+1 = yn + ∆tF̃ n(yn) (18)

To estimate the force F̃ n(yn), we solve the microscale problem (17) with the
constraint that Y (zn,m) = yn. As before, we used m as index for the time
steps in the micro solver. Using the relation

dy

dt
= ∇zY (z) · h(z, ε)

we obtain an estimate of the effective force in the limiting equation for y by
time averaging:

F̃ n =
1

N

N−1∑

m=0

Km,N∇zY (zn,m) · h(zn,m, ε) (19)

where the weights {Km,N} must satisfy (16).
There is also a seamless version of HMM which does not require explicit

knowledge of the slow variables [ET04]. In this version, for both the macro
solver and the micro solver, we use the original microscale equations (in the
original form). The only difference is in their time-step size. For stiff ODEs,
this version of HMM can be viewed as a simple and crude version of the
so-called Chebychev methods developed by Lebedev, Abdulle, etc. [HW91,
Abd02], or simply an adaptive microscale ODE solver. The cost in this case
increases logarithmically in ε as ε → 0

The seamless version of HMM may also be applied in certain cases (but
not always) to the oscillatory problems, though its cost then increases as a
negative power of ε and to gain in efficiency requires using sophisticated choice
of weights {Km,M} in the F -estimator. For examples, see [ET04].

Elliptic equation with multiscale coefficients

Our last example was in the time domain. We next discuss an example in the
spatial domain. Consider the classical elliptic problem

{
− div

(
a ε(x)∇uε(x)

)
= f(x) x ∈ D ⊂ R

d,

uε(x) = 0 x ∈ ∂D.
(20)

Here ε is a small parameter that signifies explicitly the multiscale nature of
the coefficient a ε(x): It is the ratio between the scale of the coefficient and
the scale of the computational domain D. In the next section we will discuss
finite element methods for problems of this kind. Here we discuss an approach
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based on the finite volume method. This is a simplified version of the methods
presented in [AE03]. Similar ideas can also be found in [Dur91].

As the macroscale solver, we choose a finite volume method on a macroscale
grid, and we will denote by ∆x, ∆y the grid size. The grid points are at the
center of the cells, the fluxes are defined at the boundaries of the cells. The
macroscale scheme is simply that on each cell, the total fluxes are balanced
by the total source or sink terms:

−Ji− 1
2
,j + Ji+ 1

2
,j − Ji,j− 1

2
+ Ji,j+ 1

2
=

∫

Ki,j

f(x)dx (21)

Here Ki,j denotes the (i, j)-th cell.

J i,j+½

J i+½,j

J i,j-½

J i-½,j

Fig. 4. HMM finite volume method

The data that need to be estimated are the fluxes. This is done as follows.
At each point where the fluxes are needed, we solve the original microscale
model (20) on a square domain of size δ, subject to the constraint that the
average gradient is equal to ∇U at this point, where U(x) is a linear func-
tion constructed from the macro state at the two neighboring cells, e.g. for
computing Ji+ 1

2
,j , we have

U(x, y) =
1

2
(Ui,j + Ui+1,j) +

Ui+1,j − Ui,j

∆x
(x − xi+ 1

2
)

+
1

2

Ui+1,j+1 + Ui,j+1 − (Ui+1,j−1 + Ui,j−1)

2∆y
(y − yj) (22)
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This constraint can be implemented through boundary condition for uε, e.g.
we may impose the boundary condition that uε(x) − U(x) is periodic. We
then use

Ji+ 1
2

,j =
1

δ2

∫

Iδ

jε
1(x)dx, Ji,j+ 1

2
=

1

δ2

∫

Iδ

jε
2(x)dx (23)

where jε(x) = (jε
1(x), jε

2(x)) = aε(x)∇uε(x), to compute an approximation to
the needed flux.

The periodic boundary condition for the microscale problem is not the
only choice. Other boundary conditions might be used. We refer to section
3 for a discussion in the finite element setting. More thorough discussion is
found in [YE05]. To reduce the influence of the boundary conditions, a weight
function can be inserted in (23), similar to what is done in the time domain
earlier.

To implement this idea, note that the J ’s are linear functions of {Ui,j}.
Therefore to compute the fluxes, we first solve the local problems with U
replaced by the nodal basis functions: Φk,l is the nodal basis function (vec-
tor) associated with the (k, l)-th cell if Φk,l is zero everywhere except at the
(k, l)-th cell center where it is 1. For each such basis function, there are only
few local problems that need to be solved, since the basis function vanishes
on most cells. Since U can be written as a linear combination of these nodal
basis functions, the fluxes correspond to U can also be written as a linear
combination of the fluxes correspond to these nodal basis functions. In this
way, (21) is turned into a system of linear equations for U . The overall proce-
dure is similar to procedure of heterogeneous multiscale finite element method
discussed below.

Now how do we choose δ? Clearly the smaller the δ, the less the cost of the
algorithm. If the original problem (20) has scale separation, i.e. the microscale
length ε is much smaller than O(1), then we can choose δ such that ε � δ � 1.
This results in savings of cost for HMM, compared with solving the original
microscale problem on the whole domain D.

Similar ideas are used in the modeling of transport in porous medium. The
cells we used here are referred to as the representative elementary volumes
(REV) [Dur91]. However, there it is customary to use a mixed boundary
condition for the microscale problem, i.e. Dirichlet boundary condition with
the required gradient in one direction and no-flux boundary condition in the
other direction. This is known to produce very bad results [Dur91]. It turns out
the error comes from the fact that the microscale problem does not satisfy the
average gradient constraint mentioned above [YE05]. This can be corrected
very simply as demonstrated in [YE05]. It is interesting to note that such
mistakes are automatically avoided if the HMM framework is followed.

Kinetic schemes

Our next example is the derivation of numerical schemes for gas-dynamics
that uses only the kinetic model. Such schemes are called kinetic schemes (see
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for example [SP74, Pul80, Per91, SP94, Des95], see also the related work on
Lattice Boltzmann methods [CD98, SFM01]). This example played an impor-
tant role in developing the HMM framework. However, as will be seen below,
our viewpoint is slightly different from that of the kinetic schemes.

The microscale model here is the kinetic equation, such as the Boltzmann
equation:

∂tf + v · ∇f =
1

ε
C(f). (24)

Here f is the one-particle phase-space distribution function, which is also our
microscale state variable; C(f) is the collision kernel; ε is the mean-free path
between collisions in the gas. The macroscale state variables U are the usual
hydrodynamic variables of mass, momentum and energy densities, which are
related to the microscale state variable f by:

ρ =

∫
fdv, ρu =

∫
fvdv, E =

∫
f

|v|2
2

dv. (25)

(25) defines the compression operator Q.
The connection between Euler’s equation and the Boltzmann equation is

as follows. From the Boltzmann equation, we have:

∂t




ρ
ρu
E


+ ∇ · F = 0 (26)

where

F =

∫

R

f




v
v ⊗ v
1
2 |v|2v


 dv (27)

When ε � 1, the distribution function f is close to local equilibrium states,
or the local Maxwellians,

M(x,v, t) =
ρ(x, t)

(2πθ(x, t))3/2
exp
(
− (v − u(x, t))2

2θ(x, t)

)
(28)

with θ being the absolute temperature.
To design an HMM strategy, we first need to select a macroscale solver.

We will focus on the one-dimensional case. Since the macroscale model (26)
is a set of conservation laws, we will choose as the macroscale solver a finite
volume scheme. We first divide the computational domain in the physical
space into cells of size ∆x. We denote by xj the center position of the j-th
cell, and xj+1/2 the cell boundary between the j-th and j +1-th cells. For first
order method, we represent the solution as piece-wise constants, i.e.

(ρ, ρu, E) = (ρj , ρjuj , Ej), x ∈ (xj−1/2, xj+1/2]

The finite volume scheme takes the form:
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ρn+1
j − ρn

j +
∆t

∆x

(
F

(1)
j+1/2 − F

(1)
j−1/2

)
= 0,

(ρu)n+1
j − (ρu)n

j +
∆t

∆x

(
F

(2)
j+1/2 − F

(2)
j−1/2

)
= 0,

En+1
j − En

j +
∆t

∆x

(
F

(3)
j+1/2 − F

(3)
j−1/2

)
= 0

(29)

where Fj+1/2 = (F
(1)
j+1/2, F

(2)
j+1/2, F

(3)
j+1/2)

T is the numerical flux at the cell

boundary xj+1/2.
The next step is to compute Fj+1/2 from solving the kinetic equation. To

take into account the wave character of the solutions, we write:

Fj+1/2 = F+
j+1/2 + F−

j+1/2, with F±
j+1/2 =

∫

R±

f(x∓
j+1/2, v, t)




v
v2

1
2v3



 dv.

(30)
Normally one would numerically solve the kinetic model to obtain f . For the
present problem, it is much simpler to write down an approximate solution
analytically. To leading order, we have:

f(x, v, t) ∼ M(x − vt, v, tn) (31)

Using this in (30), we have

F± =




ρuA±(S) ± ρ

2
√

πβ
B(S)

(p + ρu2)A±(S) ± ρu

2
√

πβ
B(S)

(pu + ρue)A±(S) ± ρ

2
√

πβ
(

p

2ρ
+ e)B(S)




(32)

where

A± =
1 + erf(S)

2
, B(S) = e−S2

, S =
u√
2RT

, p = ρRT.

This is the simplest kinetic scheme. The schematic is shown in Figure 5.
How do we construct higher order kinetic schemes? The standard prac-

tice is to consider both higher order reconstructions (for the initial value of
f in the shaded-region in Figure 5) and solve the kinetic model to higher
order accuracy. This is the path followed, for example, in [Per92, SP94] for
constructing second order kinetic schemes. From the viewpoint of HMM, how-
ever, one would simply take a higher order macroscale solver, such as the ones
in [NT90]. Then it is no longer necessary to have higher order reconstruction
for the initial values of the kinetic model.

Large scale MD simulation of gas dynamics

In this example we discuss how HMM can be used to carry out macroscale
gas-dynamics calculations using only MD. The macroscopic equations are the
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Fig. 5. Schematics for the derivation of kinetic scheme: A finite volume method is
imposed in the x − t domain, and the kinetic equation is solved (e.g. analytically)
over the shaded region to give the fluxes needed in the finite volume method. The v
axis indicates the extra velocity variable in the kinetic model, which represents the
microstructure for the present problem

usual conservation laws of density, momentum and energy. In one dimension,
it can be expressed in a generic form:

∂tu + ∂xf = 0 (33)

Here f is the flux. Traditional gas dynamics models assume that f is a known
function of u. Here we do not make that assumption. Instead we will extract
f from an underlying atomistic model.

As the macroscale solver, we select a finite volume method. One example
is the central scheme of [NT90] on a staggered grid:

un+1
j+1/2 =

un
j + un

j+1

2
− ∆t

∆x

(
fn
j+1 − fn

j

)
. (34)

The data that need to be estimated from MD are again the fluxes. This
is done by performing a constrained MD simulation locally at the cell bound-
aries, which are the cell centers for the previous time step. The constraints
are that the average density, momentum and energy of the MD system should
agree with the local macro state at the current time step n. This is realized
by initializing the MD with such constraints and apply the periodic bound-
ary condition afterwards. Using the Irving-Kirkwood formula (see section 4)
which relates the fluxes to the MD data, we can then extract the macroscale
fluxes by time averaging the MD data. We refer to [LE05] for more details.
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xj xj+1

Uj

Uj

Uj+1

F(Uj )

F(Uj )
F(Uj+1 )

Uj+1/2

MD

Fig. 6. Central scheme: starting with piecewise constant solution, one computes
fluxes at xj and xj+1, and integrates the conservation laws to the next time step,
where the grid points are shifted to the midpoints xj+1/2. The numerical fluxes are
evaluated with the help of MD

One result from such a method is shown in Figure 7. Here the set-up
for the macroscale model is a Riemann problem for one-dimensional wave
propagation in solids. The microscale model is two dimensional MD with
Lennard-Jone potential. The result of HMM is compared with that of a direct
MD simulation.

2.3 A type A example: Coupled kinetic-hydrodynamic simulation
of shock propagation

Our next example is continuum gas dynamics locally corrected near shocks
by the kinetic model. This is a type A problem. Problems of this type have
been studied for a long time in the kinetic theory community using domain
decomposition methods (see for example [BLP92, LP98]). The framework of
HMM suggests a way of handling this problem that is slightly different from
what is done in the literature.

The macroscopic process is gas dynamics, the microscopic process is de-
scribed by a kinetic model. Therefore as the macroscale solver we will choose
the kinetic schemes for gas dynamics. Away from shocks, the numerical fluxes
are computed using (32). At the shocks the numerical fluxes are computed by
solving locally the kinetic model using micro time steps. The kinetic model is
constrained by the local macroscopic state through the boundary conditions.
As shown in Figure 8, the kinetic equation is solved in the shaded region
between xl and xr (assume that the shock is at the cell boundary xk+1/2).
Boundary condition is needed at xl for v > 0. For this we choose

f(xl, v, t) = M(xl, v, t), v > 0 (35)

where the right hand side is the local Maxwellian corresponding to the macro-
scopic state at xl, obtained by extrapolating the macro states in the cells to
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Fig. 7. Numerical test on shock formation and propagation. 200 macro-grid points
are used and each local MD simulation consists of 40 × 10 atoms and 104 steps of
time integration. The solution is displayed after 40 steps of integration over macro
time steps. Solid line: computed solution; dashed line: full atom simulation (one
realization). Top: strain; middle: velocity; bottom: displacement
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the left of xl. Boundary condition at xr can be handled similarly. At xk+1/2,
we define

Fk+1/2 =
1

τ

∫ tn+τ

tn

dt
{∫

R+

f(x−
k+1/2, v, t)




v
v2

1
2v3


 dv

+

∫

R−

f(x+
k+1/2, v, t)




v
v2

1
2v3



 dv
}
.

(36)

for suitably chosen τ .
How do we choose τ? To address this question, we should note that there

are potentially two different cases concerning corrections to the gas-dynamics
models of shocks. The first is when non-equilibrium effects are important. In
this case the relaxation time of the gas inside the shock may become compa-
rable to the hydrodynamic time, and we should simply choose τ = ∆t. Note
in this case there is no time scale separation, and the kinetic model is solved
continuously throughout the shock region, with occasional reinitialization as
the shock region moves. This is shown schematically in the left panel in Figure
8. The second is when viscous or other higher order gradient effects are im-
portant inside the shocks, but there is still time scale separation between the
relaxation time of the gas and the hydrodynamic time. In this case we should
choose τ to be larger than the relaxation time of the gas, but still smaller
than ∆t. The specific choice should be made numerically by observing when
the numerical fluxes in (36) reach stationary values as a function of τ . At each
macro time step, the kinetic model needs to be reinitialized, as discussed ear-
lier for gas-kinetic schemes. A schematic is shown in the right panel in Figure
8.

The final component of the method is a criterion for locating the shock
position. At the present time, there is little systematic work in this direction.

Comparison with domain decomposition methods

It is worthwhile to make a comparison between the HMM approach and
other approaches for type A problems. With few exceptions, most existing
approaches to type A problems are based on the idea of domain decomposi-
tion [OT95, HP97, Had99, ABB98, ABB99, FWF00, NC04a, KL04, QWL03,
PKL04, BLP92, BLT96, LP98]. If the microscopic model is molecular dy-
namics and the macroscopic model is continuum mechanics, one solves the
continuum model over part of the domain and molecular dynamics over the
rest of the domain, typically near defects or singularities. For modeling fluids,
it is customary to require that the two domains overlap. The results from the
two different models are matched in the overlapping region to ensure compat-
ibility of the two models. The matching is done either over the macroscopic
fields or the fluxes. For solids, the two domains usually do not overlap, but
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Fig. 8. Schematics for the coupled kinetic-gas dynamics simulation: A finite vol-
ume method is imposed everywhere in the x − t domain. The numerical fluxes are
computed using the kinetic scheme away from the shocks, and directly from the so-
lutions of the kinetic equations at the shocks. The shaded regions indicate where the
kinetic equation needs to be solved. The left panel illustrates the case when there
is no scale separation between the relaxation time scale inside the shock and the
hydrodynamic time scale. The right panel shows the case when there is time scale
separation

rather is connected by some specially designed atomistic-continuum interface
condition.

In contrast, in the HMM approach the macroscale solver is imposed over
the whole domain. Near defects or singularities (here the shocks), the data
(here the flux) required by the macroscale solver is estimated from a microscale
model. Therefore the HMM methodology resembles that of an (adaptive)
model refinement: Near defects or singularities, a more refined model is
used to supply the data. Ideas similar to this were used in [GBC99, OV00].

For the example discussed above, the model is adaptively refined at the
shocks and is replaced by the kinetic model for flux evaluation. The overall
algorithm is still that of a finite volume method. The kinetic model is used
inside the finite volume scheme to provide part of the data. In addition, HMM
provides ways of further limiting the size of the computational domain for the
microscopic model, by exploiting time scale separation so that the kinetic
equation does not have to be solved for all time, or spatial scale separation so
that the kinetic equation is solved only in a very thin strip inside the macro
cells. This philosophy is opposite to that of over-lapping – it is more in the
spirit of “under-lapping”. See Figure 8.

3 The heterogeneous multiscale finite element method

In this section we discuss the application of HMM to problems with a varia-
tional structure. Many microscale problems are of this type. One example is
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the elliptic problem with multiscale coefficients aε(x) discussed in section 2.2
(20). Here ε is the small parameter that characterizes the rapid variations in
the coefficient aε, e.g. ε might be the correlation length for the small scale
variation. Special cases of these problems have been studied analytically in
homogenization theory [BLP78, PV81].

Another type of interesting microscale models are the discrete models such
as network models. Examples of network models include the pore network
models of porous media, resistor network models, and percolation models
[Sah95, Tor02].

A third type of microscale variational models are the molecular mechan-
ics models that are used in connection with the quasi-continuum method
[TOP96, MT04]. They are relevant for studying the structure of solids at low
temperature.

In the following we will focus on the case when the microscale models are
PDE models of the type (20).

3.1 The macroscale solver

To construct a HMM finite element method, we choose as the macroscale
solver the conventional finite element method. As an example, we will use the
standard C0 piecewise linear element, on a triangulation TH where H denotes
the element size. We will denote by XH the finite element space.

3.2 Estimating the stiffness matrix

The data that need to be estimated from the microscale model is the effective
stiffness matrix on TH :

A = (Aij) (37)

where

Aij =

∫

D

(∇Φi(x))TAH(x)∇Φj (x) dx (38)

and AH(x) is the effective coefficient (say conductivity) at the scale H and
{Φi(x)} are the basis functions for XH . Had we known AH(x), we could have
evaluated (Aij) by numerical quadrature. Let fij(x) = (∇Φi(x))TAH(x) ·
∇Φj(x), then

Aij =

∫

D

fij(x)dx '
∑

K∈TH

|K|
∑

x`∈K

w`fij(x`) (39)

where {x`} and {w`} are the quadrature points and weights respectively, |K|
is the volume of the element K. Therefore our problem reduces to the ap-
proximation of {fij(x`)}. This will be done by solving the original microscale
model locally around each quadrature point {x`}.
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Let us first discuss the case when i = j. Our formulation of the local
microscale problem is motivated by the following general principle. Given an
arbitrary microscale variational problem minu e(u),

min
u

e(u) = min
U

E(U) (40)

where
E(U) = min

u:Qu=U
e(u) (41)

Here Q is some compression operator. Using this, computing Aii is equivalent
to computing E(Φi).

Let Iδ(x`) be a cube of size δ. On each cell Iδ(x`), we define Q as follows:
Qu = U if

1

δd

∫

Iδ(x`)

∇u(x) dx = ∇U(x`) (42)

With these, we can define the microscale problem to be solved on Iδ(x`). Let
ϕε

i be the solution of the following problem

min
Qu=Φi

∫

Iδ(x`)

(∇u(x))T aε(x)∇u(x)dx, (43)

we approximate fii(x`) by

fii(x`) '
1

δd

∫

Iδ(x`)

(∇ϕε
i (x))T aε(x)∇ϕε

i (x) dx (44)

Similarly we approximate fij(x`) by

fij(x`) '
1

δd

∫

Iδ(x`)

(∇ϕε
i (x))T aε(x)∇ϕε

j (x) dx (45)

Knowing {fij(x`)}, we obtain the stiffness matrix A by (39).
(43) is equivalent to solving

−div(aε(x)∇ϕε
i (x)) = 0 on Iδ(x`) (46)

with boundary condition

aε(x)
∂ϕε

i

∂n
= λT n̂ on ∂Iδ(x`) (47)

where λ is the Lagrange multiplier for the constraints that 1
δd

∫
Iδ(x`)

∇ϕε
i dx =

(∇Φi)(x`), n̂ is the outward normal on ∂Iδ(x`).
Other formulations of boundary conditions that preserve the constraint

(42) are discussed in [YE05]. The effect of boundary conditions for the mi-
croscale problem, as well as the influence of δ, the size of the micro-cell, is
systematically studied numerically in [YE05]. In the analysis presented later
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in section 9.2, it is more convenient to consider the boundary condition that
ϕε

i (x) − Φi(x) is periodic with period Iδ(x`).
To reduce the effect of the boundary conditions, we may introduce a weight

function wδ in the evaluation of fij(x`):

fij(x`) '
1

δd

∫

Iδ(x`)

wδ(x)(∇ϕε
i (x))T aε(x)∇ϕε

j(x) dx (48)

where wδ should satisfy the condition that

1

δd

∫

Iδ(x`)

wδ(x) dx = 1 (49)

wδ should be chosen so that it assigns smaller weights to regions near the
boundary. The considerations for the choice of the weight function is similar
to the same problem in the time domain, which is discussed in subsection 9.2.

The overall procedure goes as follows:

• Solve for ϕε
1, · · · , ϕε

d at each x`.
• Assemble the effective stiffness matrix using (48).
• Solve the macroscale finite element equation using the effective stiffness-

matrix. If we express the macroscale solution in XH in the form of
UH(x) =

∑
UjΦj(x), then the macroscale finite element equation takes

the standard form:
AU = F (50)

where U = (U1, · · · , UN )T , F = (F1, · · · , FN )T , Fj = (f(x), Φj(x)), f(x)
is the macroscale forcing function.

The savings compared with solving the full fine scale problem comes from
the fact that we can choose Iδ(x`) to be smaller than K. The size of Iδ(x`)
is determined by many factors, including the accuracy and cost requirement,
the degree of scale separation, and the microstructure in a ε(x). One purpose
for the error estimates that we present in section 9.2 is to give guidelines on
how to select Iδ(x`). If a ε(x) = a(x,x/ε) and a(x,y) is periodic in y, we can
simply choose Iδ(x`) to be x` + εI , i.e., δ = ε. If a(x,y) is random, then δ
should be a few times larger than the local correlation length of aε. In the
former case, the total cost is independent of ε. In the latter case, the total
cost depends only weakly on ε (see [MY03]).

Some related ideas exist in the literature. Durlofsky [Dur91] proposed an
up-scaling method, which directly solves some local problems for obtaining
the effective coefficients [MT77, Spa76, Tar00]. Oden and Vemaganti [OV00]
proposed a method that aims at recovering the oscillations in ∇uε locally by
solving a local problem with some given approximation to the macroscopic
state U as the boundary condition. This idea is sometimes used in HMM to
recover the microstructural information.
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K

Fig. 9. Illustration of HMM for solving (20). The dots are the quadrature points.
The little squares are the microcell Iδ(x`)

3.3 Other multiscale finite element methods

Another proposal for constructing multiscale finite element method has been
made in [Bab76, BCO94, BBO03, BBO04, HW97, LZR91] based on modifying
the basis functions in the finite element space by solving, for each element,
the original microscale problem with vanishing right hand side and suitable
boundary conditions. The modified basis functions are used to constructive
the effective stiffness matrix on the coarse grid. This idea was first introduced
by Babuska et al. [BCO94] in the context generalized finite element methods
for solving elliptic equations with general rough coefficients. For problems with
multiscale coefficients, Hou et al. [HW97] introduced overlapping in order to
alleviate the difficulties with local boundary conditions. Some rudimentary
versions of this idea was also suggested in [LZR91] for solving Helmholtz
equations by using oscillatory functions as basis functions.

Once the basis functions and the effective stiffness matrix is computed, the
modified basis function method works efficiently as a coarse grid method. The
main problem, however, is in the overhead for computing the basis functions.
This overhead is already comparable with solving the original microscopic
problem, if a linear scaling method such as multi-grid is used. As all other
upscaling methods, the goal of both HMM-FEM and the modified basis func-
tion method is to obtain the effective stiffness matrix at the macroscale. The
difference lies in whether the procedure is tied with modifying the original
finite element space, say through basis functions. HMM-FEM approximates
the stiffness matrix directly by performing local simulations of the original
microscale model. The size of the local simulation can be chosen according
to the special features of the problem. In particular, one may choose the do-
mains of the local problems to overlap with each other so that their union
covers the original computational domain. This would make it very close to
the modified basis function methods, and most likely also defeat the purpose
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of HMM-FEM. In contrast, the modified basis function method does this by
going through an intermediate step, namely modifying the basis functions and
as a result, the original finite element space. This greatly limits its flexibility
in exploring the multiscale features of the underlying problem. Indeed, except
for simple cases such as the periodic homogenization problem, solving a prob-
lem with structure using such ideas is as hard as solving a problem without

structure. On the other hand, these techniques might be of some use if the
problem (20) is solved repeatedly with different right hand side, in which case
they can be used as pre-processing techniques, in the same way as LU de-
composition, computation of Schur complements [ER02], and sub-structuring
methods [BPS86].

For a more detailed discussion of these methods and their relative per-
formance, we refer to [MY03]. It was found, among other things, that the
accuracies of HMM-FEM and the modified basis function method are gener-
ally comparable, for the examples considered there, despite the difference in
cost.

For the special case when the microstructure of aε is locally periodic,
several other methods have been proposed. Some are based on solving the
homogenized equations, plus next order terms [CC95]. One particularly inter-
esting idea, proposed by Schwab et al. [SM02a, SM02b], uses multiscale test
functions. In this case, the finite element space has a tensor product struc-
ture, which can be exploited to compensate for the increase of dimensionality
caused by using the multiscale test functions.

4 Complex fluids and microfluidics

The behavior of liquids is usually very well described by the classical Navier-
Stokes equations with the no-slip boundary condition. There are two notable
exceptions. The first is non-Newtonian fluids such as polymeric fluids. In this
case the constitutive equations are more complex than that of Newtonian
fluids, for which the viscous stress is simply a linear function of the rate
of strain. The second is micro-fluidics. In this case the geometry of the flow
domain is so small that the no-slip boundary condition is no longer sufficiently
accurate.

Three different levels of models are commonly used in the modeling of liq-
uids: molecular dynamics, Brownian dynamics, and hydrodynamics. We will
discuss the case when the microscale model is molecular dynamics and the
macroscale model is hydrodynamics. But some of the issues that we will dis-
cuss are also relevant if the microscale model is Brownian dynamics. For sim-
plicity we will assume that the flow is incompressible. Extending the method-
ology to deal with compressibility is quite straightforward. This section is
taken mostly from [RE05a].
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4.1 The macroscale and microscale models

At the continuum level, the dynamics of incompressible flow have to obey
conservation laws of mass and momentum:

{
ρ∂tu = ∇ · τ

∇ · u = 0
(51)

where the momentum flux −τ = ρu⊗u−τd. Here ρ is the density of the fluid
which is assumed to be a constant, u = (u, v) is the velocity field, and τd is
the stress tensor. At this stage the system is not closed since the stress tensor
is yet to be specified. Traditionally the idea has been to close this system by
an empirically postulated constitutive relation, such as

τd = −pI + µ(∇u + ∇uT ) (52)

for simple fluids. In this case, all information about the molecular structure
is lumped into one number, the viscosity µ. Here we are interested in the
situation when empirical constitutive relations are no longer accurate enough,
as for the case of polymeric fluids, and more information at the microscopic
level is needed.

Another important component in the model is the boundary condition.
Almost all macroscopic models assume the no-slip boundary condition

u = u0 (53)

where u0 is the velocity of the boundary. This is adequate in many situations,
but becomes questionable for some problems in micro-fluidics.

For the microscopic model, we will use molecular dynamics (MD). Using
standard notations for liquids, we have

{
miẋi(t) = pi(t)

ṗi(t) = Fi

(54)

i = 1, 2, · · · , N. Here mi is the mass of the i-th particle, xi and pi are its
position and momentum respectively, Fi is the force acting on the i-th particle.
To examine the behavior of the fluid flow near a solid boundary, we should also
model the vibration of the atoms in the solid next to the fluid-solid interface.
Therefore one should consider the fluid-solid system as a whole. Normally one
works in the isothermal setting, and the Nosé-Hoover thermostat can be used
to control the temperature of the system [FS01].

The connection between the atomistic and the continuum models is made
as follows. Given the microscopic state of the system {xi(t),pi(t)}i=1,2,··· ,N ,
we define the empirical momentum distribution

m(x, t) =
∑

i

pi(t)δ(xi(t) − x) (55)
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where δ is the Delta function. Momentum conservation can then be expressed
in terms of the microscopic variables as:

∂tm = ∇ · τ(x, t) (56)

where the momentum current density τ(x, t) is given by the following Irving-
Kirkwood formula [IK50]:

τ(x, t) = −
∑

i

1
mi

(pi(t) ⊗ pi(t))δ(xi(t) − x)

− 1
2

∑

j 6=i

((xi(t) − xj(t)) ⊗ Fij(t))
∫ 1

0
δ(λxi(t) + (1 − λ)xj(t) − x) dλ

(57)
where Fij(t) is the force acting on the i-th particle by the j-th particle.

An important issue in molecular dynamics is how to model the atomistic
forces accurately. The algorithms that we will discuss are quite insensitive to
the details of the atomistic potential. For simplicity we will work with the
simplest situation when the interaction between particles is pair-wise and the
pair potential is the Lennard-Jones (LJ) potential in a slightly modified form:

V LJ(r) = 4ε

((σ

r

)12

− η
(σ

r

)6
)

(58)

Here r is the distance between the particles, ε and σ are characteristic energy
and length scales respectively. The parameter η controls the nature of the in-
teraction between particles. When η = 1, (58) defines the usual LJ potential
which is attractive at long distance. Repulsion between particles of different
species can be modeled using negative values of η. For simplicity we have
restricted ourselves to macroscopically two-dimensional systems and will con-
tinue to do so. But it is important to note that the MD simulations are done
in three dimensions. Two dimensional MD systems may exhibit non-physical
effects.

It proves convenient to use the reduced atomic units. The unit of length
is σ. The unit of time is σ

√
m/ε. For temperature it is ε/kB where kB is

the Boltzmann constant, and for density it is m/σ3. The unit of viscosity is
(εm)1/2/σ2. The unit of surface tension is ε/σ2.

4.2 Type B problems: Atomistic-based constitutive modeling

Macroscale solver

As the macroscopic solver, we choose the projection method on a staggered
grid [Cho68, Cho89]. The projection method is a fractional step method. At
each time step, we first discretize the time derivative in the momentum equa-
tion by the forward Euler scheme to obtain an intermediate velocity field:
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ρ
ũn+1 − un

∆t
= ∇ · τn (59)

where τn is the momentum flux. For the moment, pressure as well as the
incompressibility condition are neglected. Next the velocity field ũn+1 is pro-
jected onto the divergence-free subspace:

ρ
un+1 − ũn+1

∆t
+ ∇pn+1 = 0 (60)

where pn+1 is determined by

∆pn+1 =
ρ

∆t
∇ · ũn+1 (61)

usually with Neumann boundary condition.

Fig. 10. Schematic of the spatial discretization of the continuum equations in (51).
u is defined at (xi, yj+ 1

2
), v is defined at (xi+ 1

2
, yj), and p is at the cell center

(xi+ 1
2
, yj+ 1

2
). τ11 and τ22 are calculated at the cell center indicated by circles, and

τ12 is calculated at the grid points indicated by squares

The spatial discretization is shown in Figure 10. For integer values of i
and j, we define u at (xi, yj+ 1

2
), v at (xi+ 1

2
, yj), and p at the cell center

(xi+ 1
2
, yj+ 1

2
). The diagonals of the flux τ are defined at (xi+ 1

2
, yj+ 1

2
), and the

off-diagonals are defined at (xi, yj). The operators ∇ and ∆ are discretized by
standard central difference and the five-point formula respectively. The use of
this grid simplifies the coupling with molecular dynamics.

Estimating the stress

The data that need to be estimated from molecular dynamics are the stresses.
Here we will make a constitutive assumption, namely that the stress depends
only on the rate of strain. We do not need to know anything about the specific
functional form of this dependence.
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The key component in estimating the stress is to construct a constant
rate-of-strain ensemble for the MD. This is done through a modified periodic
boundary condition.

Constrained microscopic solver: Constant rate-of-strain MD

There exists an earlier work due to Lees and Edwards [LE72] in which the
periodic boundary condition is modified to maintain a constant shear in one
direction. This is done by shifting the periodic copies of the simulation box
above and below in opposite directions according to the given shear profile.
This idea was extended to situations with general linear velocity profiles in
[RE05a].

(a)

P

P’

(b) (c)

Fig. 11. Periodic boundary conditions on a dynamically deforming box

Without loss of generality, we will consider the situation when the macro-
scopic velocity profile is of the form




u
v
w



 =




a b 0
c −a 0
0 0 0








x
y
z



 = Ax. (62)

To initialize the MD calculation, one may simply start with a perfect lattice
configuration in a rectangular box. Each particle is given a mean velocity
according to (62), plus a random component with mean 0 and variance kBT ,
where T is the desired temperature and kB is the Boltzmann constant.

Deforming the simulation box. Periodic boundary condition is im-
posed on a dynamically deforming simulation box, whose vertices move ac-
cording to

ẋ = Ax, A =




a b 0
c −a 0
0 0 0



 . (63)

Intuitively it is helpful to think of the simulation box as been embedded in
the whole space.
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The shape of the deformed box at a later time is shown in Figure 11(b).
Suppose at this point a particle crosses the boundary at P (x), with velocity
u, it will return to the box at P ′(x′) with a modified velocity

u′ = u + A(x′ − x). (64)

where P ′ is the periodic image of P with respect to the deformed box.
It is easy to see that if the velocity field is a pure shear

A =




0 b 0
0 0 0
0 0 0


 (65)

then this boundary condition becomes simply the Lees-Edwards boundary
condition.

Reinitialization. As the simulation proceeds, the simulation box will in
general become quite elongated in one direction and narrowed in the other
direction (see Figure 11(c)). If the box is significantly deformed, we need to
reinitialize the configuration. The details of the reinitialization procedure is
discussed in [RE05a, RE05b].

A B

C

D F

E

Fig. 12. Computing averaged stress: Besides the contributions from the particles
inside the box to the averaged stress, the particles outside the box also contribute,
such as CD and EF

The MD simulation keeps track of the positions and velocities of all par-
ticles as functions of time, from which the momentum flux tensor can be
calculated using the Irving-Kirkwood formula (57).

In practice, (57) is averaged over the simulation box. This gives

−τ(t) =
1

|Ω|
∑

xi∈Ω(t)

1

mi
(pi ⊗ pi) +

1

2|Ω|
∑

j 6=i

dij(xi − xj) ⊗ Fij (66)

where in the first term the summation runs over particles inside the box, and
in the second term the summation is over all pairs of particles including their
images. Here dij is defined as
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dij =





1, if xi,xj ∈ Ω,

0, if xi,xj /∈ Ω,

c, if only one of xi,xj in Ω

(67)

where 0 ≤ c ≤ 1 is the fraction of |xi − xj | being cut by the box. Therefore
besides contributions from the particles inside the box, particles outside the
box also contribute to the stress, as illustrated in Figure 12.

(66) gives the instantaneous stress at the microscopic time t (see Figure
13). To extract the macroscopic stress, (66) is averaged over time to give an
estimate for the macroscale stress:

τ =
1

T − T0

∫ T

T0

τ(t)dt (68)

where T0 is some relaxation time.
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Fig. 13. Instantaneous stress as a function of the microscopic time. Solid line: −τ12;
dashed line: −τ11; dotted line : −τ22. The temperature is fixed in (a) but not in
(b), where the stress diverges due to viscous heating. In both case, u = 0.18y, v = 0

In Figure 13, we show two numerical examples of the calculated stress. In
atomic units the density is ρ = 0.79 and the temperature is fixed at 1.0 in the
first example but not in the second which is not coupled to any thermostats.
The stress diverges in this case due to viscous heating.

As a simple validation of this procedure, we show in Figure 14 the com-
puted shear stress as a function of shear rate for LJ fluids. These data fit quite
well to a linear function indicating a linear relation between stress and the
rate of strain. The viscosity can be computed by estimating the slope. This
gives a value of 2 which agrees well with result in the literature [TR89].

To summarize, at each macro time step k, the overall algorithm looks as
follows:

1. Step 1. Calculate the needed stresses by constrained local MD simulations;
2. Step 2. Using the projection method and the computed stresses to get

uk+1.
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Fig. 14. Shear stress as a function of shear rate for simple LJ fluids. The discrete
points are obtained from 3d MD simulation, and they fit very well to a linear function
with slope 2 which is the viscosity. All the quantities are expressed in the atomic
unit

Fluid dynamics of chain molecules

This algorithm was validated on a simple example of pressure-driven cavity
flow, and applied to a number of other examples, including the driven cavity
flow, and a system of dumbbell fluids with FENE potential. Here we briefly
report the results for the dynamics of chain molecules that represent flexible
polymers. More details are found in [RE05b].

In [RE05b] a bead-spring model of chain molecules is used to represent
the flexible polymers, with a total of N beads for each chain. The interaction
potential between the beads has two parts. The first is the LJ potential which
acts on all beads in the system. The second is the spring force given by the
FENE potential:

V FENE(r) =





− 1
2kr2

0 ln(1 − ( r
r0

)2), r < r0

∞, r ≥ r0

(69)

The values k = 1 and r0 = 2.5 were used. The density of the beads is 0.79.
N = 12. The slip boundary condition suggested in [PT04] was used. [RE05b]
also reports results from computations that treat this as a type C problem
and extract boundary conditions using the algorithm described next for type
A problems. The results are basically the same.

At small driving force, there is only partial slip between the fluid the solid.
The velocity profile converges to steady state, as shown in Figure 15. This
steady state profile is compared with the standard Poiseuille profile at the
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Fig. 15. (a) Steady state velocity profile for the polymer fluid made up of chain
molecules (solid line), compared with that of the Newtonian fluid (dashed line). We
observe partial slip, as well as shear-thinning. (b) A partial sample of the confor-
mation of the chain molecules in a typical MD simulation. (c) Shear stress as a
function of shear rate. (d) Viscosity as a function of shear rate. In (c) and (d),
to make the results more transparent, we supplemented the results from the HMM
calculation by results from pre-computing: The more noisy results at small shear
rates are from HMM calculation, the more smooth results at higher shear rates are
from pre-computing

zero-shear-rate viscosity. Besides the partial slip, we also see that the profile
for the chain molecules has larger curvature, a characteristic of shear thinning
fluids. This is confirmed by the plot of the effective constitutive relation used
in the HMM simulation at the steady state.

4.3 Type A problems: Modeling boundary conditions

In the discussions above we were concerned with the constitutive relations for
complex fluids. Here we will discuss boundary conditions for micro-fluidics.
One most important aspect of micro-fluidics is the significance of line and
surface tension. Therefore as our primary examples, we choose the Marangoni
flow and the contact line problem. For these problems, the need for coupling
with MD comes from the complex solid-fluid and fluid-fluid interaction near
the wall.
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Marangoni flows

We will discuss a specific example of the Marangoni flow, namely channel flow
driven by complex solid-fluid interactions which are modeled by molecular
dynamics.

The HMM procedure goes as follows. The macroscopic solver is the same
as before, i.e. a finite-volume projection method on a staggered grid. This
simplifies the next step, which is to obtain the boundary condition from MD.

The needed data in the finite volume projection method are the tangential

stresses at the boundary.
The schematic of the MD is shown in Figure 16. Periodic boundary con-

dition is imposed in the x- and z-direction. In the y-direction, the fluid is
confined by a solid wall at AB and a repulsive force at GH . One choice of
this repulsive potential is the repulsive part of the LJ potential:

P (r) = ε
(σ

r

)12

(70)

where r is the distance to GH . Similar techniques for confining particles were
used in [HP97, Had99].

x
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y D C Constrained MD

D C

Fig. 16. Schematic of the multiscale method for the example of Marangoni flow. In
the left panel, the finite volume grid is indicated by the dotted lines. The bound-
ary condition at AB is extracted from molecular dynamics simulations confined in
ABCD. The set-up of the MD simulation is shown in the right panel. Particles are
confined by a repulsive force at GH and the solid wall at AB. The dynamics of
the particles in the strip CD are constrained by the continuum velocity field. The
boundary conditions are extracted from the small bins at the lower boundary. Black
dots represent atoms in the solid

The MD is constrained by the macroscale velocity field. This is done as
follows. Each particle in the strip CD is assigned the velocity: u(x) = uc(x)+
ũ, where uc(x) is the velocity from the continuum calculation and ũ is the
thermal velocity that obeys the Maxwellian distribution at some temperature
T . Therefore the strip plays a two-fold role here: As a momentum reservoir
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it maintains the non-equilibrium dynamics at the steady state; as a thermal
reservoir it releases heat generated by viscous flow from the system.

The solid wall also needs to be explicitly modeled, here as a crystal lattice.
Geometric as well as chemical heterogeneities can be modeled by choosing
appropriate atomistic potentials (see [RE05a, QW04]).

After a relatively short equilibration time, the stresses are estimated using
the Irving-Kirkwood formula, as was done before.

Figure 17 shows some results of the effective boundary conditions extracted
from the molecular dynamics simulation. For more numerical results, we refer
to [RE05a].

The overall algorithm for a typical macro time step k is as follows:

Step 1. Calculate the stress at the boundary AB by local MD simulation. The
MD is constrained by uk;

Step 2. Solve the continuum equations to get uk+1.
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Fig. 17. (a) the velocity at the lower boundary; (b) the stress extracted from MD
(solid curve) and fitted by fourth-order B-splines (dashed curve)
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Contact line dynamics

We next consider the motion of two immiscible fluids on a solid surface. Con-
tinuum hydrodynamics breaks down in the vicinity of the contact line, where
the fluid-fluid interface meets the solid surface. Specifically the usual no-slip
boundary condition used in macroscopic fluid dynamics leads to an unphys-
ical divergent shear stress and dissipation rate [Dus79]. Molecular dynamics
simulations of Couette or Poiseuille flow show relative slip between the fluid
and the wall around the contact line [TR89, QWS03].

As for the previous example, a HMM procedure is called for in order to
obtain boundary conditions from MD. However the present problem is quite
a bit more complicated.

Macroscale solver

As the macroscale model, we take






ρ ∂tu = ∇ · τ

∇ · u = 0

ẋΓ = u

(71)

where the momentum flux in continuum theory is given by

−τ = ρu⊗ u + pI − µ(∇u + ∇uT ) + γ(I − n̂ ⊗ n̂)δΓ − f0xI. (72)

The last equation in (71) says that the fluid-fluid interface xΓ (t) is advected
by the velocity field of the fluid. The first term in the momentum flux is due to
convection, the second term is the pressure, the third term is the viscous stress,
the fourth term corresponds to the surface tension force which is concentrated
at the fluid-fluid interface xΓ (δΓ is the surface delta function), and the last
term is the external force. I is the identity matrix, γ is the the surface tension
coefficient and n̂ is the unit normal of the interface.

In the numerical calculations, it is standard to replace the surface tension
term τΓ = γ(I − n̂ ⊗ n̂)δΓ as a body force defined by

τ̃Γ (x) =

∫

R2

D(x − y)τΓ (y)dy (73)

One choice for the kernel D is given by

D(x) =

{
(2d)−2(1 + cos(π

d x))(1 + cos(π
d y)), if |x| < d, |y| < d;

0, otherwise
(74)

This was first introduced by Peskin [Pes77]. In the examples reported below,
d, the width of the smoothing region, is taken to be twice the cell size. After
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being interpolated from the interface to the grid points by (73), the total flux
is conserved.

As before we use the projection method for the macroscale equation. The
interface is updated by forward Euler method:

(xΓ )n+1 − (xΓ )n

∆t
= un. (75)

The interface is represented by a collection of discrete points {(xΓ )i, i =
0, 1, · · · , N}, where the two end points (xΓ )0 and (xΓ )N are the contact
points, i.e. the intersections of the interface with the solid walls. Surface ten-
sion force is calculated at the middle of each segment. Neumann condition on
velocity is used at the in-flow and out-flow boundaries. At the solid wall away
from the contact point, no-slip boundary condition is used. Other details of
the macroscale solver can be found in [RE05a].

Microscopic solver and estimating boundary conditions
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Fig. 18. Schematic of the multiscale method for the contact line problem. Macro
grid used in the computation is represented by dotted lines in the left panel. MD is
carried out in a local region around the contact line. Periodic boundary conditions
are imposed on the boundaries of the enlarged box G′D′ and H ′C′. The dynamics
in the shaded strips GD, DC and CH are constrained by continuum velocity field.
The shear stress and the position of the contact point are computed in the strip
along GH

The data that need to be estimated from MD are:

1. shear stress near the contact line (here the contact point);
2. velocity of the contact line.

The schematics of the molecular simulation around the contact line is
shown in Figure 18. Periodic boundary conditions are imposed in the z-
direction. In the x-direction, the flow field is not necessarily periodic, so we
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enlarge the simulation box to G′H ′C ′D′ and impose periodic boundary con-
ditions on G′D′ and H ′C ′ instead (see the right panel in Figure 18). The
enlarged part serves as a particle reservoir. In this system we have two species
of fluids, fluid I on the left and fluid II on the right. When a fluid particle of
species II crosses H ′C ′, it will enter the box through G′D′ and become species
I, and vice versa.

In the y-direction, the particles are confined by the solid wall at G′H ′ and
a repulsive force at C ′D′. The repulsive force is modeled by the repulsive part
of the LJ potential, as given in (70). The repulsive force is used to keep the
particles from escaping the MD domain. More detailed information on the
microscale solver is given in [RE05a].

For consistency between the molecular dynamics and the continuum dy-
namics, a modified Andersen thermostat is used in the strips GD, DC, and
CH : At Poisson distributed times with certain frequency ν, a random particle
is selected from the strips and its velocity is replaced by u(x) = uc(x) + ũ,
where uc is the velocity from continuum dynamics and ũ is a random variable
with Maxwell-Boltzmann distribution at the specified temperature T .

The shear stress is calculated using the formula (57) in the bins which are
a few (about 3) atomic lengths above the wall.

To estimate the position of the contact line, we first calculate the particle
density function along the fluid-solid interface (remember O is fixed):

ρ(x) =
∑

i

ρi δ(xi − x) (76)

where the sum is over all particles in the strip above the solid wall, xi is
the x coordinate of the i-th particle, ρi is 1 for particles of species I and -1
for particles of species II. The position of the contact line is determined by
ρ(x) = 0. [RE05a] suggests taking a strip which is again a few atomic lengths
above the wall and partition it into uniform bins in x direction. Then the
density is obtained by taking the sum of ρi in each bin. The position of the
contact line is given by

(xΓ )0 = x0 +

∫ x1

x0

ρ̃(x)dx (77)

where x0 and x1 are the positions of the leftmost and the rightmost bins
respectively. ρ̃(x), which is between 0 and 1, is the rescaled density:

ρ̃(x) =
ρ(x) − minx ρ(x)

maxx {ρ(x) − minx ρ(x)} . (78)

Numerical results

The overall algorithm for a typical macro time step k looks like the fol-
lowing:
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Step 1. Carry out a constrained MD simulation near the contact line, from
which the shear stress and the position of the contact line are esti-
mated;

Step 2. Solve equations in (71) for uk+1 and (xΓ )k+1.

We will discuss two examples from [RE05a]. The first example is a valida-
tion study. The second is an example of asymmetric fluid-solid interactions.
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Fig. 19. Results of the constrained MD simulation. (a) The time series of ∆N =
NI (t)−NII (t), where NI (t) and NII (t) are the particle numbers of the two species
in the box GDCH (see Figure 18) respectively; (b) The shear stress measured at
the solid wall. The solid curve is calculated from the full MD simulation and the
dashed curve is from the constrained MD simulation

Example 1. Two immiscible fluids are confined in a channel and driven
by an external force f0 = 0.02 in the x direction. The system measures 69.7×
22.5× 5.16 and contains 2944 particles of each fluid and 1728 solid particles.
The system is periodic in the x and z directions.

To check the validity of the constrained molecular dynamics used in the
hybrid method, a local MD simulation is performed around the contact line.
The left panel of Figure 19 shows the time series for the difference of the
particle numbers of both species inside GDCH (see Figure 18). We clearly
see a transient time during which the particles of species I flow out of the box
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Fig. 20. The steady-state solution of Example 1 by the hybrid method and com-
parison with the results of full MD. The interface is shown in dashed curve. The
solid curve shows the interface obtained by full MD simulation

and particles of species II flow into the box. The right panel of Figure 19 is
a comparison between the shear stress calculated on the surface of the solid
wall in the full MD simulation and in the local constrained MD simulation,
and we see good agreements.

The validation study was also carried out for the steady-state solution.
The parameters in the continuum model are ρ = 0.81, µ = 2.0 and γ = 3.7.
70 × 20 grid points are used in the spatial discretization, and the time step
is ∆t = 0.05. A static configuration was used as the initial data and the
external force is slowly increased to 0.02. The steady-state velocity field and
the interface (dashed line) are shown in Figure 20. These results agree well
with the full MD results.

Example 2. In our next example, we consider the case for which the
fluid-solid interaction is different for the two fluid phases. Specifically the
attraction between fluid I and the solid is decreased by taking η = 0.7 in the
potential (58). All other parameters in the potential are kept unchanged from
the previous example. The static contact angle θ in this case is 65◦.

Again the static configuration is used as the initial state and an external
force f0(t) = 5.35 × 10−11t in x-direction is applied until it reaches f0 =
2.2 × 10−5. The force is then decreased at the same rate until it reaches
f0 = −7.0 × 10−5. The fluid-fluid interfaces at different times are shown in
Figure 21a . The left-most dashed line is the interface at the static position,
and it travels in the stream-wise direction as the external force increases. The
right-most dashed line corresponds to f0 = 2.2 × 10−5. The solid lines from
the right to the left show the shapes of the interfaces as the external force
decreases. Figure 21b shows the dynamic contact angle as a function of the
applied force. Again, the dashed curve corresponds to the dynamics as the
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Fig. 21. Dynamics of the contact line problem with asymmetric fluid-solid inter-
actions. (a) Fluid-fluid interfaces at different times. For dashed curves from left
to right, the external force increases from 0 to 2.2 × 10−5; For solid curves from
right to left, the external force decreases from 2.2 × 10−5 to −7.0 × 10−5; (b) Dy-
namic contact angle as a function of external force. The external force is rescaled
by F = 8.1 × 10−6

force increases, and the solid curve corresponds to the dynamics as the force
decreases.

5 Dynamics of solids at finite temperature

Unlike fluids, the multiscale nature of solids is much more pronounced. On
the modeling side, there is no analog of the Navier-Stokes equation as the
fundamental macroscopic model. On the physics side, solids often contain a
hierarchy of structures and defects at different scales [Phi01]. These include
point defects such as vacancies and impurities, dislocations and structures
formed by dislocations, grain boundaries, and even cracks. As a result, mul-
tiscale modeling has received more attention in solids than in fluids.

We will again focus our discussion on the situation when the macroscopic
model is continuum mechanics and the microscopic model is molecular dy-
namics. For the analysis of static properties of solids at zero temperature, in



48 Contents

which case the mathematical models reduce to minimization problems, the
quasi-continuum method has had a great deal of success [TOP96]. Here we
will discuss multiscale methods that handles the dynamics of solids at finite
temperature. This part of the presentation follows mainly [LE05].

5.1 Macroscopic and microscopic models

Again the continuum model is expressed in terms of the conservation laws.
For solids it is more convenient to work with Lagrangian coordinates. Denote
by x0 the reference coordinate for the solid and x = x0 +u(x0, t), the position
after deformation, with u being the displacement. Then the conservation laws
take the form: 





∂tA −∇
x
0v = 0,

∂tv −∇
x

0 · σ = 0,
ρ0∂te + ∇

x
0 · j = 0.

(79)

Here A,v, e are the deformation gradient, velocity and total energy per par-
ticle respectively, ρ0 is the initial density, σ is the first Piola-Kirchhoff stress
tensor and j is the energy flux. The first equation in (79) is a statement of
compatibility between the deformation gradient and the velocity. The second
and third equations are conservation of momentum and energy respectively.
In continuum mechanics [LL80b], these equations are supplemented by the
empirical constitutive relations for stress and energy fluxes. Our interest here
is to develop multiscale strategies that bypass these empirical constitutive
laws when their accuracy is in doubt.

The microscopic model is again MD. The first step is to express MD in the
form of (79). For this purpose, we define the following empirical distributions
[LE05],





ρ̃(x0, t) =
∑

i

miδ(x
0 − x0

i ),

ṽ(x0, t) =
∑

i

vi(t)δ(x
0 − x0

i ),

q̃(x0, t) =
∑

i

mivi(t)δ(x
0 − x0

i ),

ẽ(x0, t) =
1

2

∑

i

[
mivi(t)

2 +
∑

j 6=i

φ
(
xi(t) − xj(t)

)]
δ(x0 − x0

i ).

(80)

Here as before we denote by x0
i the position of the i-th atom in the undeformed

configuration, which is also taken to the initial position of the i-th atom, xi(t)
and vi(t) are respectively the position and velocity of the i-th atom at time
t. Note that x0

i is independent of t. Let
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σ̃αβ(x0, t) = −1

2

∑

i6=j

fα

(
xi(t) − xj(t)

)
(x0

iβ − x0
jβ)

×
∫ 1

0

δ
(
x0 − (x0

j + λ(x0
i − x0

j ))
)
dλ,

j̃(x0, t) =
1

4

∑

i6=j

(
vi(t) + vj(t)

)
· f
(
xj(t) − xi(t)

)
(x0

i − x0
j )

×
∫ 1

0

δ
(
x0 − (x0

j + λ(x0
i − x0

j ))
)
dλ.

(81)

where f = −∇V is the force and we have only considered two-body interaction
in the atomistic potential – extension to general cases can be found in [LE05].
We have {

∂tq̃−∇
x

0 · σ̃ = 0,

ρ0∂tẽ + ∇
x

0 · j̃ = 0.
(82)

The expressions in (81) are nothing but the generalizations of the classical
Irving-Kirkwood formula.

5.2 Type B problem: Atomistic-based constitutive modeling

Macroscale solver

Since our basic macroscopic model is a set of conservation laws, we will
choose a finite volume method as the macroscale solver. Although there are
a variety of finite volume methods available for solving conservation laws
[LeV90, GR96], many of them involve computing the Jacobian of the flux func-
tions, which dramatically increases the computational complexity in a coupled
multiscale method when the constitutive relation has to be extracted from
atomistic models. An exception is the central scheme of Lax-Friedrichs type,
such as the one developed in [NT90] which is formulated over a staggered-grid.
Below we will choose such central schemes as our macroscale solver.

For convenience, we rewrite the conservation laws in the generic form,

wt + fx = 0. (83)

where w denotes the conserved quantities, and f is some (unknown) flux
function. Figure 22 shows the overall structure of the method. The first order
central scheme represents the solutions by piece-wise constants, which are the
average values over each cell:

wn
k =

1

∆x

∫ xk+1/2

xk−1/2

w(x, tn)dx.

Here ∆x is the size of the cell. Integrating (83) over [xj , xj+1] × [tn, tn+1)
leads to the following,
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wn+1
k+1/2 =

wn
k + wn

k+1

2
− ∆t

∆x

(
fn
k+1 − fn

k

)
(84)

where

fn
k =

1

∆t

∫ tn+1

tn

f(xk, t)dt

This is then approximated by numerical quadrature such as the mid-point
formula. A simple choice is fn

k ∼ f(xk , tn).
With this choice of the macro-solver, the HMM procedure is shown

schematically in Figure 22 (see also Figure 6). At each time step, the scheme
(84) requires as input the fluxes at the grid points xk. These flux values are
obtained by performing local MD simulations that are constrained by the local
macro state variables A, v, e. After the MD system equilibrates, we estimate
the fluxes by time/ensemble averaging.
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Fig. 22. A schematic illustration of the numerical procedure: starting from piece-
wise constant solutions {wn

k}, one integrates (83) in time and in the cell [xk, xk+1].
To estimate f at xk, we perform a MD simulation using wn

k as constraints

Higher order schemes and generalization to high dimensions are discussed
in see [LE05].

Constrained microscale solver

Next we discuss how to set up the MD in order to measure the fluxes. As for the
case of fluids, we will make a constitutive assumption that the fluxes depend
only on the local values of the conserved densities. More general constitutive
assumptions can be accommodated, but the constrained MD that we discuss
below will have to be modified.
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First we initialize the MD. The basic requirement is that the initial condi-
tion has to be consistent with the local conserved quantities of the macroscopic
state, and has the correct crystal structure. Given the local macroscopic state
A,v, e, we first determine the shape of the MD cell from the deformation
gradient tensor. Consider the situation that the crystal is a simple Bravais
lattice and let E be a basis for the undeformed unit cell. The deformed lattice
is generated by the basis vectors Ẽ = AE. We then place the atoms on the
deformed lattice, possibly with small perturbations. The potential energy U of
this trial configuration and the kinetic energy associated with the mean veloc-
ity is subtracted from the total energy e to give us the thermal energy. If this
value is positive, the trial configuration is accepted. Otherwise, it is rejected.
From the thermal energy one computes the temperature. The velocities of the
atoms are initialized according to the Maxwell-Boltzmann distribution with
the mean and variance given by the macroscale velocity and the temperature
respectively.

We should remark that if the local relaxation time is very short compared
with the macro time scale, then there is not much difference in the perfor-
mance of different initialization procedures, as long as the initial configuration
has the correct crystal structure. However, as the relaxation time increases,
there can be considerable advantage in using the previously computed micro-
scopic state as the initial configuration for the new MD simulation. Of course
the previously computed microscopic state has to be modified in order to be
consistent with the current macro state. This can be done as follows.

1. The configuration is deformed linearly to be consistent with the current
deformation gradient.

2. The average velocity is shifted to the current average velocity.
3. The temperature is changed using the same procedure as discussed above

to arrive at the required total energy.
The choice of the size of the MD system is affected by two competing

factors. On one hand the size of the system has to be large enough in order
to minimize the effect of the boundary conditions. On the other hand, as the
system size goes up, not only the cost goes up, the relaxation time also goes
up. We refer to [EL04b] for some careful numerical studies of these effects.

Boundary conditions have to be imposed on the microscopic system in
order to guarantee consistency with the local macroscale variables. In the
present case since the system is homogeneous (constant mean velocity, tem-
perature and deformation gradient), the most convenient boundary condition
is the periodic boundary condition. The MD is performed in a deformed box
as described earlier and periodically extended to the whole space.

The periodic boundary condition excludes the possibility of accounting for
inhomogeneous effects such as effects of thermal gradients, strain gradients,
etc. Extending the methodology to cover these effects is still on-going work.

From the MD data, we can compute the microscopic fluxes using the for-
mulas in (81). The final step is to average the microscopic fluxes to obtain the
fluxes needed by the macroscopic scheme. This is very similar to the situation
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for fluids and therefore we will omit the details. The interested reader can
consult [LE05].

We remark that this procedure allows us to automatically decouple the
micro time scales from the macro time scales.

An error analysis of the overall method can be found in [EL04b].

Modeling thermal expansion using MD

As an example, we study the effect of thermal expansion. Our atomistic model
is a 3D Lennard-Jones solid in a FCC (face-centered cubic) lattice. We set up
the example so that the macroscale behavior is two dimensional. Initially the
material is at rest with homogeneous temperature distribution T ≡ 0.1. We
then increase the temperature in the middle instantaneously to T = 0.4. This
results in a thermal expansion that propagates outward. The result of HMM is
shown in Figure 23 where we display the numerical results for the temperature
distribution as well as the velocity field. One clearly observes that the material
is expanding outward as heat is spread out.

5.3 Type A problem: Dealing with isolated defects

We now turn to another class of problems that can be treated using multiscale
methods, the problem of isolated defects. Solids often contain a variety of
defects, such as vacancies, dislocations, twin boundaries and grain boundaries.
To a large extent, the structure and dynamics of these defects determine the
properties of the solid [Phi01].

A common idea for the multiscale modeling of defects is to use atom-
istic models near defects and continuum models away from defects, e.g. in a
domain decomposition framework. MAAD is a good example of such an ap-
proach [ABB98, ABB99]. The HMM philosophy, on the other hand, suggests
a strategy that is closer to adaptive model refinement.

The idea of adaptive model refinement is to start with a macroscale model
on a macro-grid (which might be locally refined) in the entire computational
domain and couple with a more refined model locally near the defects. For
the present problem, the macroscale model is the same as before, namely the
conservation laws. The macroscale solver can also be chosen as before, i.e.
central type of finite volume schemes. But when it comes to computing the
fluxes, the cells (more precisely, the cell boundaries where flux evaluation is
carried out) are divided into two types: cells that contain defects and cells that
do not contain defects. In cells that do not contain defects we evaluate the
fluxes using either empirical constitutive relations or the method discussed in
the previous section. In cells that do contain defects we compute the fluxes
using MD.
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Fig. 23. Thermal expansion: temperature distribution (top) and the velocity field
(bottom). The macro mesh consists of 36 × 36 grid points. Each MD cell contains
36 × 36 × 3 × 4 atoms, and the MD system is evolved for 104 time steps
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The relevant time scales

To formulate the procedure of coupling MD with the continuum models near
defects, we distinguish two different situations depending on whether there is
scale separation between the time scale for the dynamics of the defects and
the time scale for the local relaxation of the defect structure. We denote the
former by Td and the latter by Tr.

If Td is much larger than Tr, we can extend the macroscale model to
include the velocity and character of the defect. The macroscale scheme then
contains two components: a solver for the conservation laws (a central type
finite volume scheme or discontinuous Galerkin method) and defect tracking.
The data to be measured from MD include the fluxes, the defect velocity
and the local environment variables, of the defect. This procedure naturally
decouples the two time scales Tr and Td.

If Td is comparable to Tr, then the time history of the defect is important
for its future dynamics. There is no decoupling of time scales since there is no
time scale separation. In this case reinitializing the defect structure at macro
time steps is no longer accurate enough. We will have to track the entire
history of the local atomic structures near the defect. This situation often
arises when dealing with small-size materials.

Figure 24 illustrates the procedure for both cases.
When Tr � Td, we can extract information on the dynamics of the defect

from local MD simulations, and use it to advance the defects over macro
time steps. At the same time the macro solver needs to be modified near
the interface to take into account the defect structure. This defect tracking
procedure is similar in spirit to the front tracking algorithms in computational
fluid dynamics [GMM86], except that the velocity of front is not obtained from
macroscopic jump conditions but from molecular dynamics.

The defect tracking procedure has been constructed in [LE05] for co-
dimension one defects, such as twin and grain boundaries. Extending this
procedure to dealing with high co-dimensional defects such as point defects
and dislocations still remains open.

MD boundary conditions

Another difference with the type B problems discussed earlier is that the
local MD simulations are no longer homogeneous, e.g. temperature may not
be constant in the local MD system. This complicates issues such as boundary
conditions.

Since the local MD system is no longer homogeneous, we need to modify
the boundary condition that needs to be imposed on the MD system. The issue
of boundary condition is still very much the topic of on-going research. We
refer to [CKB00, EH01, KWL05] for some representative work on boundary
conditions. We expect that whatever future developments may have on this
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Fig. 24. Schematic of the adaptive modeling refinement. The top figure shows the
case where Tr � Td. The MD simulations are carried out inside the black boxes. The
dashed lines represents the interface. The bottom figure shows the other case where
Tr and Td are comparable. Here one has to keep track the local defect structure for
all time by MD simulation
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issue, we should be able to incorporate them readily into the overall scheme
discussed here.

Here we describe a simple boundary condition using the idea of border
regions. The first step is to extend the atomistic system by appending atoms
to the border of the MD simulation cell. The border region is divided into
bins as indicated in Figure 25. Next we define macroscale variables, namely
displacement, velocity and temperature, on the bins by interpolating from
their values on the macro grid. We denote these continuum values at the
boundary by (ub,vb, Tb).

To obtain the boundary condition for MD, we separate out the mean from
the fluctuating part, i.e. we rewrite the position and velocity of the atoms in
the border region as,

xj = x
(0)
j + x

(1)
j , vj = v

(0)
j + v

(1)
j .

The macro components, x
(0)
j and v

(0)
j , are computed from ub and vb, by

interpolation if necessary. For the micro part, x
(1)
j and v

(1)
j , we apply Nosè-

Hoover thermostat on each bin using temperature values from Tb, again using
interpolation if necessary.

Fig. 25. Boundary conditions imposed on the atomistic system: The border region
is divided into bins and Nose-Hoover is applied to each bin

Various validation studies were conducted on this boundary condition,
including a study of the Fourier’s law for thermal conduction. We refer to
[LE05] for details.

Twin boundary dynamics in Ni-Al alloy

To see how these ideas can be applied to a realistic problem, we summarize the
results of [LE05] for the example of twin boundary dynamics in a Ni62.5Al37.5

alloy. The atomistic model uses the EAM potential developed by Voter and
Chen [VC87], which is specifically designed for Ni-Al alloys. At this percent-
age twin boundaries have been observed both experimentally [CW76] and in
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atomistic simulations (with this EAM potential) [BCR93]. In particular the
EAM potential has predicted a tetragonal structure with three variants. The
corresponding strain matrices can be written as,

U1 =




η1 0 0
0 η2 0
0 0 η2



 , U2 =




η2 0 0
0 η1 0
0 0 η2



 , U3 =




η2 0 0
0 η2 0
0 0 η1



 . (85)

The cubic structure with lattice constant a0 = 2.871 Åis chosen as the
reference configuration. The parameters η1 and η2 can be thought of as being
the stretch along the principal axis illustrated in Figure 26. The values of these
parameters are obtained from MD simulation: η1 = 1.2263 and η2 = 0.9061.
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Fig. 26. Cubic and tetragonal phases for Ni-Al alloys

For convenience the material is arranged so that the twin plane coincides
with the y-z plane. The deformation corresponding to the undeformed variant
I and variant II are:

A1 =




√
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1
+η2

2

0 0

η2
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2√
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2
)
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 , A2 =




√
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2
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 . (86)

The dynamics of the twin boundary is driven by a shear that is applied at
the left boundary. Away from the twin boundary, local MD simulations are
performed to estimate the stress as was done for type B problems. Each such
simulation involves 20×20×5 atomic units and 2000 steps of time integration.
Near the twin boundary the defect tracking technique is applied to estimate
the moving speed of the twin boundary and the local strain and stress. Each
such MD calculation is carried over a system with 120× 20 × 8 atomic units
for 1200 time steps. In all the MD simulations the time step is taken to be
δt = 0.003 ps. Since the twin boundary simply moves in the x direction, and
the continuum quantities do not have appreciable change in the y direction,
the continuum equations can be simplified to





∂tA11 − ∂xv1 = 0,
∂tA21 − ∂xv2 = 0,
∂tv1 + ∂xσ11 = 0,
∂tv2 + ∂xσ21 = 0.

(87)
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For simplicity the energy equation is neglected in this problem, and is replaced
by constraining the system at constant temperature. Other components of A
are assumed not to change in time.

Figure 29 shows the numerical results at the macroscale level after some
macro time steps. As the twin boundary propagates, two elastic waves are
generated and move away from the twin boundary.

To better understand the mechanism of twin boundary propagation, we
plot in Figure 27 some results from the local MD simulation at the twin bound-
ary. We first select an arbitrary plane of atoms and examine their positions at
the initial and final times of the MD. Different variants of the twin are easily
identified as rectangular lattices with different orientation. We see that at the
end of the MD, the twin boundary has clearly moved forward (in a layer by
layer fashion).

Next we examine what happens on the twin plane as it propagates for-
ward. For that purpose we plot the atomic positions of the atoms on the twin
plane. Figure 28 clearly suggests that the twin plane moves by a nucleation
and propagation mechanism, very much similar to the mechanism of epitax-
ial growth of crystals. New variants are first nucleated and form islands on
the twin plane. The edges of the islands then propagate out and induce the
transformation on the whole plane.
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Fig. 27. Propagation of twin boundary under stress: shear stress is applied at the
left boundary of the sample. The initial positions of the atoms are plotted in light
color. The positions after 1.2 ps are plotted in dark color



Contents 59

0 20 40 60

−20

−10

0

10

20

I

0 20 40 60

−20

−10

0

10

20

II

0 20 40 60

−20

−10

0

10

20

III

0 20 40 60

−20

−10

0

10

20

IV

Fig. 28. Nucleation and propagation of new variant: ‘/’: atoms in the twin plane
that are still in the original variant. ‘.’: atoms that have transformed to the new
variant. Circle atoms belong to the layer next to the twin plane which are still in the
original variant. They are used as reference atoms. Transformed atoms are closer to
circle atoms at the right, whereas untransformed atoms are close to circle atoms at
the left

6 Interface problems

In this section we discuss how the HMM philosophy can be applied to the
study of interface motion in a multi-scale setting. This discussion follows that
of [CE04]. Our main interest is to capture the macroscale dynamics of the
interface in cases where the velocity is not explicitly specified. Instead, it has
to be extracted from some underlying microscale model. Examples of such
microscale models include: 1. Microscale interface dynamics with interfacial
velocity of the form

Vn(x) = cε(x, γ) (88)

where γ denotes the microscale interface, ε � 1 is the ratio between the
microscale and macroscale. cε(x, γ) is a multiscale interfacial velocity function,
a simplest example being

cε(x) = c
(
x,

x

ε
, γ
)

. (89)
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Fig. 29. Left: the initial data for A2,1 and v2 (100 m/s); Right: the numerical
results in 15 macro time steps

Such models arise in the study of interface propagation in strongly heteroge-
neous media such as composite materials, polycrystals, material with impuri-
ties, and porous media, to name a few.

(89) is a homogenization problem. In the case when the microstructure is
periodic, homogenized equations have been derived in [LPV].

2. Front propagation in phase-field models. Consider, for example, the
Allen-Cahn equation

ut = ε∆u +
1

ε
u(1 − u2). (90)

It is well-known that for small ε, (90) describes the propagation of a front
whose inward normal velocity is the mean curvature of the front. In this
case, an equation for mean curvature flow can be solved in place of (90) to
capture the large scale dynamics of the front. However, if the phase field model
takes a more complex form or if non-trivial chemical reactions occur at the
front, deriving analytically the effective dynamic laws for the front becomes
a difficult task. Therefore it is of interest to develop numerical methods that
capture the large scale dynamics of the interface, but is based only on the
microscale model of the type (90). Such ideas have been explored in the work
of R. Klein et. al [SK03].

3. Discrete microscale models such as kinetic Monte Carlo or molecular
dynamics. Examples include the dynamics of step edges on the surface of an
epitaxially grown crystal, grain boundaries in solids, and many more.



Contents 61

6.1 Macroscale solver: The level set method

As the macroscale solver we may use any of the conventional methods for inter-
face dynamics such as the level set method [OS88], front tracking [GMM86],
or the segment projection method [TE00]. Here we will follow [CE04] and
focus on the level set method.

In the framework of the level set method, an interface is described as the
zero level set of a globally defined function, φ, called a level set function. All
operations, in particular evolution, are then performed on this function in
place of the interface of interest. The level set function φ satisfies the PDE:

φt + V · ∇φ = 0

where V is a globally defined velocity field. On the interface, this is equivalent
to

φt ± Vn|∇φ| = 0 (91)

which involves the normal velocity only. In many problems, though, the veloc-
ity is only naturally specified at the interface. Many techniques are available to
extend the velocity to the whole ambient space [AS95, AS99, HPC96, Set96,
Tsi95, TCO03].

macroscale interface

��

vn

microscale
interface 

microscale computational
domain ∆

γ

Fig. 30. A pictorial description of the HMM setup showing the link between the
macroscopic and microscopic levels

6.2 Estimating the macroscale interface velocity

The data that need to be estimated from the microscale models are the nor-
mal velocities of the macroscale interface at each macroscale grid point. The
first step is to locally reconstruct the interface. If the normal velocity of the
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macroscale interface is known to only depend on the orientation of the local
tangent plane of the interface, then we may approximate the interface locally
by a hyperplane. On the other hand, if the normal velocity is also known to
depend on the local curvature, a quadratic approximation is needed.

As illustration, we first consider the homogenization problem. The level
set representation of the microscale model in this case takes the form

φt + c
(
x,

x

ε

)
|∇φ| = 0, (92)

which describes motion in the normal direction at speed c. In this case, we can
use the hyperplane reconstruction. [CE04] suggests working on a transformed
coordinate through a change of variables so that this hyperplane coincides
with the {xn = 0}-plane. The original microscale model (92) is then solved
in a domain ∆ in the transformed space, rectangular with sides orthogonal to
the coordinate axes, that should be larger than the size of the periodic cell or
the correlation length of c (see Figure 30). Periodic boundary conditions are
imposed in the x1, x2, . . . , xn−1-directions and a periodic jump condition can
be imposed in the xn-direction.

To extract the quantity of interest, at each microscale time step, the mi-
croscale Hamiltonian is averaged in the central region ∆̃ of the domain to
reduce spurious effects that may arise from the boundary and the chosen
boundary conditions. Denote this value by hε(t)

hε(t) =
1

|∆̃|

∫

∆̃

cε(x)|∇φ(x, t)|dx (93)

the velocity of the front at the particular location is obtained from

Vn =
1

|∇φ|

∫ t∗

0

hε(t)K

(
t

t∗

)
dt. (94)

Here K is an averaging kernel, as discussed earlier. Having obtained Vn at all
the macroscale grid points at the interface, the interface can be evolved using
standard procedures in the level set method.

[CE04] also considered the case where the microscale model is described
by a phase-field equation:

ut = ∇ ·
(
b
(
x,

x

ε

)
u
)

+ ε∇ ·
(
a
(
x,

x

ε

)
∇u
)
− 1

ε

∂V

∂u
(u), (95)

where a(x, y) > 0 and b(x, y) are smooth functions that are either periodic in y
or stationary random in y with rapidly decaying correlation at large distances
and V is a double well potential with minima at u = α, β. For the details
concerning this example, as well as the numerical results, we refer to [CE04].
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7 Stochastic ODEs with multiple time scales

Consider the following generic example for (x, y) ∈ Rn × Rm:




Ẋε

t = f(Xε
t , Y

ε
t , ε), Xε

0 = x,

Ẏ ε
t =

1

ε
g(Xε

t , Y
ε
t , ε), Y ε

0 = y.
(96)

Here f(·) ∈ Rn and g(·) ∈ Rm are (possibly random) functions that are O(1)
in ε, and ε is a small parameter representing the ratio of the time-scales in the
system. We have assumed that the phase space can be decomposed into slow
degrees of freedom x and fast ones y. Depending on the problem, we may be
interested in the O(1) (advective) or O(ε−1) (diffusive) time-scales.

There has been numerous analytical work on systems of the type (96)
[FW98, Kur73, MTV01, Pap77]. On the advective time-scale, if the dynamics
for Y ε

t with Xε
t = x fixed has an invariant probability measure µε

x(dy) and
the following limit exists:

f̄(x) = lim
ε→0

∫

Rm

f(x, y, ε)µε
x(dy), (97)

then in the limit as ε → 0, Xε
t converges to the solution of

˙̄Xt = f̄(X̄t), X̄0 = x. (98)

Leading order optimal prediction of Chorin et al. applied to this problem gives
the same result [CKK98, CHK02]. On the diffusive time-scale, fluctuations
become important. With the rescaled time s = εt, (96) becomes:






Ẋε
s =

1

ε
f(Xε

s , Y
ε
s , ε), Xε

0 = x,

Ẏ ε
s =

1

ε2
g(Xε

s , Y
ε
s , ε), Y ε

0 = y.
(99)

Under appropriate assumptions on f and g, the effective dynamics for X ε
s in

the limit of ε → 0 is a stochastic differential equation,

˙̄Xs = b̄(X̄s) + σ̄(X̄s)Ẇs, X̄0 = x, (100)

where Ws is a Wiener process and the coefficients b̄ and σ̄ are expressed in
terms of limits of expectations similar to (97). Details can be found in [EL04b].

We will only discuss the dynamics over the advective time scale, and refer
to [EL04b] for discussions on the diffusive time scale.

In order to facilitate the discussion that we will present later on error
analysis, we consider a more special form of stochastic ODEs:





Ẋε
t = a(Xε

t , Y
ε
t , ε), Xε

0 = x,

Ẏ ε
t =

1

ε
b(Xε

t , Y
ε
t , ε) +

1√
ε
σ(Xε

t , Y
ε
t , ε)Ẇt, Y ε

0 = y,
(101)



64 Contents

where a ∈ Rn, b ∈ Rm, σ ∈ Rm × Rd are deterministic functions and Wt is a
d-dimensional standard Wiener process.

Based on the assumption that for small ε, the dynamics of Xε
t is approxi-

mated by that of
˙̄Xt = ā(X̄t), X̄0 = x, (102)

an HMM type of strategy was independently proposed in [Van03]. The basic
idea is to solve (102) with a macro-solver in which ā is estimated by solving
the micro-scale problem (101).

As the macroscale solver we may use any stable explicit ODE solver such
as the forward Euler, Runge-Kutta, or a linear multi-step method. In the
simplest case when forward Euler is selected as the macro-solver, we have

Xn+1 = Xn + ãn∆t, (103)

where ∆t is the macro time step size.
The data that need to be estimated is ãn which is an approximation of

ā(Xn). We estimate this data in two steps:

1. We solve (101) using a micro-solver for stochastic ODEs and denote the
solution by {Yn,m} where m labels the micro-time-steps. Multiple inde-
pendent replicas can be used, in which case we denote the solutions by
{Yn,m,j} where j is the replica number.

2. We then define an approximation of ā(Xn) by the following time and
ensemble average:

ãn =
1

MN

M∑

j=1

nT +N−1∑

m=nT

a(Xn, Yn,m,j , ε),

where M is the number of replicas, N is the number of steps in the time
averaging, and nT is the number of time steps we skip to eliminate tran-
sients.

For the micro-solver, for each realization we may use the following first
order scheme

Y i
n,m+1 = Y i

n,m +
1√
ε

∑

j

σij(Xn, Yn,m, ε)ξj
m+1

√
δt

+
1

ε
bi(Xn, Yn,m, ε)δt +

1

ε

∑

jk

Aijk(Xn, Yn,m, ε)skj
m+1δt,

(104)

where δt is the micro-time-step size (note that it only appears in term of the
ratio δt/ε =: ∆τ), and

Aijk =
∑

l

(∂lσij)σlk (105)

Here the derivatives are taken with respect to y. The random variables {ξj
m}

are i.i.d Gaussian with mean zero and variance one, and
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Fig. 31. The comparison between X̄n and Xn produced by the multiscale scheme
with p = 4 (black curves). Also shown is the fast process Yn,nT +N used in the
micro-solver (grey curve).

skj
m =





1
2ξk

mξj
m + zkj

m , k < j,

1
2ξk

mξj
m − zjk

m , k > j,

1
2

(
(ξj

m)2 − 1
)
, k = j,

where {zkj
m } are i.i.d with P{zkj

m = 1
2} = P{zkj

m = − 1
2} = 1

2 . High order
schemes are discussed in [EL04b]. For the initial condition, we take Y0,0 = 0
and

Yn,0 = Yn−1,nT +N−1, (106)

i.e. the initial values for the micro variables at macro-time-step n are chosen
to be their final values from macro-time-step n − 1. This choice of initial
condition is not necessary for the convergence of the scheme, e.g.

Yn,0 = 0 (107)

would work as well, but it improves the convergence properties, as we will
discuss in section 9.2.

As an illustration, consider the following example with (X, Y ) ∈ R2:






Ẋt = −Yt − Y 3
t + cos(πt) + sin(

√
2πt), X0 = x,

Ẏt = −1

ε
(Yt + Y 3

t − Xt) +
1√
ε
Ẇt, Y0 = y.

(108)

From (102) the effective equation for X̄t is
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˙̄Xt = −X̄t + cos(πt) + sin(
√

2πt), X̄0 = x. (109)

The following numerical parameters are used:

(T0,∆t, δt/ε, nT , M, N) = (6, 0.01, 0.01× 2−p, 100, 1, 10 × 23p) (110)

The results for p = 2 is shown in Fig. 31, and compared with solution of the
effective equation X̄t.

8 Exploring statistical self-similarity: An example

without scale separation

8.1 General strategy for data estimation

In the problems discussed above, scale separation was very important for the
efficiency of HMM: It allows us to choose small microscale simulation box and
still retain sufficient accuracy for the estimated data. It is important to realize
that this is not the only situation for which HMM works efficiently. There is
a more general philosophy behind it which works as follows. Suppose that the
size of the macroscale mesh is H . We need to estimate some effective data
such as transport coefficients at that scale, which is a function of H . Let us
denote by f = f(L) the value of that data at the scale L. If there is scale
separation in the system, then f(L) is essentially independent of L

f(L) ≈ Const (111)

as long as L is much larger than some characteristic scale of the microscopic
model, which might just be the correlation length. This allows us to take
advantage of the scale separation by choosing the size of the microscale sim-
ulation box, δ, to be much larger than the microscopic scale, but still much
smaller than H . However, so long as the scale dependence of f = f(L) is of a
simple form with a few parameters, we can make use of this simple relation-
ship by performing a few (not just one as was done for problems with scale
separation) small scale simulations and use the results to predict the needed
quantities at a much larger scale. One example of such a situation is when
the system exhibits local self-similarity. In this case the dependence in (111)
is of the form f(L) = C0L

β with only two parameters. Therefore we can use
results of microscopic simulations at two different scales to predict the result
at a much larger scale, namely H .

This is a poor-man’s version of renormalization group method. Other nu-
merical methods that use renormalization ideas are found in [Cho98, Cho03].

8.2 Transport on a percolation network at criticality

This idea was demonstrated in [EY04] on the example of effective transport
on a two-dimensional bond percolation network at the percolation threshold.
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In the standard two dimensional bond percolation model with parameter
p, 0 ≤ p ≤ 1, we start with a square lattice, each bond of the lattice is either
kept with probability p or deleted with probability 1−p. Of particular interest
is the size of the percolation clusters formed by the remaining bonds in the
network (see Figure 32 for a sample of bond percolation). The critical value

Fig. 32. Bond percolation network on a square lattice at p = 0.5

for this model is at p = p∗ = 0.5. For an infinite lattice, if p < p∗, the
probability of having infinite size clusters is zero. For p > p∗, the probability
of having infinite size clusters is 1. Given the parameter value p, the network
has a characteristic length scale – the correlation length, denoted by ξp. As
p → p∗, ξp diverges as

ξp ∼ |p − p∗|α, (112)

where α = −4/3 (see [Sah95]). At p = p∗, ξp = ∞. In this case, the system
has a continuum distribution of scales, i.e. it has clusters of all sizes. In the
following we will consider the case when p = p∗.

We are interested in the macroscopic transport on such a network. To
study transport, say of some pollutants whose concentration density will be
denoted by c, we embed this percolation model into a domain Ω ∈ R2. We
denote by ε the bond length of the percolation model, and L the length scale
for the domain Ω. We will consider the case when ε/L is very small.

The basic microscopic model is that of mass conservation. Denote by
Si,j , i, j = 1, · · · , N the (i, j)-th site of the percolation network, and ci,j the
concentration at that site. Define the fluxes
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the flux from right f r
i,j = Bx

i,j(ci+1,j − ci,j),
the flux from left f l

i,j = Bx
i−1,j(ci−1,j − ci,j),

the flux from top f t
i,j = By

i,j(ci,j+1 − ci,j),

the flux from bottom f b
i,j = By

i,j−1(ci,j−1 − ci,j).

Here the various B’s are bond conductivities for the specified bonds. The bond
conductivity is zero if the corresponding bond is deleted, and 1 if the bond is
retained. At each site Si,j , from mass conservation, we have

f t
i,j + f b

i,j + fr
i,j + f l

i,j = 0, (113)

i.e. the total flux to this site is zero. This will be our microscale model.
For the macroscale solver, we will choose a finite volume scheme over a

macroscale grid ΩH where H is the size of the finite volume cell (see Fig
4). The data that we need to estimate from the microscale model, here the
percolation model, are the fluxes at the mid-points of cell boundaries. Since the
present problem is linear, we only need to estimate the effective conductivity
for a network of size H . We note that at p = p∗, the effective conductivity is
strongly size-dependent. In fact there are strong evidences that the following
relation holds [Hug96]:

κL = C0L
β (114)

where κL is the mean effective conductivity at size L. This is confirmed in
Figure 33 where we show a log-log plot of the effective conductivity as a
function of scale.
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L=(16,32,128,256) ε

Fig. 33. Effective conductivity at different scale L = (16, 32, 64, 128, 256)ε for a
realization of the percolation network with p = p∗ = 0.5

Our basic strategy is to make use of such relations in estimating the effec-
tive fluxes in the case when ε � H . For this purpose, we perform a series of mi-
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croscopic simulations on systems of size L1 and L2 where ε � L1 < L2 � H .
From the results we estimate κL1

and κL2
. We then use these results to es-

timate the parameter values C0, β in (114). Once we have these parameters,
we can use (114) to predict κH .

One interesting question is the effect of statistical fluctuations. To see this
we plot in Figure 34 the actual and predicted (using self-similarity) values of
the conductivity on a sub-lattice of size L = 128 for a number of realizations
of the percolation network. The predicted values are computed using simu-
lated values from sub-lattices with L = 16 and L = 32. The predicted values
have obviously larger fluctuations than the actual values, implying that the
fluctuations are amplified in the process of predicting the mean values. Nev-
ertheless the mean values are predicted with reasonable accuracy, considering
the relatively small size of the network.
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Fig. 34. Effect of fluctuations: Actual and predicted effective conductivity at scale
L = 128ε for different realizations of the percolation network with p = 0.5. The
predicted values are computed from L = 16ε and 32ε lattices

More numerical results, including some results of the multiscale method,
can be found in [EY04].

9 Error analysis

Error analysis for multiscale methods presents a new challenge to numerical
analysis, particularly for problems involving multi-physics. Since multiscale
methods are relatively new, and their errors typically involve several different
contributions, rigorous results on error control are very much desired for un-
derstanding basic issues such as stability and accuracy of multiscale methods.
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Indeed, to be able to develop a general strategy for error analysis was one of
the motivations for developing the HMM framework.

To begin with, what should we take as the exact or reference solution, to
be compared with the numerical solution of a multiscale method? In general,
we should not take the detailed solution of the microscopic problem as the
reference solution, since approximating that would usually require solving the
full microscopic problem, and therefore defeat the whole purpose. For type B
problems, we can take the reference solution as the solution to the underlying
macroscopic model that we assume exist. Even though the macroscopic model
is not used for numerical purposes, it can certainly be used for conceptual and
analytical purposes. If we denote by u the solution to the microscopic model,
U0 the solution to the effective macroscale model, and Q the compression
operator that maps the microscopic state to the macroscopic state, then by
definition, U0 − Qu should be small. Therefore we can also take Qu as the
reference solution. This is preferred since it comes more directly out of the
microscopic solution.

These issues have not been discussed much for other types of problems.
Since error analysis is much better understood for type B problems, we

will focus our attention to this type of problems. The overall strategy is as
follows. We first prove a general statement that if some underlying macroscopic
scheme is stable, then the error in the HMM solution is bounded by a standard
error term for the macroscopic solver, plus a new term, sometimes denoted
by e(HMM) due to the error in estimating the data. We then estimate this
new term. The first step is usually quite general. However, specific estimates
in the second step are only obtained for specific models.

9.1 Error analysis of the HMM-FEM

Our first example is the HMM finite element method discussed earlier. We
will always assume that a ε(x) is smooth, symmetric and uniformly elliptic:

λI ≤ a ε ≤ ΛI (115)

for some λ, Λ > 0 which are independent of ε. We will assume that the quadra-
ture formula used in (39) is exact for polynomials of degree 2k − 2 for k > 1
and k for k = 1.

As the first step, we will compare the HMM solution to the solutions of a
macroscale model of the form:

{
− div

(
A(x)∇U0(x)

)
= f(x) x ∈ D,

U0(x) = 0 x ∈ ∂D.
(116)

We will use standard notions for Sobolev spaces: ‖ ·‖1 and ‖ ·‖0 denote H1

and L2 norms respectively, and ‖·‖1,∞ denotes the W 1,∞ norm. The following
results are proved in [EMZ04].
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Theorem 1. Denote by U0 and UHMM the solution of (116) and the HMM

solution, respectively. Let

e(HMM) = max
x`∈K
K∈TH

‖A(x`) −AH(x`)‖,

where ‖·‖ is the Euclidean norm. If U0 is sufficiently smooth, then there exists

a constant C independent of ε, δ and H, such that

‖U0 − UHMM‖1 ≤ C
(
Hk + e(HMM)

)
, (117)

‖U0 − UHMM‖0 ≤ C
(
Hk+1 + e(HMM)

)
. (118)

If there exits a constant C0 such that e(HMM)|ln H | < C0, then there

exists a constant H0 such that for all H ≤ H0,

‖U0 − UHMM‖1,∞ ≤ C
(
Hk + e(HMM)

)
|ln H |. (119)

So far no assumption on the form of a ε(x) or A(x) is necessary. U0 can be
the solution of an arbitrary macroscopic equation with the same right-hand
side as in (20). Of course for UHMM to converge to U0, i.e., e(HMM) → 0, U0

must be chosen as the solution of the homogenized equation, which we now
assume exists. To obtain quantitative estimates on e(HMM), we must restrict
ourselves to more specific situations.

The simplest example of such a specific problem is when

a ε(x) = a
(
x,

x

ε

)
, (120)

where a(x,y) can either be periodic in y, in which case we assume the period
to be I = [−1/2, 1/2]d, or random but stationary under shifts in y, for each
fixed x ∈ D. In both cases, it has been shown that [BLP78, PV81]

‖uε(x) − U0(x)‖0 → 0, (121)

where U0(x) is the solution of the homogenized equation. We will take (116)
to the homogenized equation with coefficients computed from solving the rel-
evant cell problems [BLP78, PV81].

For the following results we assume that the periodic boundary condition
is used for the microscale problems in HMM.

Theorem 2. For the periodic homogenization problem, we have

e(HMM) ≤
{

Cε if Iδ(x`) = x` + εI,

C
(ε

δ
+ δ
)

otherwise.

The difference between the two results lies in the choice of Iδ(x`). For the
second result we do not need to assume that the period of a(x, ·) is a cube: In
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fact it can be of arbitrary shape as long as its translation tiles up the whole
space.

Another important case for which specific estimates on e(HMM) have
been obtained is the random homogenization problem. However the results
for this case are less satisfactory. The following result was proved in [EMZ04]
following the work of [Yur86]. Here we assume for simplicity that the coefficient
a(x,y, ω) is independent of x.

Theorem 3. For the random homogenization problem, assuming that a

mixing condition holds. We have

E e(HMM) ≤





C(κ)
(ε

δ

)κ

, d = 3

remains open, d = 2

C
(ε

δ

)1/2

, d = 1

where

κ =
6 − 12γ

25 − 8γ

for any 0 < γ < 1/2. By choosing γ small, κ can be arbitrarily close to 6/25.
E denotes expectation with respect to the probability space for the random

coefficients.

The proper probablistic set-up is discussed in [PV81]. The mixing condi-
tion is stated in [EMZ04]. Roughly speaking it says that the correlation of the
random coefficients ai,j(y, ω) decays exponentially fast at large distances.

UHMM by itself does not give any information on the gradients of uε which
is important for many applications since it is related to physically important
quantities such as stress in the elastic problem and velocity in the porous
medium problem. This information can be recovered using a simple post-
processing technique. For the general case, having UHMM, one can obtain lo-
cally the microstructural information using an idea in [OV00]. Assume that
we are interested in recovering uε and ∇uε only in the subdomain Ω ⊂ D.
Consider the following auxiliary problem:

{
− div

(
a ε(x)∇ũ ε(x)

)
= f(x) x ∈ Ωη ,

ũ ε(x) = UHMM(x) x ∈ ∂Ωη,
(122)

where Ωη satisfies Ω ⊂ Ωη ⊂ D and dist(∂Ω, ∂Ωη) = η. We then have: There
exists a constant C such that

(∫
−

Ω

|∇(uε − ũ ε)|2x
)1/2

≤ C

η
‖uε − UHMM‖L∞(Ωη) (123)

There is a much simpler procedure for the periodic homogenization prob-
lem [EE02]. Consider the case when k = 1 and choose Iδ = xK + εI , where
xK is the barycenter of K. We also assume that the quadrature point in the
element K is at xK . Define ũ ε by:
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1. ũ ε|Iδ
= vε

K , where vε
K is the solution of (46) with the boundary condition

that vε
K −UHMM is periodic with period εI and

∫
Iδ

(ũ ε −UHMM)(x)x = 0.

2.
(
ũ ε − UHMM

)
|K is periodic with period εI .

We then have [EMZ04]
Theorem 4. Let ũ ε be defined as above. Then

( ∑

K∈TH

‖∇(uε − ũ ε)‖2
0,K

)1/2

≤ C
(√

ε + H
)
. (124)

Similar results are also proved for nonlinear elliptic problems. For details,
see [EMZ04].

[YE05] presents systematic numerical studies on the effect of the boundary
conditions for the microscale problems as well as the microscale cell size.

9.2 Dynamic problems

The main strategy proposed in [EE03a] is to compare the HMM solution with
that of some underlying macroscale solver, or effective macroscale method.
The basic result, proved in [EE03a], is that if this effective macroscale method
is stable and k-th order accurate, then

||UHMM −U0|| ≤ ||UHMM − ŪH ||+ ||ŪH −U0|| ≤ C(e(HMM) + (∆t)k) (125)

where U0 is the solution of the macroscale model, e(HMM) is the error in
estimating the effective force. In proving (125), it is assumed that both HMM
and the effective macroscale method are expressed in the form:

Un+1 = Un + ∆tF ε(U) (126)

Ūn+1 = Ūn + ∆tF̄ (Ū) (127)

and e(HMM) is defined as

e(HMM) = max
U

‖F̄ (U) − F ε(U)‖ (128)

We also have:

||Quε − UHMM|| ≤ ||Quε − U0|| + ||ŪH − U0|| + ||UHMM − ŪH || (129)

Here the first term on the right hand side is due to the error in the effective
model; the second term is due to the error in the macroscale solver; the third
term is the HMM error, due to the fact the macroscale data are not given
by an explicit model but are estimated from the microscale model. Denote
by ε the parameter that characterizes the small scale in the problem. (129)
suggests an estimate of the type:

||Quε − U0|| ≤ C(εα + (∆t)k + e(HMM)) (130)

We now apply this general result to some concrete examples.
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ODEs with multiple time scales

The problems and algorithms were discussed in section 2.2. If we apply the
general principles discussed above, we get:

Theorem 5. HMM is stable if the macroscale solver is stable. Moreover
for any given constant T there exists a constant C such that

|En| ≤ C((∆t)k + e(HMM))

if n∆t ≤ T , where En is the error between the HMM solution and the slow
component of the exact solution (a precise definition is given below), k is the
order of the macroscale solver, e(HMM) is the error in the estimation of the
macroscale data.

Next we estimate e(HMM). This depends on a number of important com-
ponents of HMM, in particular the filter K. We first discuss the case of dis-
sipative systems. For clarity, we will consider the example of (7). We will
further assume that f and g are smooth and bounded. We will also assume
that {Zn,0} is bounded.

In the limit as ε → 0, one expects that x will be close to f(y), and hence
the effective dynamics for the slow variable y is given by

˙̄y = g(f(ȳ), ȳ) = G(ȳ) (131)

In fact it can be easily shown that if we denote by (xε, yε) the solution of (7)
and if yε(0) = ȳ(0). Then

|yε(t) − y0(t)| ≤ C1exp

(
− t

ε

)
+ C2ε.

First let us consider the case when the macroscale solver is forward Euler.
In this case we can express HMM as:

yn+1 = yn + ∆tg̃(yn)

Let En = yn − y0(t
n), where tn = n∆t, for n∆t ≤ T . We have

En+1 − En

∆t
= g̃(yn) − G(y0(t

n)) + O(∆t)

= G(yn) − G(y0(t
n)) + g̃(yn) − G(yn) + O(∆t)

= G′(y0(t
n) + θEn)En + g̃(yn) − G(yn) + O(∆t)

If we let L = max |G′(y)|, then we get

|En| ≤ eLt(C∆t + max
n∆t≤T

|g̃(yn) − G(yn)|)

where C = maxt≤T |y′′
0 (t)|. Here the first term on the right hand side is the

standard truncation error at the macroscale. The second term |g̃(yn)−G(yn)|
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is what we usually call e(HMM). With (13), it is a simple matter to prove
[E03]:

e(HMM) ≤ C

(
∆t +

∣∣∣∣1 − δt

ε

∣∣∣∣
N
)

(132)

In the general case when k-th order stable macroscale solvers are used, we
have [E03]:

Theorem 6. Assume that the macroscale solver is k-th order accurate
and stable, i.e. for linear multi-step methods the root condition is satisfied.
Let A(λδt) be the amplification factor of the microscale solver for the ODE
ẏ = −λy. Then there exists a constant C, independent of ∆t, ε, δt and N ,
such that, for n∆t ≤ T ,

|En| ≤ C

(
∆tk +

∣∣∣∣A
(

δt

ε

)∣∣∣∣
N
)

Next we consider the oscillatory case. As before we will discuss a simple
and yet canonical example, namely (8). The dynamics for the slow variable I
obeys the equation

˙̄I =
1

2π

∫ 2π

0

g(ϕ, Ī)dϕ = G(Ī) (133)

See for example [Arn89]. We will assume that ω(I) never vanishes:

ω(I) ≥ ω0 > 0 (134)

We will restrict ourselves to the situation when the weights {Km,N} are
given by

Km,N = K0

(
1 − m

N

)
(135)

for m = 0, 1, . . . , N , where K0 is a filtering kernel.
A crucial component in the analysis in this case is the effect of the kernel

K0. This is examined in detail in [ET04]. Consider an example for which the
microscopic data takes the form:

fε(t) = f0(t) + f1

(
t

ε

)

where f1(τ) is periodic in τ with period 1. The marcoscale component of
{fε(t)} is

F (t) = f0(t) +

∫ 1

0

f1(τ)dτ

The macroscale data of interest is F0 = F (0). Assume that the F -estimator
has the form

F̃0 =
1

T

∫ T

0

K0

(
1 − τ

T

)
fε(τ)dτ

Then one has
Lemma: Assume that K0 satisfies the following conditions
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1. (A1). Moment condition

∫ 1

0

K0(τ)dτ = 1

∫ 1

0

(1 − τ)αK0(τ)dτ = 0

for α = 1, 2, . . . ` − 1
2. (A2). Regularity condition

K
(α)
0 (0) = K

(α)
0 (1) = 0

for α = 0, 1, . . . , q − 1 and

∫ 1

0

|K(α)
0 (τ)|ατ < +∞

for α = 0, 1, . . . , q.

Then

|F0 − F̃0| ≤ C
(
T ` +

( ε

T

)q)

Using this result, one has,
Theorem 7. Under the same assumption as before, we have

|En| ≤ C

(
(∆t)k +

(
δt

ε

)r

+
( ε

Nδt

)q
)

where r = min(l, p) and p is the order of the microscale solver.
As expected, the size of δt should be chosen to resolve the small time scale

ε, and N should be large enough so that Nδt is larger than ε in order to
sample adequately the dynamics at the small scale.

The effect of the fast variable reinitialization

The error estimates given in the last subsection were for the general case
when the initialization of the fast variables in the microscale solver is quite
arbitrary. Suitable reinitialization of the fast variables at each macro-time-
step may result in significant gain in efficiency. Precise estimates are given
below for the case of stochastic ODEs, but it is usefull to first illustrate the
influence of fast variables initialization on a simple example, (7).

Suppose that the initial condition for (12) is taken to be xn,0 = 0. Then
N must be taken large enough so that (12) has converged, i.e. xn,N ≈ f(ym),
and the error estimate for e(HMM) is given in (132).

Suppose on the contrary that we take xn,0 = xn−1,N . Then it can be shown
that the error estimate improves to
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e(HMM) ≤ C

(
∆t +

ε∆t

Nδt
+ ∆t

∣∣∣∣1 − δt

ε

∣∣∣∣
N
)

. (136)

which indicates, in particular that the scheme converges as ∆t, δt → 0 pro-
vided that ε∆t/Nδt → 0. Notice that this can happen even if N = 1. Notice
also that accuracy requires that

ε∆t/Nδt � 1

whereas gaining in efficiency in the sense of (1) requires

∆t/Nδt � 1

For small ε both constraints can be satisfied at the same time.
The simplest way to justify (136) is to re-write (12) as

xn,m+1 = xn,m − 1

γ

∆t

N
(xn,m − f(ym)) (137)

where

γ =
ε∆t

Nδt
(138)

It is easy to see that in the limit as δt, ∆t → 0 with γ kept fixed, HMM is
consistent with the modified equation





ẋ = − 1

γ
(x − f(y))

ẏ = g(x, y)
(139)

If γ � ε, this equation is less stiff than (7) and correspondingly HMM gains
in efficiency over a direct scheme for (7). On the other hand, for ε � 1 it
is possible to also satisfy 1 � γ � ε. In this case, the y component of the
solutions of (7) and (139) remains close because of the existence of a limiting
dynamics. But the choice of γ is now dictated by the error tolerance that one
wants to achieve and not by the value of ε in the original equation.

Stochastic ODEs with multiple time scales

Here we discuss some of the results proved in [EL04b] for stochastic ODEs.
The algorithms were described in section 7. Again we will focus on the case
of advective time scale. The algorithm over the diffusion time scale was also
analyzed in [EL04b].

We will make the following assumptions:
(1). The coefficients a, b and σ, viewed as functions of (x, y, ε), are in C

∞
b ,

a and σ are bounded. Here C∞
b is the space of smooth functions with bounded

derivatives of any order.
(2). There exists an α > 0 such that ∀ (x, y, ε),
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|σT (x, y, ε)y|2 ≥ α|y|2.

(3). There exists a β > 0 such that ∀ (x, y1, y2, ε),

〈(y1 − y2), (b(x, y1, ε) − b(x, y2, ε))〉 + ‖σ(x, y1, ε) − σ(x, y2, ε)‖2

≤ −β|y1 − y2|2,

where ‖ · ‖ denotes the Frobenius norm.
Under these assumptions, we have:
Theorem 8. Assume that the macro solver is stable and kth order accurate

for (102). Then for any T0 > 0, there exists a constant C > 0, independent

of (ε,∆t, δt, nT , M, N), such that

sup
n≤T0/∆t

E|Xε
tn

− Xn| ≤ C

(
√

ε + (∆t)k + eD

)
(140)

where tn = n∆t, and

eD = (δt/ε)` +
e−

1
2
βnT (δt/ε)

√
N(δt/ε) + 1

(R +
√

R) +

√
∆t√

M(N(δt/ε) + 1)
(141)

Here ` is the weak order of the micro solver,

R =
∆t

1 − e−
1
2
β(nT +N−1)(δt/ε)

. (142)

if the fast variable is initialized as in (106) and R = 1 if the fast variable is

initialized as in (107).
The basic idea for proving this result is as follows. The error |X ε

tn
− Xn|

in (140) is decomposed into three parts:

1. |Xε
t − X̄t|, where X̄t is the solution of the effective equation (102).

2. |X̄tn − X̄n|, where X̄n is the approximation of X̄tn given by the selected
macro solver assuming that ā(x) is known.

3. |X̄n − Xn|.
The first part is the error in using the averaging principle. As shown in
[EL04b], we have

sup
0≤t≤T0

E|Xε
t − X̄t| ≤ C

√
ε.

This is the first term in (140).
The second part is a standard ODE estimate:

sup
n≤T0/∆t

|X̄tn − X̄n| ≤ C(∆t)k . (143)

This is the second term in (140).
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The third part, eD, accounts for the error caused by using ãn instead of
ā(Xn) in the macro solver. Here the term (δt/ε)` is due to the micro-time
discretization which induces a difference between the invariant measures of
the continuous and discrete dynamical systems. The term

e−
1
2

βnT (δt/ε)

√
N(δt/ε) + 1

(R +
√

R)

accounts for the errors caused by relaxation of the fast variables. The factor
R reflects the particular initialization procedure used for the fast variables at
each macro time step. Different initialization will lead to a similar estimate
with different values of R. For example if we use Yn,0 = 0, then R = 1. Finally,
the term √

∆t√
M(N(δt/ε) + 1)

accounts for the sampling errors after the fast variable reaches local equilib-
rium. This is a central limit theorem type of estimate.

(140) suggests a somewhat surprising fact, namely that the HMM scheme
converges as ∆t → 0, δt → 0 on any sequence such that R → 0, even if
we take only one realization and one micro time step per macro time step ,
M = 1, nT = 1, N = 1. In this case R = ∆t/(δt/ε) to leading order. This
is the consequence of the particular reinitialization procedure that we have
adopted (see (106)), and it is a manifestation of the point made in the last
subsection.

We now discuss how these results play out in actual computations. We will
focus on strong convergence estimates, and adopt the more accurate initial-
ization procedure for the fast variable. When

Nm(δt/ε) = (nT + N − 1)(δt/ε) > 1,

we have R = ∆t plus higher order terms, and

sup
n≤T0/∆t

E|Xn − X̄n|

≤ C

(
(δt/ε)` +

e−
1
2
βnT (δt/ε)

√
∆t√

N(δt/ε) + 1
+

√
∆t√

M(N(δt/ε) + 1)

)
.

(144)

Here ∆t is taken as a fixed parameter. Suppose that we want to bound the
error by O(2−p) for p = 0, 1, . . . and assume that M = 1. Then as in [EL04b],
we have that the optimal parameters are

δt/ε = O(2−p/`), nT = O(1), N = O(2p(2+1/`)),

which gives
cost = (nT + N − 1)/∆t = O(2p(2+1/`)).

independent of ε. The magnitudes of the errors for various p and ` = 1, 2 are
listed in the following table and shown in Figure 35. As predicted, we the
error scales as E`p = O(2−`p).
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Fig. 35. The error E`
p = (∆t/T0)

P

n≤bT0/∆tc |X̃n − X̄n| as a function of p when

` = 1 (circles) and ` = 2 (squares). Also shown is the predicted estimated, 0.1× 2−p

(dashed line)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

` = 1 .058 .070 .032 .019 .0096 .0067 .0025 .00076

` = 2 .045 .059 .022 .021 .0098 .0064 .0033 .0014

Table 2. The computed values for the error E`
p.

Other examples

We briefly mention a few other examples that have been analyzed. The
parabolic homogenization problem has been analyzed in [AE03, EE02, MZ03].
The structure of the analysis is very similar to the examples discussed here.
In particular, [MZ03] gives results that are similar to the ones discussed here
for the elliptic homogenization problem. Error analysis and careful numer-
ical studies for the hyperbolic homogenization problem were presented in
[Che05, CES04].

Examples with discrete microscale models were considered in [EL04b]. The
discrete models can be molecular dynamics or kinetic Monte Carlo methods.
The macroscale model considered in [EL04b] was gas dynamics or general
nonlinear conservation laws. It is proven in [EL04b] that the e(HMM) error
consists of three parts: the relaxation error, the error due to the finite size
of the simulation box, and the sampling error. Clearly as the system size
increases, the finite size effect decreases but the relaxation error increases.
Therefore this result gives some suggestions on how to choose the size of the
microscale simulation. Unfortunately there are very few explicit results on the
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dependence of these errors on the box size. All known results are proved for
lattice models. We refer to [EL04b] for a discussion on this issue.

10 Limitations of HMM

As was discussed in [EE03a], there are problems for which HMM does not
work well. One class of such problems are problems for which the time history
of the detailed microstructural behavior has to be parametrized in order to
determine the macroscale properties. One such example is the homogenization
problem for the Carleman model, discussed in [EE03a]. Consider the Carlman
equation with multiscale initial data:

∂u

∂t
+

∂u

∂x
= v2 − u2 (145)

∂v

∂t
− ∂v

∂x
= u2 − v2

u(x, 0) = a(x, x/ε)

v(x, 0) = b(x, x/ε)

where a(x, y), b(x, y) is assumed to be smooth and 1-periodic in y. The ho-
mogenized equation for this problem is given by [Tar81]:

∂ũ

∂t
+

∂ũ

∂x
=

∫ 1

0

ṽ(x, y, t)2dy − ũ2 (146)

∂ṽ

∂t
− ∂ṽ

∂x
=

∫ 1

0

ũ(x, y, t)2dy − ṽ2 (147)

ũ(x, y, 0) = a(x, y)

ṽ(x, y, 0) = b(x, y)

Tartar proved [Tar81]

lim
ε→0

(∣∣∣∣u(x, t) − ũ

(
x,

x − t

ε
, t

)∣∣∣∣+
∣∣∣∣v(x, t) − ṽ

(
x,

x + t

ε
, t

)∣∣∣∣
)

= 0

Here the natural macroscale variables U are the weak limits of the full mi-
croscale solutions:

U(x, t) =

∫ 1

0

ũ(x, y, t)dy = lim
δ→0

(
lim
ε→0

∫
Kδ(x − z)u(z, t)dz

)

V (x, t) =

∫ 1

0

ṽ(x, y, t)dy = lim
δ→0

(
lim
ε→0

∫
Kδ(x − z)v(z, t)dz

)



82 Contents

where Kδ is some kernel compactly supported in (−δ, δ) with,

∫ δ

−δ

Kδ(x)dx = 1

However for this problem, there is no time scale separation between the
dynamics of (U, V ) and the remaining components of (u, v), such as higher
order moments. In fact, to obtain information on (U, V ), one has to keep track
of the dynamics of the microstructure. Therefore a blind application of HMM
will give wrong results.

As was shown in [Eng87], this particular problem can be effectively treated
using a combination of the particle method and a proper sampling procedure
for the microstructure.

A second example with a very similar feature is the transport equation
with oscillatory velocity fields

∂tu + ∂x1

(
a
(x2

ε

)
u
)

= 0. (148)

The homogenized equation for this problem is [Tar81]

∂tU + ā∂x1
U = ∂2

x1

∫ α

−α

dω(γ)

∫ t

0

dsU(x1 + γ(t − s), x2, s) (149)

and it shows dependence on the memory. Here ω is some kernel that depends
on a, ā is the average of a over its period. We refer to [EE02] for discussions
of this example.

Both examples can be treated by a more general idea proposed in [EE03a].
This is the idea that one should view the microstructure as being living on a
fiber bundle over the real space-time domain. For the example of Carleman
equation, we can view y-space as being the fiber. When the microscale model
is a kinetic equation, the fiber that represents the microstructure space is the
momentum space (see Figure 5). Same can be said about the linear transport
equation. One can then design numerical methods based on the idea of evolv-
ing the microstructure over the fiber. An application of this idea is presented
in [YE04] for the transport equation.

Another limitation of HMM concerns with the a priori assumption on the
constitutive relation, which is reflected in the constraints on the microscale
solver. A crucial advantage of HMM is that it does not need the full knowledge
of the macroscale model. But some knowledge about the macroscale model is

important, as we now illustrate.
Consider the problem

∂tu + ∇ · (b
(x

ε

)
u) = ∇ · (a

(x

ε

)
∇u) (150)

where b and a are smooth periodic functions with period 1. The homogenized
equation for (150) is given by
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∂tU + ∇ · (b̄U) = ∇ · (A∇U) (151)

where A is the homogenized coefficient matrix for the case when b = 0, b̄ is the
average of b over its period. Without knowing that the effective macroscale flux
should depend on the derivative of the macroscale variable U , we might use
HMM as in section 2.2, and impose as constraints over the microscale solver
only that the average of u be the same as the local value of the macroscale
variable U . In this case, the estimated flux will only contain the part that
approximates b̄U , not the part that approximates A∇U . This results in an
O(1) error for the macroscale quantities.

The failure in this case is due to the fact that in constructing the con-
strained microscale solver, we implicitly made the wrong constitutive assump-
tion that the macroscale flux depends only on U , not the higher order deriva-
tives of U . This is easily fixed by the methods described in section 2.2. But it
shows that some knowledge about the macroscale model is crucial for design-
ing the right HMM.

11 Conclusions and new directions

11.1 General procedures and main features of HMM

In summary, the main steps in developing an HMM style of multiscale method
are as follows:

1. Identify the macroscale variables, and the macroscale structure of the
problem, such as variational structure, conservation laws, diffusion processes,
etc.

2. Express the microscale model in the form that is consistent with the
identified macroscale structure. In our examples for fluids and solids, this step
involves deriving the conservation laws from MD, and expressing the fluxes,
such as stress, in atomistic variables. This is the basis for connecting the
macroscale and microscale models.

3. Select the macroscale solver, and identify the data that need to be
estimated from the microscale solver.

4. Design the constrained microscale solver that gives the needed data.
Technically this is often the most difficult step, and is subject to continuous
improvement. One should exploit as much as possible any special features that
the problem has, in order to maximize efficiency. Also important for this step
is the data processing techniques used in extracting the macroscale data from
results of the microscale model.

HMM is a top-down framework: It is based on the macroscopic solver
and uses the microscale model as a supplement. Its two-component procedure
offers a number of interesting features, including:

1. The ability to make maximum use of our knowledge on all scales. For
example, when choosing the macroscale solver, we may take advantage of
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what is known at the macroscale, such as conservation form, variational
structure, etc, as well as the nature of the physical process such as shock
formation, phase transformation.

2. The ability to make maximum use of the special features of the problem.
This is already shown above with the examples. very naturally within the
framework of HMM. The time scale separation, for example, is made use
of by the fact that satisfactory approximation for the needed data can
be obtained by carrying out the microscale solver on relatively short time
intervals.

We have seen that the framework of HMM provides useful guidance for
systematically designing multiscale methods in a wide variety of applications.
It also provides a natural setting for carrying out mathematical analysis of
multiscale algorithms.

Despite its success, there are still many more interesting possibilities that
have yet to be explored. We will end this review with a discussion of some of
the directions for further work.

11.2 New application areas

The application areas that have been explored so far are a small subset of all
the potential application areas for HMM. Some obvious possibilities include:
coarse-grained procedure for studying rare events, bio-molecular dynamics,
bio-membranes, bio-films, and epitaxial crystal growth.

In particular, type D problems should be explored.
In the areas that HMM has already been applied such as the ones discussed

above, there is much room for further work to use these methods to solve more
real-world problems. Examples include: crack propagation in solids, interac-
tion of defects in solids, instabilities and hysteresis in microfluidics, elastic
properties of strongly heterogeneous composite materials and more complex
interface dynamics that involve non-trivial atomistic features.

Much of the work on HMM is done either for the situation when both the
micro and macro models are continuum models, or when the micro model is
molecular dynamics and the macro model is continuum mechanics. Extending
HMM to situations when the micro model is either Monte Carlo, Brownian
dynamics or quantum mechanics remains to be carried out and is promised
to be a very fruitful direction of research.

11.3 Algorithm development

As part of the general multiscale methodology, the two most important aspects
of algorithmic development are (1) adaptivity and (2) data processing.

Adaptivity is important for many applications, and HMM offers new possi-
bilities for adaptive algorithm. The most obvious place where adaptivity enters
is adaptive model refinement for type A problems. So far adaptive strategy is
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not well understood. Our existing model refinement strategy is based on an
estimate of the local variation of the numerical solutions. In contrast, adap-
tive mesh refinement for finite element methods are based on a systematic
posteriori error estimates which is itself a highly non-trivial task of numeri-
cal analysis. It is desirable to develop such systematic adaptive strategies for
adaptive model refinement.

There are other possibilities of adaptive algorithms for HMM. For exam-
ple the size of the micro domain on which the micro model is solved to give
the macro data can be adaptively chosen depending on the local microstruc-
ture. One can also decide adaptively whether new micro solutions should be
obtained to give the needed macro data, or the previously obtained micro
solution and/or macro data can be used in some way. In particular, if the
unknown component of the macro model is of some specific functional form,
then one can determine the parameters in the functional form “on the fly”.
Once this functional form is obtained to satisfactory accuracy, then it can be
used to give directly the macro data in subsequent time intervals. In this way,
the algorithm undergoes a learning process as the computation proceeds. An
example of using this strategy, which was called “semi-empirical methods”,
was given in [EE03a] for the linear parabolic homogenization problem. There
it is known that the averaged fluxes are linear functions of the macroscopic
gradient. Therefore one only has to determine the coefficients of these linear
relations using a few data points obtained from the HMM procedure. This
procedure should be explored in more general situations.

A more ambitious adaptive procedure is to determine adaptively the cor-
rect macroscale variable and the form of the macroscale model from carefully
designed microscopic experiments. This is an attractive possibility and there
are obvious ideas to try, but so far there are little concrete results in this
direction.

The second important aspect of algorithmic development is data process-
ing. Indeed one key factor that directly influences the efficiency of the HMM
procedure is the signal to noise ratio in the microscale simulation. Even though
high order accurate kernels that satisfy the high order moment and regularity
conditions discussed in section 9.2 have been developed [ET04], they seem to
be most useful for data that have specific structure such as periodicity. Most
data obtained from microscopic simulations are quite stochastic and lack spe-
cific structure. Therefore it is important to develop more advanced techniques
for analyzing such data. The most obvious suggestion is to use wavelets. But
even this has not been fully explored.

There are two main tasks for the data processing step. The first is to
extract approximations to the needed macroscale data from the microscopic
data. The second is to decide whether the extracted data is accurate enough
and hence the microscopic simulation can be stopped. Both needs further
work.

Another important component that needs to be further improved is
the boundary conditions for the microscale systems. Take the example of
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atomistic-continuum matching conditions, most existing work on boundary
conditions are still somewhat unsatisfactory due to their complexity and the
restriction of low (essentially 0) temperature. The more general boundary
conditions, such as the thermostat boundary condition discussed in [LE05],
require further analysis and validation.

11.4 Analytical issues

The most pressing analytical issue at the present time is the analysis of HMM
for type A problems. The difficulty is associated with the fact that for type A
problems, it often requires fundamental understanding about the properties
of the defects in order to carry out some analysis, and currently there are very
few examples for which this has been done.

There are still many issues remaining as far as type B problems are con-
cerned. Estimating accurately e(HMM) often requires understanding quanti-
tatively the rate of convergence of various systems in the thermodynamic limit,
as well as the behavior of the relaxation times as a function of the microscopic
system size. Again there are very few analytical results in this area, particular
for systems described by molecular dynamics and quantum mechanics (see
the discussion in [EL04b]). But even for homogenization problems, our under-
standing of these issues are quite unsatisfactory. Careful numerical studies can
help to clarify these issues as well as suggest the right form of the analytical
results (see for example [EL04b, Re04b]).

In conclusion, what has already been done on HMM, in terms of numerical
algorithms, analysis, modeling and application, is only the tip of the iceberg.
This limited experience has given us sufficient confidence that HMM does pro-
vide a very attractive framework for multiscale modeling. However, realizing
the full potential of HMM is still an enormous task, as well as opportunity.
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