
1

Software Agents: An Overview

Hyacinth S. Nwana

Intelligent Systems Research
Advanced Applications & Technology Department
BT Laboratories, Martlesham Heath
Ipswich, Suffolk, IP5 7RE, U.K.
e-mail: hyacinth@info.bt.co.uk
Tel: (+44 1 473) 605457
fax: (+44 1 473) 642459

Knowledge Engineering Review, Vol. 11, No 3, pp. 205-244, October/November 1996.

© Cambridge University Press, 1996

Abstract

Agent software is a rapidly developing area of research. However, the overuse of the word
‘agent’ has tended to mask the fact that, in reality, there is a truly heterogeneous body of
research being carried out under this banner. This overview paper presents a typology of
agents. Next, it places agents in context, defines them and then goes on, inter alia, to
overview critically the rationales, hypotheses, goals, challenges and state-of-the-art
demonstrators of the various agent types in our typology. Hence, it attempts to make explicit
much of what is usually implicit in the agents literature. It also proceeds to overview some
other general issues which pertain to all the types of agents in the typology. This paper
largely reviews software agents, and it also contains some strong opinions that are not
necessarily widely accepted by the agent community.

2

1 Introduction

The main goal of this paper is to overview the rapidly evolving area of software agents. The
overuse of the word ‘agent’ has tended to mask the fact that, in reality, there is a truly
heterogeneous body of research being carried out under this banner. This paper places agents
in context, defines them and then goes on, inter alia, to overview critically the rationales,
hypotheses, goals, challenges and state-of-the-art demonstrators/prototypes of the various
agent types currently under investigation. It also proceeds to overview some other general
issues which pertain to all the classes of agents identified. Finally, it speculates as to the
future of the agents research in the short, medium and long terms. This paper largely reviews
software agents. Since we are overviewing a broad range of agent types in this paper, we do
not provide a definition of agenthood at this juncture. We defer such issues until Section 4
where we present our typology of agents.

The breakdown of the paper is as follows. Section 2 notes the situation of smart agents
research in the broad field of Distributed Artificial Intelligence (DAI) and provides a brief
history. Section 3 identifies the scope of applicability of agents research and notes that there
is a diverse range of interested parties. Before the core critical overview of the agent typology
of Section 5, Section 4 provides our view of what smart agents are; it also identifies the
different types of agents which fall under the ‘agents’ banner and warns that truly smart or
intelligent agents do not yet exist! They are still very much the aspiration of agent
researchers. Section 6 overviews some more general issues on agents and and speculates
briefly towards the future of agents in the short, medium and long terms. Section 7 concludes
the paper.

2 Software Agents: History and the Context of this Paper

Software agents have evolved from multi-agent systems (MAS), which in turn form one of
three broad areas which fall under DAI, the other two being Distributed Problem Solving
(DPS) and Parallel AI (PAI). Hence, as with multi-agent systems, they inherit many of DAI’s
motivations, goals and potential benefits. For example, thanks to distributed computing,
software agents inherit DAI’s potential benefits including modularity, speed (due to
parallelism) and reliability (due to redundancy). It also inherits those due to AI such as
operation at the knowledge level, easier maintenance, reusability and platform independence
(Huhns & Singh, 1994).

The concept of an agent, in the context of this paper, can be traced back to the early days of
research into DAI in the 1970s - indeed, to Carl Hewitt’s concurrent Actor model (Hewitt,
1977). In this model, Hewitt proposed the concept of a self-contained, interactive and
concurrently-executing object which he termed ‘actor’. This object had some encapsulated
internal state and could respond to messages from other similar objects: an actor

“is a computational agent which has a mail address and a behaviour. Actors communicate by
message-passing and carry out their actions concurrently” (Hewitt, 1977, p. 131).

Broadly, for the purposes of this paper, we split the research on agents into two main strands:
the first spanning the period 1977 to the current day, and the second from 1990 to the current
day too. Strand 1 work on smart agents, which begun in the late 1970s and all through the
1980s to the current day, concentrated mainly on deliberative-type agents with symbolic
internal models; later in this paper, we type these as collaborative agents. A deliberative agent
is

3

“one that possesses an explicitly represented, symbolic model of the world, and in which
decisions (for example about what actions to perform) are made via symbolic reasoning”
(Wooldridge, 1995, p. 42).

Initially, strand 1 work concentrated on macro issues such as the interaction and
communication between agents, the decomposition and distribution of tasks, coordination and
cooperation, conflict resolution via negotiation, etc. Their goal was to specify, analyse, design
and integrate systems comprising of multiple collaborative agents. These resulted in classic
systems and work such as the actor model (Hewitt, 1977), MACE (Gasser et al., 1987),
DVMT (Lesser & Corkill, 1981), MICE (Durfee & Montgomery, 1989), MCS (Doran et al.,
1990), the contract network coordination approach (Smith, 1980; Davis & Smith, 1983),
MAS/DAI planning and game theories (Rosenschein, 1985; Zlotkin & Rosenschein, 1989;
Rosenschein & Zlotkin, 1994). These ‘macro’ aspects of agents as Gasser (1991) terms them,
emphasises the society of agents over individual agents, while micro issues relate specifically
to the latter. In any case, such issues are well summarised in Chaib-draa et al. (1992), Bond &
Gasser (1988) and Gasser & Huhns (1989). More recent work under this strand include
TÆMS (Decker & Lesser, 1993; Decker, 1995) DRESUN (Carver et al., 1991; Carver &
Lesser, 1995), VDT (Levitt et al., 1994), ARCHON (Wittig, 1992; Jennings et al., 1995);
Note that game theoretic work should arguably not be classed as a macro approach; it may,
indeed, lie more towards the micro end of the spectrum.

In addition to the macro issues, strand 1 work has also been characterised by research and
development into theoretical, architectural and language issues. In fact, such works evolve
naturally, though not exclusively, from the investigation of the macro issues. This is well
summarised in Wooldridge & Jennings (1995a), and in the edited collections of papers:
Wooldridge & Jennings (1995b) and Wooldridge et al. (1996).

However, since 1990 or thereabouts, there has evidently been another distinct strand to the
research and development work on software agents - the range of agent types being
investigated is now much broader. Thus, this paper is complementary to Wooldridge &
Jennings’ (1995a) by placing emphasis on this strand although, naturally, there is some
overlap, i.e. it overviews the broadening typology of agents being investigated by agent
researchers. Some cynics may argue that this strand arises because everybody is now calling
everything an agent, thereby resulting, inevitably, in such broadness. We sympathise with this
viewpoint; indeed, it is a key motivation for this paper - to overview the extensive work that
goes under the ‘agent’ banner. Essentially, our point is that in addition to investigating macro
issues and others such as theories, architectures, languages, there has also been an
unmistakable trend towards the investigation of a broader range of agent types or classes. The
context of this paper is summarised in Table 1 below.

Strand Emphasis Some Major references

Strand 1 Macro issues Bond & Gasser (1988)

Gasser & Huhns (1989)

Chaib-draa et al. (1992)

Gasser et al. (1995)

4

Theories, architectures &
languages

Wooldridge & Jennings
(1995a, 1995b)

Wooldridge et al. (1996)

Strand 2 Diversification in the types of
agents being investigated

This paper covers this!

Table 1 - Brief History of Software Agents and the Context of this Paper

3 Who are Investigating Software Agents for What and Why?

We eschew answering this question in a futuristic sense in favour of providing a flavour of
the scope of the research and development underway in universities and industrial
organisations. The range of firms and universities actively pursuing agent technology is quite
broad and the list is ever growing. It includes small non-household names (e.g. Icon, Edify
and Verity), medium-size organisations (e.g. Carnegie Mellon University (CMU), General
Magic, Massachusetts Institute of Technology (MIT), the University of London) and the real
big multinationals (e.g. Alcatel, Apple, AT&T, BT, Daimler-Benz, DEC, HP, IBM, Lotus,
Microsoft, Oracle, Sharp). Clearly, these companies are by no means completely
homogeneous, particularly if others such as Reuters and Dow Jones are appended to this list.

The scope of the applications being investigated and/or developed is arguably more
impressive: it really does range from the mundane (strictly speaking, not agent applications)
to the moderately ‘smart’. Lotus, for example, will be providing a scripting language in their
forthcoming version of Notes which would allow users to write their own individual scripts in
order to manage their e-mails, calendars, and set up meetings, etc. This is based on the view
that most people do not really need ‘smart’ agents. Towards the smart end of the spectrum are
the likes of Sycara’s (1995) visitor hosting system at CMU. In this system, “task-specific”
and “information-specific” agents cooperate in order to create and manage a visitor’s
schedule to CMU. To achieve this, first, the agents access other on-line information resources
in order to determine the visitor’s areas of interest, name and organisation and resolve the
inevitable inconsistencies and ambiguities. More information is later garnered including the
visitor’s status in her organisation and projects she is working on. Second, using the
information gathered on the visitor, they retrieve information (e.g. rank, telephone number
and e-mail address) from personnel databases in order to determine appropriate attendees (i.e.
faculty). Third, the visitor hosting agent selects an initial list of faculty to be contacted,
composes messages which it dispatches to the calendar agents of these faculties, asking
whether they are willing to meet this visitor and at what time. If the faculty does not have a
calendar agent, an e-mail is composed and despatched. Fourth, the responses are collated.
Fifth, the visitor hosting agent creates the schedule for the visitor which involves booking
rooms for the various appointments with faculty members. Naturally, the system interacts
with the human organiser and seeks her confirmation, refutations, suggestions and advice.

Most would agree that this demonstrator is pretty smart, but its ‘smartness’ derives from the
fact that the ‘value’ gained from individual stand-alone agents coordinating their actions by
working in cooperation, is greater than that gained from any individual agent. This is where
agents really come into their element.

More examples of applications are described later but application domains in which agent
solutions are being applied to or investigated include workflow management, network
management, air-traffic control, business process re-engineering, data mining, information

5

retrieval/management, electronic commerce, education, personal digital assistants (PDAs), e-
mail, digital libraries, command and control, smart databases, scheduling/diary management,
etc. Indeed, as Guilfoyle (1995) notes

“in 10 years time most new IT development will be affected, and many consumer products
will contain embedded agent-based systems”.

The potential of agent technology has been much hailed, e.g. a 1994 report of Ovum’s, a UK-
based market research company, is titled “Intelligent agents: the new revolution in software”
(Ovum, 1994). The same firm has apparently predicted that the market sector totals for agent
software and products for USA and Europe will be worth at least $3.9 billion by the year
2000 in contrast to an estimated 1995 figure of $476 million (computed from figures quoted
in Guilfoyle, 1995). Such predictions are perhaps overly optimistic.

Moreover, as King (1995) notes telecommunications companies like BT and AT&T are
working towards incorporating smart agents into their vast networks; entertainment, e.g.
television, and retail firms would like to exploit agents to capture our program viewing and
buying patterns respectively; computer firms are building the software and hardware tools
and interfaces which would harbour numerous agents; Reinhardt (1994) reports that IBM
plans (or may have already done) to launch a system, the IBM Communications Systems
(ICS), which would use agents to deliver messages to mobile users in the form they want it,
be it fax, speech or text, depending on the equipment the user is carrying at the time, e.g. a
PDA, a portable PC or a mobile phone. At BT Laboratories, we have also carried out some
agent-related research on a similar idea where the message could be routed to the nearest
local device, which may or may not belong to the intended recipient of the message. In this
case, the recipient’s agent negotiates with other agents for permission to use their facilities,
and takes into consideration issues such as costs and bandwidth in such negotiations (Titmuss
et al., 1996). At MIT, Pattie Maes’ group is investigating agents that can match buyers to
sellers or which can build coalitions of people with similar interests. They are also drawing
from biological evolution theory to implement demonstrators in which some user only
possesses the ‘fittest’ agents: agents would ‘reproduce’ and only the fittest of them will
survive to serve their masters; the weaker ones would be purged.

It is important to note that most of these are still demonstrators only: converting them into
real usable applications would provide even greater challenges, some of which have been
anticipated but, currently, many are unforeseen. The essential message of this section is that
agents are here to stay, not least because of their diversity, their wide range of applicability
and the broad spectrum of companies investing in them. As we move further and further into
the information age, any information-based organisation which does not invest in agent
technology may be committing commercial hara-kiri.

4 What is an agent?

We have as much chance of agreeing on a consensus definition for the word ‘agent’ as AI
researchers have of arriving at one for ‘artificial intelligence’ itself - nil! Recent postings to
the software agents mailing list (agents@sunlabs.eng.Sun.COM) prove this. Indeed, in a
couple of these postings, some propounded the introduction of a financial and/or legal aspect
to the definition of agents, much to the derision of others. There are at least two reasons why
it is so difficult to define precisely what agents are. Firstly, agent researchers do not ‘own’
this term in the same way as fuzzy logicians/AI researchers, for example, own the term ‘fuzzy
logic’ - it is one that is used widely in everyday parlance as in travel agents, estate agents, etc.

6

Secondly, even within the software fraternity, the word ‘agent’ is really an umbrella term for
a heterogeneous body of research and development. The response of some agent researchers
to this lack of definition has been to invent yet some more synonyms, and it is arguable if
these solve anything or just further add to the confusion. So we now have synonyms
including knowbots (i.e. knowledge-based robots), softbots (software robot), taskbots (task-
based robots), userbots, robots, personal agents, autonomous agents and personal assistants.
To be fair, there are some good reasons for having such synonyms. Firstly, agents come in
many physical guises: for example, those that inhabit the physical world, some factory say,
are called robots; those that inhabit vast computer networks are sometimes referred to as
softbots; those that perform specific tasks are sometimes called taskbots; and autonomous
agents refer typically to mobile agents or robots which operate in dynamic and uncertain
environments. Secondly, agents can play many roles, hence personal assistants or knowbots,
which have expert knowledge in some specific domain. Furthermore, due to the multiplicity
of roles that agents can play, there is now a plethora of adjectives which precede the word
‘agent’, as in the following drawn only from King’s (1995) paper: search agents, report
agents, presentation agents, navigation agents, role-playing agents, management agents,
search and retrieval agents, domain-specific agents, development agents, analysis and design
agents, testing agents, packaging agents and help agents. King’s paper is futuristic and
provides a role-specific classification of agents, and so such rampant metaphorical use of the
word is fine. But there is also another view that it gives currency to others to refer to just
about anything as an agent. For example, he considers “print monitors for open printing, fax
redial, and others” (p. 18) as agents, albeit simple ones. As Wayner & Joch (1995) write,
somewhat facetiously,

“the metaphor has become so pervasive that we’re waiting for some enterprising company to
advertise its computer switches as empowerment agents” (p. 95).

We tend to use the word slightly more carefully and selectively as we explain later.

When we really have to, we define an agent as referring to a component of software and/or
hardware which is capable of acting exactingly in order to accomplish tasks on behalf of its
user. Given a choice, we would rather say it is an umbrella term, meta-term or class, which
covers a range of other more specific agent types, and then go on to list and define what these
other agent types are. This way, we reduce the chances of getting into the usual prolonged
philosophical and sterile arguments which usually proceed the former definition, when any
old software is conceivably recastable as agent-based software.

4.1 A Typology of Agents

This section attempts to place existing agents into different agent classes, i.e. its goal is to
investigate a typology of agents. A typology refers to the study of types of entities. There are
several dimensions to classify existing software agents.

Firstly, agents may be classified by their mobility, i.e. by their ability to move around some
network. This yields the classes of static or mobile agents.

Secondly, they may be classed as either deliberative or reactive. Deliberative agents derive
from the deliberative thinking paradigm: the agents possess an internal symbolic, reasoning
model and they engage in planning and negotiation in order to achieve coordination with
other agents. Work on reactive agents originate from research carried out by Brooks (1986)
and Agre & Chapman (1987). These agents on the contrary do not have any internal,
symbolic models of their environment, and they act using a stimulus/response type of

7

behaviour by responding to the present state of the environment in which they are embedded
(Ferber, 1994). Indeed, Brooks has argued that intelligent behaviour can be realised without
the sort of explicit, symbolic representations of traditional AI (Brooks, 1991b).

Thirdly, agents may be classified along several ideal and primary attributes which agents
should exhibit. At BT Labs, we have identified a minimal list of three: autonomy, learning
and cooperation. We appreciate that any such list is contentious, but it is no more or no less
so than any other proposal. Hence, we are not claiming that this is a necessary or sufficient
set. Autonomy refers to the principle that agents can operate on their own without the need for
human guidance, even though this would sometimes be invaluable. Hence agents have
individual internal states and goals, and they act in such a manner as to meet its goals on
behalf of its user. A key element of their autonomy is their proactiveness, i.e. their ability to
‘take the initiative’ rather than acting simply in response to their environment (Wooldridge &
Jennings, 1995a). Cooperation with other agents is paramount: it is the raison d’être for
having multiple agents in the first place in contrast to having just one. In order to cooperate,
agents need to possess a social ability, i.e. the ability to interact with other agents and
possibly humans via some communication language (Wooldridge & Jennings, 1995a).
Having said this, it is possible for agents to coordinate their actions without cooperation
(Nwana et al., 1996). Lastly, for agent systems to be truly ‘smart’, they would have to learn
as they react and/or interact with their external environment. In our view, agents are (or
should be) disembodied bits of ‘intelligence’. Though, we will not attempt to define what
intelligence is, we maintain that a key attribute of any intelligent being is its ability to learn.
The learning may also take the form of increased performance over time. We use these three
minimal characteristics in Figure 1 to derive four types of agents to include in our typology:
collaborative agents, collaborative learning agents, interface agents and truly smart agents.

Cooperate

Autonomous

Learn

Collaborative
Agents

Collaborative
Learning Agents

Interface
Agents

Smart
Agents

Figure 1 - A Part View of an Agent Typology

We emphasise that these distinctions are not definitive. For example, with collaborative
agents, there is more emphasis on cooperation and autonomy than on learning; hence, we do
not imply that collaborative agents never learn. Likewise, for interface agents, there is more
emphasis on autonomy and learning than on cooperation. We do not consider anything else
which lie outside the ‘intersecting areas’ to be agents. For example, most expert systems are
largely ‘autonomous’ but, typically, they do not cooperate or learn. Ideally, in our view,
agents should do all three equally well, but this is the aspiration rather than the reality. Truly
smart agents do not yet exist: indeed, as Maes (1995a) notes “current commercially available
agents barely justify the name”, yet alone the adjective ‘intelligent’. Foner (1993) is even
more incandescent; though he wrote this in 1993, it still applies today:

8

“... I find little justification for most of the commercial offerings that call themselves agents.
Most of them tend to excessively anthromomorphize the software, and then conclude that it
must be an agent because of that very anthropomorphization, while simultaneously failing to
provide any sort of discourse or “social contract” between the user and the agent. Most are
barely autonomous, unless a regularly-scheduled batch job counts. Many do not degrade
gracefully, and therefore do not inspire enough trust to justify more than trivial delegation
and its concomitant risks” (Foner, 1993, 39/40).

In effect, like Foner, we assert that the arguments for most commercial offerings being agents
suffer from the logical fallacy of petitio principii - they assume what they are trying to prove
- or they are circular arguments. Indeed, this applies to other ‘agents’ in the literature.

In principle, by combining the two constructs so far (i.e. static/mobile and
reactive/deliberative) in conjunction with the agent types identified (i.e. collaborative agents,
interface agents, etc.), we could have static deliberative collaborative agents, mobile reactive
collaborative agents, static deliberative interface agents, mobile reactive interface agents,
etc. But these categories, though quite a mouthful, may also be necessary to further classify
existing agents. For example, Lashkari et al. (1994) presented a paper at AAAI on
‘Collaborative interface agents’ which, in our classification, translates to static collaborative
interface agents.

Fourthly, agents may sometimes be classified by their roles (preferably, if the roles are major
ones), e.g. world wide web (WWW) information agents. This category of agents usually
exploits internet search engines such as WebCrawlers, Lycos and Spiders. Essentially, they
help manage the vast amount of information in wide area networks like the internet. We refer
to these class of agents in this paper as information or internet agents. Again, information
agents may be static, mobile or deliberative. Clearly, it is also pointless making classes of
other minor roles as in report agents, presentation agents, analysis and design agents, testing
agents, packaging agents and help agents - or else, the list of classes will be large.

Fifthly, we have also included the category of hybrid agents which combine of two or more
agent philosophies in a single agent.

There are other attributes of agents which we consider secondary to those already mentioned.
For example, is an agent versatile (i.e. does it have many goals or does it engage in a variety
of tasks)? Is an agent benevolent or non-helpful, antagonistic or altruistic? Does an agent lie
knowingly or is it always truthful (this attribute is termed veracity)? Can you trust the agent
enough to (risk) delegate tasks to it? Is it temporally continuous? Does it degrade gracefully
in contrast to failing drastically at the boundaries? Perhaps unbelievably, some researchers
are also attributing emotional attitudes to agents - do they get ‘fed up’ being asked to do the
same thing time and time again? What role does emotion have in constructing believable
agents (Bates, 1994)? Some agents are also imbued with mentalistic attitudes or notions such
as beliefs, desires and intentions - referred to typically as BDI agents (Rao & Georgeff,
1995). Such attributes as these provide for a stronger definition of agenthood.

In essence, agents exist in a truly multi-dimensional space, which is why we have not used a
two or three-dimensional matrix to classify them - this would be incomplete and inaccurate.
However, for the sake of clarity of understanding, we have ‘collapsed’ this multi-dimensional
space into a single list. In order to carry out such an audacious move, we have made use of
our knowledge of the agents we know are currently ‘out there’ and what we wish to aspire to.
Therefore, the ensuing list is to some degree arbitrary, but we believe these types cover most
of the agent types being investigated currently. We have left out collaborative learning
agents, see Figure 1, on the grounds that we do not know of the existence ‘out there’ of any

9

such agents which collaborate and learn, but are not autonomous. Hence, we identify seven
types of agents:

• Collaborative agents

• Interface agents

• Mobile agents

• Information/Internet agents

• Reactive agents

• Hybrid agents

• Smart Agents

There are some applications which combine agents from two or more of these categories, and
we refer to these as heterogeneous agent systems. Such applications already exist even
though they are relatively few. However, we also overview briefly such systems in the next
section.

Another issue of note (for completeness sake) is that agents need not be benevolent to one
another. It is quite possible that agents may be in competition with one another, or perhaps
quite antagonistic towards each other. However, we view competitive agents as potential
subclasses of all these types. That is, it is possible to have competitive collaborative-type
agents, competitive interface agents, competitive information agents, etc.

4.2 A Critique of Our Typology

As with our definition of agenthood, our typology of agents is bound to be contentious. Two
official reviewers of this paper all took issue with it, but their suggestions are, in our opinion,
either more debatable or unclear. One reviewer, reviewer 1, claimed that we have confused
agents that are defined by what they do (information agents, interface agents and
collaborative agents), and other types for the sort of technology that underpins these agents
(mobile agents, reactive agents, hybrid agents). Thus, he/she would have preferred a 2-
dimensional classification. The second reviewer mentioned a similar point but alluded to a
different classification. To a large degree, we disagree with this criticism, though not fully.
We believe we had already attempted, perhaps unsuccessfully, to pre-empt this criticism.
Firstly, we would not group information agents, interface agents and collaborative agents in
one large group: in our view, as we explained earlier, collaborative agents and interface
agents are defined by what they are, while information agents are defined by what they do.
Secondly, we do not agree fully with the assertion that mobile agents, reactive agents and
hybrid agents are all underlying technologies for implementing the former classes. To this
reviewer, interface agents are collaborative agents implemented using reactive technology!
We simply disagree with this viewpoint. As we explain later in the paper, reactive agents for
example, have a distinct philosophy, hypothesis, etc. which make it stand out from the rest.
We have surveyed the area of technologies for building software agent systems in another
paper, Nwana & Wooldridge (1996). However, we agree with the general thrust of the
argument to some degree; for example, we fully accept the reviewers’ viewpoint that mobility
is not a necessary condition for agenthood - a point which is implicit in Section 4.1, and
which we explain later. Thirdly, we address such issues when we discuss the individual types
more fully in the rest of the paper. Fourthly, we point out, explicitly, in Section 4.1 that
agents exist in a truly multi-dimensional space, and that for the sake of clarity of

10

understanding, we have collapsed this multi-dimensional space into a single list. To produce
this list, we used a set of criteria which included inate properties of agents which we would
prefer to see (autonomy, cooperation, learning), other constructs (static/mobile,
deliberative/reactive), major roles (as in information agents) and whether they are hybrid or
heterogeneous. In a previous version of this paper where we had a more hierarchical
breakdown, it turned out to be less clear. Fifthly, other typologies in the literature are equally
as contentious. For example, Wooldridge & Jennings (1995a) broadly classify agents into the
following: gopher agents, service performing agents and proactive agents. We believe this is
too general and simplistic a classification. It is for these reasons that we opted for such a ‘flat’
breakdown. To be fair, apart from the typology, these two reviewers were very
complementary about the paper.

In conclusion, our typology is not without its critics (but so are all others), but as reviewer 1
pointed out “while I agree that most agents in the literature can be categorised into these
types, I think the types are themselves faulty”. In this paper, we have deliberately traded in
accuracy for clarity. Our typology highlights the key contexts in which the word ‘agent’ is
used in the software literature.

4.3 What Agents are Not

In general, we have already noted that a software component which does not fall in one of the
intersecting areas of Figure 1 does not count as an agent. In any case, before the word ‘agent’
came into vogue within the computing/AI fraternity, Minsky, in his Society of Mind (1985),
had already used it to formulate his theory of human intelligence. However, Minsky used it to
refer to much more basic entities:

“. .to explain the mind, we have to show how minds are built from mindless stuff, from parts
that are much smaller and simpler than anything we’d consider smart... But what could those
simpler particles be - the “agents” that compose our minds? This is the subject of our
book...” (Minsky, 1985, 18).

Clearly, Minsky’s use of the word ‘agent’ is quite distinct from its use in this paper.

Furthermore, as noted earlier, expert systems do not meet the preconditions of agenthood, as
do most knowledge-based system applications. Modules in distributed computing
applications do not constitute agents either as Huhns & Singh (1994) explain. First, such
modules are rarely ‘smart’, and hence much less robust than agents are (or should be); they
also do not degrade gracefully. Second, in agent-based systems generally, the communication
involves involves high-level messages in contrast to the low-level messaging in distributed
computing. The use of high-level messaging leads to lower communication costs, easy re-
implementability and concurrency. Lastly, and perhaps most importantly, agent-based
applications operate typically at the knowledge level (Newell, 1982), not at the symbol level
as is the case in distributed computing applications. In any case, modules in distributed
computing applications are not autonomous in the same sense as described earlier for agent
applications. The majority of software applications may be ruled out from the set of agent-
based applications on the same grounds that expert systems or distributed computing
applications are.

5 A Panoramic Overview of the Different Agent Types

In this section we, in turn, overview all the types of agents identified in our typology of the
previous section bar smart agents. Figure 2 summarises these types and lists the order in

11

which they are surveyed. In particular, we would overview them in terms of some or all of
following: their essential metaphors, hypotheses/goals, motivations, roles, prototypical
examples, potential benefits, key challenges, and some other general issues about the
particular agent type. We do not overview the shaded type, smart agents, on the grounds that
this is the aspiration of agent researchers rather than the reality.

Collaborative
Agents

Smart
Agents

Interface
Agents

Heterogeneous
Agent Systems

Mobile
Agents

Reactive
Agents

An Agent
Typology

Hybrid
Agents

Information
Agents

Figure 2 - A Classification of Software Agents

5.1 Collaborative Agents: An Overview

As shown in Figure 1, collaborative agents emphasise autonomy and cooperation (with other
agents) in order to perform tasks for their owners. They may learn, but this aspect is not
typically a major emphasis of their operation. In order to have a coordinated set up of
collaborative agents, they may have to negotiate in order to reach mutually acceptable
agreements on some matters. Most of the work classified in this paper as strand 1 (see Section
2) investigated this class of agents. As noted earlier, some AI researchers are providing
stronger definitions to such agents, e.g. some attribute mentalistic notions such as beliefs,
desires and intentions - yielding BDI-type collaborative agents. Hence, the class of
collaborative agents may itself be perceived as a broad church.

In brief the key general characteristics of these agents include autonomy, social ability,
responsiveness and proactiveness. Hence, they are (or should/would be) able to act rationally
and autonomously in open and time-constrained multi-agent environments. They tend to be
static, large coarse-grained agents. They may be benevolent, rational, truthful, some
combination of these or neither. Typically, most currently implemented collaborative agents
do not perform any complex learning, though they may or may not perform limited
parametric or rote learning.

5.1.1 Hypothesis/Goal

The hypothesis, rationale or goal for having collaborative agent systems is a specification of
the goal of DAI as noted in Huhns & Singh (1994). Paraphrasing these authors, it may be
stated as ‘creating a system that interconnects separately developed collaborative agents, thus
enabling the ensemble to function beyond the capabilities of any of its members’. Formally,

V(_agenti) > max(V(agenti))

where V represents ‘value addedness’. This could have an arbitrary definition involving
attributes such as speed, worst-case performance, reliability, adaptability, accuracy or some
combination of these.

12

5.1.2 Motivation

The motivation for having collaborative agent systems may include one or several of the
following (they are a specialisation of the motivations for DAI):

• To solve problems that are too large for a centralised single agent to do due to resource
limitations or the sheer risk of having one centralised system;

• To allow for the interconnecting and interoperation of multiple existing legacy systems,
e.g. expert systems, decision support systems, etc.;

• To provide solutions to inherently distributed problems, e.g. distributed sensor
networks (cf. DVMT, Durfee et al., 1987) or air-traffic control;

• To provide solutions which draw from distributed information sources, e.g. for
distributed on-line information sources, it is natural to adopt a distributed and
collaborative agent approach;

• To provide solutions where the expertise is distributed, e.g. in health care provisioning;

• To enhance modularity (which reduces complexity), speed (due to parallelism),
reliability (due to redundancy), flexibility (i.e. new tasks are composed more easily
from the more modular organisation) and reusability at the knowledge level (hence
shareability of resources);

• To research into other issues, e.g. understanding interactions among human societies.

5.1.3 A Prototypical Example: CMU’s Pleiades System

The Pleiades project at CMU directed by Tom Mitchell and Katia Sycara has, as one of its
objectives, to investigate methods for automated negotiation among collaborative 1 agents, in
order to improve their robustness, effectiveness, scalability and maintainability (see http:
URL1). The project applies collaborative agents in the domain of Organisational Decision
Making over the “InfoSphere” (which refers essentially to a collection of internet-based
heterogeneous resources). This infosphere is ripe for the application of these class of agents
not least because it is inherently a distributed set of on-line information sources.

T-A1 T-A2 T-An

I-A1 I-A2 I-An

User 1 User nUser 2

Task
Proposed solution

INFOSPHERED-B1 D-B2 D-Bn

query

reply

LAYER 1

LAYER 2

Figure 3 - The Pleiades Distributed System Architecture (Adapted from Sycara, 1995)

1 My interpretation and emphasis.

13

Pleiades is a distributed collaborative agent-based architecture which has two layers of
abstraction: the first layer which contains task-specific collaborative agents and second layer
which contains information-specific collaborative agents (see Figure 3). This architecture was
used to develop the visitor hosting system which was described briefly earlier. Task-specific
agents, depicted as task-assistants (T-A) in the figure, perform a particular task for its user,
e.g. arranging appointments and meetings with other task-specific agents. These agents
coordinate and schedule plans based on the context. They collaborate with one another (at
level 1) in order to resolve conflicts or integrate information. In order to garner the
information required at this level, they request information from information-specific agents,
depicted as information assistants (I-A) in Figure 3. Information-specific agents, in turn, may
collaborate with one another (i.e. within layer 2) in order to provide the information requested
back to the layer 1 requesting agent. The source of the information are the many databases
(D-B) in the infosphere. Ultimately, the task agent proposes a solution (sometimes an
intermediate one) to its user.

Task-specific agents have the following knowledge (Sycara, 1995): a model of the task
domain, knowledge of how to perform the task, knowledge of how to gather the information
for the task, knowledge of other task-specific or information-specific agents it must
coordinate with in order to meet the task, protocols that enable coordination with other agents
and, lastly, strategies for conflict resolution and information fusion. They also possess some
learning mechanisms, e.g. when an agent needs to learn the preferences of its user. On the
contrary, information-specific agents know of the following: knowledge of the databases that
it is associated with (in addition to details such as their size, average time it takes to answer a
query and monetary costs for query processing), knowledge of how to access the databases,
knowledge of how to resolve conflicts and information fusion strategies, and protocols for
coordination with other relevant software agents. These agents are also ‘smart’ enough to
cache answers to frequently asked queries, and can also induce database regularities which
they use during inter-agent interactions.

The main rationale of the architecture is to provide software agents for retrieving, filtering
and fusing information from distributed, multi-modal sources and that the agents should
assist in decision making. Sycara and her colleagues hypothesised that in order to meet their
goals, they would need a distributed collection of collaborative agents which can gather, filter
and fuse information in addition to being able to learn from their interactions. Agents
communicate using KQML (Finin & Wiederhold, 1991) and e-mail, and they negotiate in
order to reach agreements in cases of conflicts. The layered architecture is clearly very
modular, indeed modular enough for Sycara and her colleagues to have introduced
connectionist modules in the design of other systems.

Clearly, there is much sophistication to this architecture even though we have left out much
more interesting details (e.g. how and what the agents learn). Individually, an agent consists
of a planning module linked to its local beliefs and facts database. It also has a local
scheduler, a coordination module and an execution monitor. Thus, agents can instanstiate task
plans, coordinate these plans with other agents and schedule/monitor the execution of its local
actions. Interestingly, the architecture has no central planner and hence agents must all
engage in coordination by communicating to others their constraints, expectations and other
relevant information.

14

The Pleiades architecture shows clearly how collaborative agents can operate in concert such
that their ensemble functions beyond the capabilities of any individual agent in the set-up.

Apart from the visitor hosting system, other systems have also been developed using this
architecture/methodology in the domains of financial portfolio management, emergency
medical care and electronic commerce (Sycara, 1995). In addition to these domains, there are
others ripe for exploiting collaborative agents including workflow management, network
management and control, telecommunication networks and business process engineering. In
all these domains, collaborative agents may provide much ‘added value’ to current single
agent-based applications.

5.1.4 A Brief Critical Review of Collaborative Agent Systems Work

There are many other useful pieces of work on collaborative agents. The first important point
to re-emphasise is the fact that much work classified in this paper as strand 1 work (see
Section 2) exploited collaborative, deliberative agents; they may not have been fully
collaborative as defined in this paper, but they were in spirit. For example, each agent in
Durfee et al.’s (1987) distributed vehicle monitoring system (DVMT) is a blackboard
knowledge source whose task is to identify the vehicle’s track from acoustic data. Each of
these agents shared a global knowledge of the problem solving; hence, they are, strictly
speaking, not that autonomous and cooperation is quite basic as it all proceeds via the
common blackboard. Certainly, other strand 1 testbeds such as MACE (Gasser et al., 1987),
MCS (Doran et al., 1990) and IPEM (Ambros-Ingerson & Steel, 1988) have deliberative
agents with planning modules that underpin the coordination and cooperation in the set-ups
they are operating within. In the case of IPEM and MCS, non-linear planners are used. Other
planning-based prototypes include Hayes-Roth’s (1991) GUARDIAN architecture and
Cohen’s et al.’s PHOENIX system. At BT Labs, two prototype collaborative agent-based
systems have been developed recently: the ADEPT and MII prototypes. ADEPT (O’Brien &
Wiegand, 1996) employs collaborative agents in the application area of business process re-
engineering while MII (Titmuss et al., 1996) demonstrates that collaborative agents can be
used to perform decentralised management and control of consumer electronics, typically
PDAs or PCs integrated with services provided by the network operator.

As regards collaborative agents with much stronger definitions, mention has earlier been
made of Rao & Georgeff’s characterisation of rational agents in terms of the mental attitudes
of beliefs, desires and intentions (Rao & Georgeff, 1992). These are the attitudes typical of
epistemic logics. Such work on stronger definitions of collaborative agents is much in
progress. Another useful piece of research which attributes mentalistic notions to
collaborative agent-based system design is Shoham’s (1993) work on agent-oriented
programming. In this work, an agent’s mental state is described by its beliefs, decisions,
capabilities and obligations, and Shoham’s language introduces epistemic and deontic modal
operators for such notions. This is because in order for agents to reason about these
mentalistic attitudes, logics and operators for describing them must be developed. Other agent
frameworks based on such mentalistic attitudes include Bratman et al.’s (1988) IRMA and
Jennings’ (1993) GRATE/GRATE* environments. Much of the latter work exploits Cohen &
Levesque’s (1990) classic work.

The key criticism of collaborative agents levelled by some researchers stems from their
grounding in the deliberative thinking paradigm which has dominated AI research over the
last thirty years. Some researchers, particularly those in the reactive agents camp, believe that
intelligent behaviour can be generated without the sort of explicit symbolic-level

15

representations (and hence, reasoning) prevalent in AI (e.g. Brooks, 1991b). That is, they
object to agents having an internal representation of actions, goals and events required by the
planning module to determine the sequence of actions that will achieve the goals. Researchers
like Agre & Chapman (1987) have challenged the usefulness of having elaborate plans; they
argue that a rational, goal-directed activity need not be organised as a plan. They concede that
people use plans, but they argue that in real life there is much moment-to-moment
improvisation with any plan, which is dependent on the ‘situation’ of the relevant agent in its
physical and social world. Clearly, though this criticism is targeted at the entire deliberative
school of AI, it also impacts on deliberative, collaborative agents of whatever complexion.
Hence, they contend that such deliberative agents would result in brittle and inflexible
demonstrators with slow response times. This viewpoint led to birth of the reactive agents
paradigm based on situated-action theory discussed later.

As regards stronger collaborative agent definitions (e.g. BDI agents), Rao & Georgeff (1995)
acknowledge the two main criticisms levelled at such work as theirs and Bratman et al.’s
(1988). First, while traditional planning researchers and classical decision theorists question
the necessity for having all of these epistemic attitudes (i.e. beliefs, desires, intentions), DAI
researchers with a sociological bias question why they only have three! Secondly, the logics
underpinning these agents, mostly second-order modal logics, have not been investigated
fully and their relevance in practice is questionable. Rao & Georgeff (1995) tackle both these
issues in their paper. Indeed, they proceed to describe how BDI agents, with some
simplifying assumptions to their theoretical framework, are being applied to large-scale
applications - in this case, OASIS, an air-traffic management application prototype which has
been successfully tested at Sydney airport in 1995. This prototype has been tested with 100+
aircraft agents and 10+ global agents which handle other issues including windfields,
trajectories and coordination (Georgeff, 1996). Full implementation is already in progress.
However, it must be emphasised that research into such stronger definition of agents,
relatively, is still very much in its infancy.

Some more ‘criticisms’ of collaborative agents are presented next as challenges still to be
addressed by collaborative agent researchers.

5.1.5 Collaborative Agents: Some Key Challenges

Despite successful demonstrators like the Pleiades system and MII (Titmuss et al., 1996),
these agents have been deployed in none but a few real industrial settings though this
situation is changing, e.g. those built under the auspices of the ARCHON project (Wittig,
1992; Jennings et. al., 1993) or a couple of others built with the involvement of Mike
Georgeff, e.g. the Space Shuttle Malfunction Handling system and the agent-based Royal
Australian Airforce Simulator (Georgeff, 1996). There are still many teething problems; we
mention several here. Note that these are not necessarily specific to collaborative agents only:

• Engineering the construction of collaborative agent systems: the Pleiades system is a
good step in this direction but there is much more research to do. To paraphrase BT's
Prof. Robin Smith, we must move away from point solutions to point problems, and
design methodologies/meta-tools which allow for quicker implementation of
collaborative agent-based systems (Smith, 1996b);

• Inter-agent coordination: this is a major issue in the design of these systems.
Coordination is essential to enabling groups of agents to solve problems effectively.
Without a clear theory of coordination, anarchy or deadlock can set in easily in
collaborative agent systems? Furthermore, should agents be totally truthful when

16

negotiating with others or should they be allowed to ‘lie’ when it suits them?
Coordination is also required due to the constraints of resource boundedness and time.
Much experimental and/or formal work is still required to address these issues of
coordination and negotiation.

• Stability, Scalability and Performance Issues: these issues have yet to be acknowledged,
yet alone tackled in collaborative agent systems research. Empirical investigations need
to be carried out to establish suitable minimum levels of performance and, clearly, these
systems have to be stable. Alternatively, their stabilities would need to be proven
formally. Though, these issues are non-functional, they are crucial nonetheless;

• Legacy systems: the thorny issue of what to do with legacy systems is still with us and
will always be a problem. Established techniques and methodologies for integrating
agents and legacy systems are still required;

• How do these systems learn? Would learning not lead to instability? What are the
appropriate architectures for different types of problems? How do you ensure an agent
does not spend much of its time learning, instead of participating in its set-up?

• Evaluation of collaborative agent systems: this problem is still outstanding. How are
they verified and validated to ensure they meet their functional specifications? Are
unanticipated events handled properly? How else would you trust such systems to run
power stations, nuclear installations and chemical plants?

In conclusion, despite the criticisms of collaborative agents by those within and without other
agent camps, there are many industrial applications which would benefit significantly from
them, in just the same way as there are applications which would benefit from reactive
agents. For example, at BT, we see a potential major role for them in managing
telecommunications networks and in business process management (Nwana, 1996).

5.2 Interface Agents: An Overview

Interface agents (c.f. Figure 1) emphasise autonomy and learning in order to perform tasks for
their owners. Pattie Maes, a key proponent of this class of agents, points out that the key
metaphor underlying interface agents is that of a personal assistant who is collaborating with
the user in the same work environment. Note the subtle emphasis and distinction between
collaborating with the user and collaborating with other agents as is the case with
collaborative agents. Collaborating with a user may not require an explicit agent
communication language as one required when collaborating with other agents.

17

Figure 4 - How Interface Agents Work (adapted from Maes, 1994)

Figure 4 depicts the functioning of interface agents. Essentially, interface agents support and
provide assistance, typically to a user learning to use a particular application such as a
spreadsheet or an operating system. The user’s agent observes and monitors the actions taken
by the user in the interface (i.e. ‘watches over the shoulder of its user’), learns new ‘short-
cuts’, and suggests better ways of doing the task. Thus, the user’s agent acts as an
autonomous personal assistant which cooperates with the user in accomplishing some task in
the application. As for learning, interface agents learn typically to better assist its user in four
ways (Maes, 1994) all shown in Figure 4:

• By observing and imitating the user (i.e. learning from the user);

• Through receiving positive and negative feedback from the user (learning from the
user);

• By receiving explicit instructions from the user (learning from the user);

• By asking other agents for advice (i.e. learning from peers).

Their cooperation with other agents, if any, is limited typically to asking for advice, and not
in getting into protracted negotiation deals with them as is the case with collaborative agents.
The learning modes are typically by rote (memory-based learning) or parametric, though
other techniques such as evolutionary learning are also being introduced. In summary a
learning interface agent,

“as opposed to any kind of agent, is one that uses machine-learning techniques to present a
pseudo “intelligent” user interface for its actions” (Foner, 1993, p. 1).

5.2.1 Hypothesis/Goal

The objective of interface agents research (as Maes sees it) is to work towards Alan Kay’s
dream of having indirectly managed human-computer interfaces (Kay, 1990). The argument
goes as follows. Current computer user interfaces only respond to direct manipulation, i.e. the
computer is passive and always waits to execute highly specified instructions from the user. It
provides little or no proactive help for complex tasks or for carrying out actions such as
searches for information that may take an indefinite time (Maes, 1995). In the future, there
will be millions of untrained users attempting to make use of computers and networks of
tomorrow. Therefore, instead of a user issuing direct commands to some interface, he could
be engaged in cooperative process in which human and software agents can both initiate
communication, perform tasks and monitor events. This cooperation between human and
agent would benefit the human in using this application.

Hence, the goal is to migrate from the direct manipulation metaphor to one that delegates
some of the tasks to (proactive and helpful) software interface agents in order to
accommodate novice users. The hypothesis is that these agents can be trusted to perform
competently some tasks delegated to them by their users. More specifically, that

“under certain conditions, an interface agent can “program itself” (i.e., it can acquire the
knowledge it needs to assist its user). The agent is given a minimum of background
knowledge, and it learns appropriate “behavior” from the user and from other agents” (Maes,
1994, p. 89).

She goes on to explain that two preconditions need to be fulfilled by suitable application
domains: firstly, that there is substantial repetitive behaviour in using the application

18

(otherwise, the learning agent will not be able to learn anything) and, secondly, that this
repetitive behaviour is potentially different for different users (otherwise, use a knowledge-
based approach).

5.2.2 Motivation

To recap, an interface agent is a quasi-smart piece of software which assists a user when
interacting with one or more computer applications. Therefore, the motivating, underlying
principle of interface agents seems to be that there is no inherent merit in drudgery. Where
boring and laborious tasks (particularly, but not exclusively at the user interface) could be
delegated to interface agents, they should be - in order to eliminate the tedium of humans
performing several manual sub-operations say. A motivating reason for the choice of domains
that Maes’ group has tackled has been their dissatisfaction with the ways that tasks in these
domains are handled currently. For example, she explains that valuable hours are wasted
managing junk mail, scheduling and rescheduling meetings, searching for information among
heaps of it, etc. - indeed, the title of her 1994 paper captures succinctly her motivation:
‘Agents that Reduce Work and Information Overload’ (Maes, 1994).

5.2.3 Benefits/Roles

The general benefits of interface agents are threefold. First, they make less work for the end
user and application developer. Secondly, the agent can adapt, over time, to its user’s
preferences and habits. Finally, know-how among the different users in the community may
be shared (e.g. when agents learn from their peers). Perhaps these will be understood better
by discussing some of the roles for which Maes and her team at MIT are building interface
agents. Thus far, her team has constructed demonstrator agents for the following roles:

• Eager assistants (e.g. Kozierok & Maes, 1993);

• Guides (e.g. Liebermann, 1995);

• Memory aids (e.g. Rhodes & Starner, 1996);

• Filter/critics (e.g. Sheth & Maes, 1993);

• Matchmaking/referrals (e.g. Foner, 1996);

• Buying/selling on your behalf (e.g. Chavez & Maes, 1996);

• Entertainment (e.g. Maes, 1995b).

We overview them briefly.

Kozierok & Maes (1993) describe an interface agent, Calendar Agent, for scheduling
meetings which is attachable to any application provided it is scriptable and recordable, e.g.
scheduling software package. Calendar Agent assists (i.e. its role is in assisting) its user in
scheduling meetings which involves accepting, rejecting, scheduling, negotiating and
rescheduling meeting times. It really comes into its element because it can learn, over time,
the preferences and commitments of its user, e.g. she does not like to attend meetings on
Friday afternoons, he prefers meetings in the morning, etc. The learning techniques employed
are memory-based learning and reinforcement learning.

Liebermann (1995) describes an agent called Letizia (a keyword and heuristic-based search
agent) which assists in web browsing. Letizia’s role is that of a guide. When users operate
their favourite browser, e.g. Netscape, they must state their interests explicitly when using

19

traditional search engines such as Webcrawler or Lycos. The user remains idle while the
search is in progress, and likewise, the search engine is idle whilst the user is browsing the
interface. Essentially, Letizia provides a cooperative search between itself and the user. Since
most browsers encourage depth-first browsing, Letizia conducts a breadth-first search
concurrently for other useful locations that the user may be interested in. It does this by
‘guessing’ the user’s intention and proceeding to search using the search engine. It guesses
the user’s intentions via inferring from his/her browsing behaviour, e.g. she keeps returning
to some particular page, you enter a page into your hotlist or you download some article. The
user’s actions immediately refocus the search. By doing this, it is able to recommend some
other useful serendipitous locations.

The Remembrance Agent (Rhodes & Starner, 1996) is attached currently to an Emacs editor.
As the user composes some e-mail message, say, the agent is able to carry out a keyword
search and retrieve the five most relevant e-mails in her directory relating to this e-mail being
composed. It is really successful when it recommends continuously and unobstrusively
invaluable documents, e-mails or files which you would otherwise have forgotten when, for
example, you are composing some new document. It can also be used, conceivably when
browsing the web or writing a paper; in the latter case, the remembrance agent may
recommend other researchers’ papers which should be consulted. Hence, its role is clearly
that of a memory aid.

Sheth & Maes (1993) and Maes (1994) describe a news filtering agent, called NewT, whose
role is that of helping the user filter and select articles from a continuous stream of Usenet
Netnews. The idea is to have the user create one or many “news agents” (e.g. one agent for
sports news, one for financial news, etc.) and train them by example (i.e. by presenting to
them positive and negative examples of what should/or should not be retrieved). It is
message-content, keyword-based but it also exploits other information such as the author and
source. NewT is even more complicated because a user’s population of information filtering
agents evolve with time using genetic computing techniques. Indeed, some similar new work
at MIT is investigating agents that ‘breed’ in their environment, i.e. information agents, given
feedback on the information returned, breeds progressively more of those which return ‘good
quality’ information, and purges the rest that do not (see Moukas, 1996).

Foner (1996) reports on his Yenta/Yenta-lite matchmaking agent prototype whose goals
scenarios include being able to match buyers and sellers of some item and introducing them
to one another, finding and grouping people with compatible professional or personal
interests, or building coalitions of people interested in the same topics. Each user in the
community has a Yenta agent. Yenta agents are able to carry out referrals which work in the
same fashion as word-of-mouth recommendations used by people daily. Yenta deals currently
with text such as electronic mail messages, the contents of a user’s files in a directory, etc.
For example, two users, A and B, are deemed to share the same interest if A has at least one
granule of interest as B. A granule may represent the fact that a user reads regularly
newsgroups on politics say. Matchmaking presents some challenging problems which are
covered in Foner’s paper.

Chavez & Maes (1996) describe some preliminary ideas on Kasbah, a classified ads service
on the WWW that incorporates interface agents. Kasbah is meant to represent a ‘market
place’ (a web site) where Kasbah agents, acting on behalf of their owners, can filter through
the ads and find those that their users may be interested in, and then proceed to negotiate, buy
and sell items. Kasbah-like agents may, in the future, render middlemen or brokers redundant.

20

Last, but by no means least, is the entertainment selection agent which Maes believes has the
best potential of all her application domains to be the next “killer application”. For example,
the Ringo/HOMR system (Shardanand & Maes, 1995; Maes, 1995a) is a personalised
recommendation system for music albums and artists, which exploits interface agents. These
agents work by social filtering, i.e. a user’s agent finds other agents which are correlated, and
recommends whatever films their users like to its own user. Hence, like Yenta agents,
Ringo’s working is similar to a word-of-mouth approach. Maes (1995b) also describes the
ALIVE system which is

“a virtual environment which allows wireless full-body interaction between a human
participant and a virtual world which is inhabited by autonomous agents”, p. 112.

However, it presents a much more challenging illustration of how autonomous interface
agents may be used in entertainment. Essentially, ALIVE demonstrates how agents can form
a link between animated characters, based of Artificial Life models, and the entertainment
industry.

We hope it is clear that the potential for these interface agents are large. All these
demonstrators have been or are being evaluated with users and the results so far are, in the
main, quite promising. For example, Ringo has been used by more than 2000 people
(Shardanand & Maes, 1995).

In order to emphasise that the distinction between some of these agent types is quite fuzzy,
Lashkari et al.’s (1994) paper on collaborative interface agents presents a framework for
multi-agent collaboration, and discuss results of a demonstrator based on interface agents for
electronic mail. This paper emphasises cooperation between agents more than typical
interface agents do.

5.2.4 A Brief Critical Review of Interface Agent Systems Work

Less, the reader gets the impression that interface agents research only proceeds in Maes’
group at MIT, we must state that this is certainly not the case. We have been biased towards
them because we (i.e. BT) have ready access to and close links with Pattie Maes and her work
and/or demonstrators. Other work on interface agents include Dent et al. (1992) and Hermens
& Schlimmer (1993). Dent et al. (1992), for example, describe a personal learning apprentice
agent research done at CMU. This Calendar APprentice agent (CAP), like Kozierok & Maes’
(1993) Calendar Agent, assists the user in managing and scheduling its meetings. Their
philosophies are essentially the same and the key difference is in their use of learning
techniques: Dent et al.’s apprentice uses back-propagation neural network and decision tree
learning techniques while Calendar Agent (Kozierok & Maes, 1993) uses memory-based and
reinforcement learning. Mitchell et al. (1994) summarise results from five user-years of
experience over which CAP has learned and evolved a set of several thousand rules that
model the scheduling preferences of each of its users. These rules could be augmented or
edited by users. Hermens & Schlimmer (1993) and Lang (1995) also describe other learning
apprentice interface agents. What may differentiate these agents are their performances.

The key criticism of interface agents is that, so far, they tend to function in stand-alone
fashions or, at the most, only engage in restricted and task-specific communication with
identical peers (Lashkari et al., 1994), which is why the latter authors have begun addressing
this issue. This is not necessarily bad but it would be useful to have interface agents being
able to negotiate with their peers as do collaborative agents. Furthermore, as Mitchell et al.
(1994) note

21

“...it remains to be demonstrated that knowledge learned by systems like CAP can be used to
significantly reduce their users’ workload” (p. 90).

But this is the key motivation for having interface agents in the first place (Maes, 1994).
Moreover, Wayner & Joch (1995, p. 95) cite Bob Balaban, a systems architect at Lotus
Notes, who argues apparently that most people do not need a smart agent which can look over
their shoulders, guess their desires and, proactively, take action. He is quoted as saying “I
know exactly what I want”, arguing he does not need an agent to try to learn from his
behaviour. This viewpoint may be dismissed outright by interface agent researchers, but
Balaban’s point remains - do people want/need interface agents? It appears it is not a forgone
conclusion that they do. It may just be another working hypothesis!

5.2.5 Interface Agents: Some Challenges

Following on from the last section, some challenges for interface agents include:

• Demonstrating that the knowledge learned with interface agents can truly be used to
reduce users’ workload, and that users, indeed, want them;

• Carrying out hundreds of experiments using various machine learning techniques
(including soft and evolutionary learning techniques) over several domains to determine
which learning techniques are preferable for what domains and why;

• Analysing the effect of the various learning mechanisms on the responsiveness of
agents;

• Extending interface agents to be able to negotiate with other peer agents;

• Enhance continually the competence of interface agents so that their users’ trust in them
build up over time (Maes, 1994). Other issues which Maes notes include guaranteeing
the users’ privacy and the legal quagmire which may ensue following the fielding of
such agents.

• Extending the range of applications of interface agents into other innovative areas such
as entertainment, as ALIVE and HOMR are doing.

However, having stated these, there is no denying the fact that interface agents can/will be
deployed in real applications in the short term because they are simple, operate in limited
domains and do not, in general, require cooperation with other agents.

5.3 Mobile Agents: An Overview

Mobile agents are computational software processes capable of roaming wide area networks
(WANs) such as the WWW, interacting with foreign hosts, gathering information on behalf
of its owner and coming ‘back home’ having performed the duties set by its user. These
duties may range from a flight reservation to managing a telecommunications network.
However, mobility is neither a necessary nor sufficient condition for agenthood. Mobile
agents are agents because they are autonomous and they cooperate, albeit differently to
collaborative agents. For example, they may cooperate or communicate by one agent making
the location of some of its internal objects and methods known to other agents. By doing this,
an agent exchanges data or information with other agents without necessarily giving all its
information away. This is an important point, not least because the public perception of
agents (thanks to the popular computing press) is almost synonymous with mobile agents.
For example, Peter Wayner’s (1995b) agent text (and there are almost no other agent texts

22

about currently) is titled ‘Agents Unleashed: A Public Domain Look at Agent Technology’,
but it is all about mobile agents. Whilst the ‘unleashed’ in the title gives it away, it is rather
subtle - so, Wayner could be accused of reinforcing this rather jaundiced view, that agents
equals mobile pieces of software.

Another myth to slay is that mobile agents equals Telescript, the current leading mobile agent
operating environment invented at General Magic (Mountain View, CA). Through some very
clever marketing, General Magic has managed to put mobile agents ‘on the map’ and link
their name simultaneously and inextricably to it. But other mobile agent demonstrators or
applications not based on Telescript do exist.

5.3.1 Hypothesis, Motivation and Benefits

The key hypothesis underlying mobile agents is that agents need not be stationary; indeed, the
idea is that there are significant benefits to be accrued, in certain applications, by eschewing
static agents in favour of their mobile counterparts. These benefits are largely non-functional,
i.e. we could do without mobile agents, and only have static ones but the costs of such a
move are high. For example, consider the scenario borrowed from Wayner (1995b) where the
user is required to write a program that would allow her home computer make a flight
reservation for her by accessing several airline reservation databases. She lists all her
preferences: non-smoking, departure between 7 and 9.30 am from Baltimore, arrival at Austin
before noon, no more than one connection, and no changes at Chicago O’Hare. A static
single-agent program would need to request for all flights leaving between these times from
all the databases, which may total more than 200 and take up many kilobytes. It would also
require a list of all the connections and proceed to narrow down the search. Each of these
actions involves sifting through plenty of extraneous information which could/would clog up
the network. Besides, she is probably paying for this network time.

Consider the alternative. She encapsulates, object-oriented style, her entire program within an
agent which consumes probably less than 2K which roams the network of airline reservation
systems, arrive safely and queries these databases locally, and returns ultimately to her home
computer, with a schedule which she may confirm or refute. This alternative obviates the
high communications costs of shifting, possibly, kilobytes of information to her local
computer - which presumably she cannot cope with. Hence, mobile agents provide a number
of practical, though non-functional, advantages which escape their static counterparts. So
their motivation include the following anticipated benefits.

• Reduced communication costs: there may be a lot of raw information that need to be
examined to determine their relevance. Transferring this raw information can be very
time-consuming and clog of the networks. Imagine having to transfer many images just
to pick out one. It is much more natural to get your agents to “go” to that location, do a
local search/pruning and only transfer the chosen compressed image back across the
network2 . It obviates the need for costly network connections between remote
computers as required in remote procedure calls (RPC). It provides a much cheaper
alternative as we pay increasingly for network bandwidth and time as CompuServe
users already do. In the future we would almost certainly be charged by the byte for
bandwidth, though others maintain that bandwidth would be free.

2 This example is due to my colleague, Barry Crabtree.

23

• Limited local resources: the processing power and storage on the local machine may be
very limited (only perhaps for processing and storing the results of a search), thereby
necessitating the use of mobile agents.

• Easier coordination: it may be simpler to coordinate a number of remote and
independent requests and only collate all the results locally.

• Asynchronous computing: you can ‘set off’ your mobile agents and do something else
and the results will be back in your mailbox, say, at some later time. They may operate
when you are not even connected.

• It provides a natural development environment for implementing ‘free market’ trading
services. New services can come and go dynamically and much more flexible services
may co-exist with inferior ones, providing more choices for consumers.

• A flexible distributed computing architecture: mobile agents provide a unique
distributed computing architecture which functions differently from the static set-ups. It
provides for an innovative way of doing distributed computation.

• Lastly, mobile agents represent an opportunity for a radical and attractive rethinking of
the design process in general. Following on from the latter, it turns the conventional
design process ‘on its head’, and some truly innovative products should/would emerge
out of mobile agent technology.

5.3.2 How Mobile Agents Work: A Brief Telescript View

Telescript is an interpreted object-oriented and remote programming language which allows
for the development of distributed applications (see http: URL2). The interpreter and runtime
development environment for the Telescript language is called the Telescript engine and a
given host can support simultaneously multiple Telescript engines. Figure 5 summarises a
part view of the Telescript architecture. It shows just one of these Telescript engines
integrated onto an operating system via a programming interface called the Telescript
application programmer interface (API). The Telescript Development Environment (TDE)
can now be downloaded freely from URL2 and it comprises the engine, browser, cloud
manager, debugger and associated libraries.

Server/Operating System

Telescript API

PROCESS

Telescript
Engine

190.0.1.26

190.0.1.25

Mobile
Agent

Places

Going to
190.0.1.25

WAN

Local
Agent

Figure 5 - A Part View of Telescript Architecture (Adapted from Wayner, 1995b)

24

Telescript applications consist of Telescript agents operating within a ‘world’ or cyberspace
of places, engines, clouds and regions. All of these are objects. For example, a place is an
instance of some class within the engine whose definition inherits operations which can be
called on that place. The top class in Telescript’s object hierarchy is the process. A Telescript
engine is itself a multitasking interpreter which can run multiple processes and switches
preemptively between them. Hence, the engine can host multiple agents that share
data/information between themselves. Furthermore, a place is itself a process which can
contain an arbitrary number and depth of other places. Figure 5 also shows a local agent
process. Agent processes, unlike place processes, are objects which cannot contain other
processes, but they can ‘go’ from place to place (note that places have unique network
addresses as shown in Figure 5). An agent requiring a service defined at some given place
must go to that place and call the operations there (cf. Figure 5).

So to effect remote programming, Telescript makes use of these three language concepts:
places, agents and “go”. “Go” is the primitive which allows for inter-process
communication. Two or more agent processes can meet (in one place using the meet
command) and make use of each other’s services. They do this by setting up a
communication channel - this is the basis for cooperation. Indeed, by agents moving places,
they can exploit the services implemented at these places.

A “go” requires a destination space and the host engine packages up the agent along with all
its data, stack and instruction pointer and ships it off to its destination place which may be
across a vast WAN. At its destination, the other Telescript-enabled engine unpacks it, checks
its authentication, and it is then free to execute at its new place. When it finishes, it returns to
its original host having performed the task required by its owner. Non-cooperation occurs
when a place refuses to accept an incoming agent process. In the free market model, services
would be located at places, and it is up to the agent processes to ‘go’ there, ‘negotiate’ for the
services, use them, pay and return to their owners.

5.3.3 Mobile Agent Applications

Mobile agent applications do not currently abound but are likely to increase to be in the short
to medium term, especially after General Magic’s release of their Telescript Development
Environment into the public domain with their Open Telescript Initiative. However, the first
commercial application was Sony’s Magic Link PDA or personal intelligent communicator
(PIC) (see http: URL3). Essentially, it assists in managing a user’s e-mail, fax, phone and
pager as well as linking the user to Telescript-enabled messaging and communication
services such as America Online and AT&T PersonaLink Services. The latter, for example,
can carry text, graphics and sound. Magic Link operates through the Magic Cap software
platform, and a Magic Cap user can send executable agents (Telescript processes) via e-mail
through the network. Hence, if two or more users connect their Sony’s Magik Link PDAs to
AT&T’s PersonaLink services (which supports Magic Cap’s e-mail messaging), it provides a
platform for an application which could exploit email-based Telescript mobile agents.

Plu (1995) mentions that France Telecom, who are a member of the General Magic Alliance
and therefore had access to Telescript technology, has prototyped some services based on
Telescript. In one of their demonstrators, they have used mobile Telescript agents to integrate
railway ticketing and car renting services, and the prototype is able to propose an optimal
solution depending on price and time. As noted in Section 3, IBM plans to launch their ICS
system which uses mobile agents for providing a communications super-service: capable of

25

routeing and translating communications from one service and medium to another, e.g.
mobile to desktop, PDA to fax, speech to text, etc.

As we write, many others applications are in the pipeline. Telescript technology is now also
evolving into active web tool technology (see http: URL3).

5.3.4 A Brief Critical Review of Mobile Agent Systems Work

Telescript is not the only system that permits agents to roam from place to place. In the late
1980s, Siemens developed an application which they called ‘Intelligent Moving Processes’
(Wolfson et al., 1989). In this work, computer programs are interpreted on one machine until
a “move” statement is encountered. A ‘move’ statement causes the packaging of the program,
data and instruction pointer (just like with Telescript) and the despatching of this package to a
target machine. At the target, a process unpackages the process and the program resumes
execution at the new location.

There are other languages which support mobile agent system development notably Java
from Sun Microsystems. Java is a programming language similar in syntax to C++, but also
similar in other ways to Smalltalk.

It is also important to point out that mobile agent systems need not only be constructed using
an agent-oriented system like Telescript. Indeed, Wayner (1995b) shows examples of how
mobile agents can be scripted in Xlisp. Other languages to consider include Agent-Tcl, Safe-
Tcl and C/C++. Indeed, a couple of years ago at BT Labs, Appleby & Steward (1994)
prototyped a mobile agent-based system for controlling telecommunication networks. This
system was written completely in C/C++. In this system, there are two types of mobile agents
which provide different layers of control in the system. Each node in the network is
represented by a routeing table storing the neighbouring node to which traffic should be
routed in order for that traffic to reach its particular destination node. The agents control
congestion by making alterations to these routeing tables in order to route traffic away from
congested nodes. This prototype demonstrated that an ensemble of mobile agents could
control congestion in a circuit-switched communications network. In fact, this novel
application won the authors a prestigious British Computer Society (BCS) award.

The key criticism of mobile agents is undoubtedly their security. Already, for example, BT
Labs operate a ‘firewall’ which prevents our internal networks being reached from outside.
The thought of allowing mobile agents roam into and out of our networks, however benign
they are, send shivers up many spines. Telescript agents cannot write to system memory or to
disk and so it is safer than viruses which do. However, you can never be too careful as to
what roaming agents may leave behind. Furthermore, the range of applications based on
mobile agents are rather few, even though this situation will almost certainly have changed by
the time this paper is published.

5.3.5 Mobile Agents: Some Challenges

Wayner (1995a) lists the major challenges. They include the following. As usual, they are not
exhaustive.

• Transportation: how does an agent move from place to place? How does it pack up and
move?

26

• Authentication: how do you ensure the agent is who it says it is, and that it is
representing who it claims to be representing? How do you know it has navigated
various networks without being infected by a virus?

• Secrecy: how do you ensure that your agents maintain your privacy? How do ensure
someone else does not read your personal agent and execute it for his own gains? How
do ensure your agent is not killed and its contents ‘core-dumped’?

• Security: how do you protect against viruses? How do you prevent an incoming agent
from entering an endless loop and consuming all the CPU cycles?

• Cash: how will the agent pay for services? How do you ensure that it does not run amok
and run up an outrageous bill on your behalf?

In addition to these are the following:

• Performance issues: what would be the effect of having hundreds, thousands or millions
of such agents on a WAN?

• Interoperability/communication/brokering services: how do you provide
brokering/directory type services for locating engines and/or specific services? How do
you execute an agent written in one agent language on an agent engine written in
another language? How do you publish or subscribe to services, or support broadcasting
necessary for some other coordination approaches?

Having listed these, it must be noted that some of them are already being addressed
successfully in development environments like TDE using various techniques including the
following: using ASCII-encoded, Safe-Tcl scripts or MIME-compatible e-mail messages for
transportation; using public-key and private-key digital signature technology for
authentication, cash and secrecy; and providing limited and/or interpreted languages that will
prevent illegal instructions from being executed, for security; for example, environments
would typically not allow an agent to write to memory as viruses do. As a result, much
software and hardware (e.g. new consumer electronics products) which exploit mobile agent-
based services are currently in the pipeline.

5.4 Information/Internet Agents: An Overview

Information agents have come about because of the sheer demand for tools to help us manage
the explosive growth of information we are experiencing currently, and which we will
continue to experience henceforth. Information agents perform the role of managing,
manipulating or collating information from many distributed sources.

However, before we proceed, perhaps we should clarify that there is, yet again, a rather fine
distinction, if any, between information agents and some of those which we have earlier
classed as interface or collaborative agents. For example, in Section 5.1.3, we saw the
presence of ‘information-specific’ collaborative agents in the Pleiades distributed architecture
(see Figure 3). In Section 5.2.3, we described briefly Sheth & Maes’ news filtering agent,
NewT, which helps filter and select articles from a continuous stream of Usenet Netnews. We
also discussed briefly the Letizia search agent and the remembrance agent. We would not
attempt to argue with any researcher who would rather class all these agents as information
agents. Interface or collaborative agents started out quite distinct, but with the explosion of
the WWW and because of their applicability to this vast WAN, there is now a significant
degree of overlap. This is inevitable especially since information or internet agents are

27

defined using different criteria. They are defined by what they do, in contrast to collaborative
or interface agents which we defined by what they are (i.e. via their attributes, see Figure 1).
Many of the interface agents built at the MIT Media Labs, for example, are autonomous and
learn, but they have been employed in WWW-based roles; hence, they are, in a sense,
information agents. This is a rather subtle distinction, but it must be clarified.

5.4.1 Hypothesis, Motivation and Benefits
“We are drowning in information but starved of knowledge” (John Naisbitt, Megatrends).

Similarly, vis-à-vis the WWW, it is also the case that we are drowning in data but starved of
information. The underlying hypothesis of information agents is that, somehow, they can
ameliorate, but certainly not eliminate, this specific problem of information overload and the
general issue of information management in this information era. We agree with Tom Henry,
vice president of SandPoint, who is quoted in Indermaur (1995) as saying that the biggest
challenge is to create a simple user interface so that information search and retrieval using
information agents will become as natural for people as picking up a phone or reading a
newspaper. Though Henry is quoted in Indermaur’s article in the context of ‘assistant’ agents,
we believe this is the ultimate goal for information agents. Your information agents would,
perhaps, put together your own personal newspaper, just as you want it. The information
agents would have to be endowed with the capabilities of knowing where to look, how to find
the information and how to collate it.

The case for having information agents should be clearer from the following. Davies &
Weeks (1995) report that in 1982, the volume of scientific, corporate and technical
information was doubling every 5 years. Three years later, i.e. 1988, it was doubling every
2.2 years, and by 1992 every 1.6 years. This trend suggests that it should now be doubling
every year. What is more, much of this information is now accessible electronically on the
WWW, whose phenomenal growth over the last 5 years has astonished most. Nicholas
Negroponte, head of MIT’s Media Labs, claimed in a recent talk at BT Labs that the web was
doubling every fifty days. This latter figure is arguable (we believe it is overly optimistic) but
the explosive growth of information and the WWW is unquestionable.

The motivation for developing information/internet agents is at least twofold. Firstly, there is
simply a yearning need/demand for tools to manage such information explosion. Everyone on
the WWW would benefit from them in just the same way as they are benefiting from search
facilitators such as Spiders, Lycos or Webcrawlers. As Bob Johnson, an analyst at Dataquest
Inc., notes:

“in the future, it [agents] is going to be the only way to search the Internet, because no matter
how much better the Internet may be organised, it can't keep pace with the growth in
information ...”.

Secondly, there are vast financial benefits to be gained. Recall that Netscape Corporation
grew from relative obscurity to a billion dollar company almost overnight - and a Netscape or
Mosaic client offers generally browsing capabilities, albeit with a few add-ons. Whoever
builds the next killer application - the first usable Netscape equivalent of a proactive,
dynamic, adaptive and cooperative agent-based WWW information manager - is certain to
reap enormous financial rewards. Furthermore, $21 billion was spent by Internet users on
purchasing air tickets including hotel bookings, car rentals, etc. in 1995 alone. This compares
significantly with the US/European market totals of $170 billion (see http: URL5)

28

5.4.2 How Information Agents Work

As noted earlier, information agents have varying characteristics: they may be static or
mobile; they be non-cooperative or social; and they may or may not learn. Hence, there is no
standard mode to their operation.

Internet agents could be mobile, i.e. they may be able to traverse the WWW, gather
information and report what they retrieve to a home location. However, this is not the norm
as yet. Figure 6 depicts how the typical static ones work. It shows how an information agent,
typically within some browser like Netscape, uses a host of internet management tools such
as Spiders and search engines in order to gather the information. The information agent may
be associated with some particular indexer(s), e.g. a Spider. A Spider is an indexer able to
search the WWW, depth-first, and store the topology of the WWW in a database management
system (DBMS) and the full index of URLs in the WAIS. Other search/indexing engines or
spiders such as Lycos or Webcrawler can be used similarly to build up the index. Indeed,
there are currently more than twenty spiders on the WWW.

User
Infomation

Agent Program

NorthStar RobotLycos WebCrawler

Spider

Local cache

DBMS

WAIS

URL Search
World Wide Web

(WWW)

Mite

Figure 6 - A view of how Information Agents Work (Adapted from Indermaur, 1995)

The user information agent, which has been requested to collate information on some subject,
issues various search requests to one or several URL search engines to meet the request.
Some of this search may even be done locally if it has a local cache. The information is
collated and sent back to the user.

5.4.3 A Prototypical Example: the Internet Softbot

Etzioni & Weld (1994) describes a state-of-the-art agent called the internet softbot (software
robot). It is a fully implemented agent which allows a user to make a high-level request, and
the softbot is able to use search and inference knowledge to determine how to satisfy the
request in the internet. In doing so, it is able to tolerate ambiguity, omissions and the
inevitable errors in the user’s request. In their paper, Etzioni & Weld use a strong analogy to
a real robot in order to describe their softbot-based interface to the internet.. For example,
they describe the softbot’s effectors to include ftp, telnet, mail and numerous file manipulation
commands including mv or compress. The sensors provide the softbot with information about
the external world and they include internet facilities such as archie, gopher and netfind and other
Unix commands such as mv or compress; netfind, for example, is used to determine some user’s
e-mail address.

29

The contribution of softbot, in its designers’ view, is threefold. Firstly, it provides an
integrated and expressive interface to the internet. Secondly, it chooses dynamically which
facilities to invoke when and in what sequence. Thirdly, if a UUCP gateway goes down
during a search, it is able to backtrack from one facility to another, at run-time in order to try
an alternative to meet its goal. This is quite important, not least because the softbot is very
goal driven. Prima facie, the softbot presents a menu-based interface through which users can
compose queries (users are also allowed to use the first-order logic based notation which
supports negation, conjunction, quantification and disjunction, but studies have shown that
they are uncomfortable with it). However, at its core, the softbot is a goal-driven planner. It
translates the filled-in menu form into a softbot goal which it tries to satisfy. It is therefore
able to handle tasks such as “send the budget memos to Mitchell at CMU” and “Get all of
Ginsberg’s technical reports that aren’t stored locally”. Clearly, there is much disambiguation
for the softbot to do, e.g. in the former, who is exactly the intended recipient of the memos?
To do this the softbot has to execute a finger mitchell@cmu.edu, inter alia, to resolve this. In the
latter example, the softbot would need to use the ftp utility, but it would also have to find out
where to retrieve Ginsberg’s papers, which of his papers are not stored locally (using a
combination of universal quantification and negation), and, finally, issue ftp commands to
retrieve them. In brief, the planner is the core module which is able to decompose a complex
goal expression into simpler ones and go on to solve them. It resolves issues such as
interactions between subgoals which it also detects automatically.

Softbots may be implemented for a host of other problems including filtering e-mails,
scheduling meetings and performing system maintenance tasks. We classed the softbot as an
information agent rather than as an interface agent because learning is not the crucial feature
of it, though it does some limited memory-based learning. For example, returning to an
example given earlier, the softbot is able to record for future reference that it is now familiar
with all the Mitchells at CMU - hence, obviating the need to carry out a disambiguation
process next time a similar query is received.

5.4.4 A Brief Critical Review of Information Agents Work

We expect information agents to be a major growth area in the next couple of years. At BT
Labs, Davies & Weeks (1995) have designed and implemented the Jasper agent - Jasper is an
acronym for Joint Access to Stored Pages with Easy Retrieval. Jasper agents work on behalf
of a user or a community of users, and is able to store, retrieve, summarise and inform other
agents of information useful to them found on the WWW. As a user works with his Jasper
agent, a profile of his interests is built dynamically based on keywords. In effect, a Jasper
agent is able to ‘sit at the side of a user’ and suggest interesting WWW pages. Its suggestions
are based on a set of keywords given by the user and other ‘interesting’ WWW pages
suggested by other users in the community. These pages are then summarised and keywords
are extracted from them which are used to index the pages. If another user’s keywords match
closely some page, the summary of the page and its URL is e-mailed to the particular user.

There are other information agents built in particular for information filtering. For example,
Webwatcher (Amstrong et al., 1995), the RBSE Spider (Eichmann, 1994a) and Metacrawler
(http: URL4). The last two are strictly speaking not agents, e.g. Metacrawler is certainly a
meta-search engine which provides an interface to other search engines on the WWW. A
query submitted to it is translated and forwarded to other search engines; it collates the results
and returns them to the user. Spiders are not agents because, even though they explore,
autonomously, the topology of the web; generally, they neither learn nor collaborate with
other spiders, yet.

30

The key problem with static information agents is in keeping their indexes up-to-date in an
environment which is prone to complete chaos. Some researcher such as Etzioni & Weld
(1994) and Eichmann (1994a) have also voiced concerns about the ethics of information
agents. We return briefly to such ethical issues towards the end of this paper.

It is probable that the majority of future information agents will be of the mobile variety for
similar reasons mentioned in Section 5.3. They would be able to navigate the WWW and
store its topology, in a database say, at their home site. The local database may then be
queried using SQL.

5.4.5 Information Agents: Some Challenges

This section is much briefer. As regards the challenges of information agents, we believe that
they are essentially either similar to those of interface or mobile agents. If the information
agents are static, then most of the challenges of interface agents apply (see Section 5.2.5).
However, if they are mobile, then most of the challenges for mobile agents are applicable (see
section 5.3.4). Likewise, the criticisms of information agents are similar to those of interface
and mobile agents depending on whether they are static or mobile respectively.

5.5 Reactive Software Agents: An Overview

Reactive agents represent a special category of agents which do not possess internal,
symbolic models of their environments; instead they act/respond in a stimulus-response
manner to the present state of the environment in which they are embedded. Reactive agents
work dates back to research such as Brooks (1986) and Agre & Chapman (1987), but many
theories, architectures and languages for these sorts of agents have been developed since.
However, a most important point of note with reactive agents are not these (i.e. languages,
theories or architectures), but the fact that the agents are relatively simple and they interact
with other agents in basic ways. Nevertheless, complex patterns of behaviour emerge from
these interactions when the ensemble of agents is viewed globally.

Maes (1991a, p. 1) highlights the three key ideas which underpin reactive agents. Firstly,
‘emergent functionality’ which we have already mentioned, i.e. the dynamics of the
interaction leads to the emergent complexity. Hence, there is no a priori specification (or
plan) of the behaviour of the set-up of reactive agents. Secondly, is that of ‘task
decomposition’: a reactive agent is viewed as a collection of modules which operate
autonomously and are responsible for specific tasks (e.g. sensing, motor control,
computations, etc.). Communication between the modules is minimised and of quite a low-
level nature. No global model exists within any of the agents and, hence, the global behaviour
has to emerge. Thirdly, reactive agents tend to operate on representations which are close to
raw sensor data, in contrast to the high-level symbolic representations that abound in the
other types of agents discussed so far.

5.5.1 Hypothesis, Motivation and Benefits

The essential hypothesis of reactive agent-based systems is a specification of the physical
grounding hypothesis, not to be confused with the physical symbol system hypothesis.
Traditional AI has staked most of its bets on the latter which holds that the necessary and
sufficient condition for a physical system to demonstrate intelligent action is that it be a
physical symbol system. On the contrary, the physical grounding hypothesis challenges this
long-held view arguing it is flawed fundamentally, and that it imposes severe limitations on
symbolic AI-based systems. This new hypothesis states that in order to build a system that is

31

intelligent, it is necessary to have representations grounded in the physical world (Brooks,
1991a). This hypothesis is quite radical and it turns, literally, the physical symbol system
hypothesis ‘on its head’. Brooks argues that this hypothesis obviates the need for symbolic
representations or models because the world becomes its own best model. Furthermore, this
model is always kept up-to-date since the system is connected to the world via sensors and/or
actuators. Hence, the reactive agents hypothesis may be stated as follows: smart agent
systems can be developed from simple agents which do not have internal symbolic models,
and whose ‘smartness’ derives from the emergent behaviour of the interactions of the various
modules.

It is important to note that all current reactive software agents do not necessarily possess
actuators and sensors which connect them to the physical world, though Brooks would insist
on them. Indeed, in a paper titled ‘Intelligence without Robots’, Etzioni (1993) has argued
that software environments

“circumvent many thorny but peripheral research issues that are inescapable in physical
environments”, p. 7.

However, the essence of the physical grounding hypothesis still holds with such reactive
agents: no explicit symbolic representations, no explicit (abstract) symbolic reasoning and an
emergent functionality. Reactive agents are simple and easy to understand, and their
‘cognitive economy’ (Ferber, 1994) is very low; this is because they have to ‘remember’
little. They are situated, i.e. they do not plan ahead or revise any world models, and their
actions depend on what happens at the present moment.

The key benefits which motivates reactive agents work, in addition to the hypothesis
mentioned earlier, is the hope that they would be more robust and fault tolerant than other
agent-based systems, e.g. an agent may be lost but without any catastrophic effects. Other
benefits include flexibility and adaptability in contrast to the inflexibility, slow response
times and brittleness of classical AI systems. Another benefit, it is hoped, is that this type of
work would address the frame problem (Pylyshyn, 1987) which has so far proved intractable
with traditional AI techniques such as nonmonotonic reasoning.

5.5.2 Reactive Agent Applications

It must be stated that there are a relatively few number of reactive software agent-based
applications. Partly, due to this reason, there is no standard mode to their operation; rather,
they tend to depend on the reactive agent architecture chosen. We describe briefly two of
these architectures below.

Explore

Wander

Avoid Obstacles

S
E
N
S
I
N

A
C
T
I
N
G

.

.

Figure 7 - Brook’s Subsumption Architecture

Perhaps the most celebrated of them all, is Brook’s (1991) subsumption architecture. Though
Brook’s architecture has been used to implement physical robots (hence tightly connecting

32

perception to action), it could also be exploited in purely reactive software agents. The
architecture consists of a set of modules, each of which is described in a subsumption
language based on augmented finite state machines (AFSM). An AFSM is triggered into
action if its input signal exceeds some threshold, though this is also dependent on the values
of suppression and inhibition signals into the AFSM. Note that AFSMs represent the only
processing units in the architecture, i.e. there are no symbols as those in classical AI work.
The modules are grouped and placed in layers (which work asynchronously) such that
modules in a higher level can inhibit those in lower layers (see Figure 7). Each layer has a
hard-wired purpose or behaviour, e.g. to avoid obstacles or to enable/control wandering. This
architecture has been used to construct, at least, ten mobile robots at MIT. Steels (1990) uses
similar agents to Brooks’ in order to investigate cooperation between distributed simulated
robots using self-organisation.

Arguably, the most basic reactive architecture is that based on situated-action rules which, in
turn, derives from some work carried out in by Suchman (1987). Situated action agents act
essentially in ways which is ‘appropriate’ to its situation, where ‘situation’ refers to a
potentially complex combination of internal and external events and states (Connah, 1994).
Situated-action ‘agents’ have been used in PENGI, a video game designed as part of Agre’s
doctoral thesis (Agre, 1988), and SONJA (Chapman, 1992). Researchers at Philips research
laboratories in Redhill, UK, have implemented a situation-action based language called the
RTA programming language (Graham & Wavish, 1991). Indeed, they have used this
language to implement characters in computer games which they have since integrated into
CD-i titles (Wavish & Graham, 1995). Kaebling & Rosenschein (1991) have proposed
another language based on a modal logical formalism, which in turn is based on a paradigm
called situated automata. Agents written in this language are compiled into digital circuits
which implement the reactive agent system.

In summary, few applications based on reactive software agents exist currently but this
situation will change before the millenium. A favourite application area for them seems to be
the games or entertainment industry, which of course is a multi-billion pound industry. For
example, the Philips researchers are already working on digital video and 3-D graphics-based,
reactive agent animations (Wavish & Graham, 1995).

5.5.3 A Brief Critical Review of Reactive Agents Work

Reactive agent systems can be used to simulate many types of artificial worlds as well as
natural phenomena. For example, Ferber (1994) describes how he has used them to simulate
ant societies where each ant is modelled as an agent and, a limited ecosystem composed of
three kinds of agents: biotapes, shoals of fish and fishermen. As he further explains, reactive
agents could make the computer become a “virtual laboratory” where the researcher could
modify any experimental parameters and validate his model using both qualitative and
quantitative data. Nwana (1993) describes a simulation of children in a playground which
was implemented using the Agent Behaviour LanguagE (ABLE), a pre-cursor to RTA
(Wavish & Graham, 1994). The ALIVE interactive environment mentioned briefly earlier is
is an autonomous system because it employs real sensors in the form of a camera.

Many criticisms can be levelled against reactive software agents and their architectures.
Firstly, as already noted, there are too few applications about based on them. Secondly, the
scope of their applicability is currently limited, mainly to games and simulations. Even
Brooks’ robots are yet to deliver useful industrial applications even though we can envisage
how they can be exploited in certain applications, e.g. in the toys domain. To be fair, it is still

33

early days for such research: arguably, symbolic AI did not start delivering any useful
industrial applications until the late 1970s or early 1980s, i.e. more than two decades after
symbolic AI was born. So, there is a clear need to expand the range of languages, theories,
architectures and applications for reactive agent-based systems. Thirdly, it is not obvious how
to design such systems so that your intended behaviour emerges from the set-up of agents.
How many of such agents are required for some application? Currently, since it is not
allowable to tell the agents how to achieve some goal, as with genetic algorithms,

“one has to find a “dynamics”, or interaction loop or servo loop, involving the system and
the environment which will converge towards the desired goal. The interaction process only
comes to a rest (or a fixed pattern) when the goals are achieved” (Maes, 1991b, 50).

This would not only be time-consuming, but it also smacks of ‘trial and error’ with all its
attendant problems. Fourthly, how are such systems extended, scaled up or debugged? What
happens if the ‘environment’ is changed? Even Brooks (1991a) acknowledges that such
questions are frequently asked of his work and so he attempts to tackle them in this paper.
However, we do not find his responses very convincing, yet, and perhaps only more
applications would improve the trust in the reactive agent hypothesis. Finally, there is the
issue of the entire physical grounding hypothesis. Brooks and other nouvelle AI researchers
argue that the physical symbol system hypothesis

“implicitly includes a number of largely unfounded great leaps of faith” (Brooks, 1991a, p.
3).

We hope they did not speak too soon: perhaps, the same applies to the physical grounding
hypothesis. Etzioni (1993), amongst others, has already challenged Brooks’ assertion that the
way to make progress in AI is

“to study intelligence from the bottom up, concentrating on physical systems (e.g. mobile
robots), situated in the world, autonomously carrying out tasks of various sorts” (Brooks,
1991c), p. 569.

Furthermore, Maes (1991b) has already pointed out that this situated agents work has some
important limitations precisely because

“of their lack of explicit goals and goal-handling capabilities” (p. 50),

requiring the designers of the systems to precompile or hard-wire the action selections. For
example, she notes correctly that much effort was expended by the Pengi researchers in
analysing the strategies for playing the Pengo game, which were later “hard-wired” into
Pengi. Hence, while a planning approach leaves much to the agent, the situated agents
approach leaves much to the designers.

Maes (1991b) opted for a more hybrid approach in her agent network architecture. In it she
implemented an agent as a set of competence modules, each with STRIPS-like (Fikes &
Nilsson, 1971) pre- and post- conditions. Modules also get activated if their activation level
(a real value) is exceeded, and this level represents the relevance of the module in some
situation. If a module has a higher activation level, it will influence the agent’s behaviour
more. Modules are linked to one another implicitly via various links, e.g. a successor link
occurs if a module X has a post-condition ß, which happens to be the pre-condition of module
Y.

34

5.5.4 Reactive Agents: Some Challenges

This list of criticisms above is not exhaustive but it provides some of the challenges for
reactive agent researchers to address. In summary, we see the main challenges to include the
following:

• Expanding the range and number of applications based on reactive agents;

• Methodology: there is a yearning need for a clearer methodology to facilitate the
development of reactive software agent applications. This may or may not require the
development of more associated theories, architectures and languages. Much of the
current approaches, sadly, smacks of ‘trial and error’;

• Non-functional issues: issues such as scalability and performance would need to be
addressed, though these are unlikely to be important until clearer methodologies have
been developed and evaluated.

Despite these challenges, we would expect more applications to be ‘hand-crafted’ in the
medium term.

5.6 Hybrid Agents: An Overview

5.6.1 Hypothesis, Motivation and Benefits

So far, we have reviewed five types of agents: collaborative, interface, mobile, internet and
reactive agents. The debates as to which of them is ‘better’ are rather academic, and frankly,
sterile - and rather too early to get into. Since each type has (or promises) its own strengths
and deficiencies, the trick (as always) is to maximise the strengths and minimise the
deficiencies of the most relevant technique for your particular purpose. Frequently, one way
of doing this is to adopt a hybrid approach, like Maes (1991b), which brought together some
of the strengths of both the deliberative and reactive paradigms. Hence, hybrid agents refer to
those whose constitution is a combination of two or more agent philosophies within a
singular agent. These philosophies include a mobile philosophy, an interface agent
philosophy, collaborative agent philosophy, etc.

The key hypothesis for having hybrid agents or architectures is the belief that, for some
application, the benefits accrued from having the combination of philosophies within a
singular agent is greater than the gains obtained from the same agent based entirely on a
singular philosophy. Otherwise having a hybrid agent or architecture is meaningless. Clearly,
the motivation is the expectation that this hypothesis would be proved right; the ideal benefits
would be the set union of the benefits of the individual philosophies in the hybrid. Consider
the obvious case of constructing an agent based on both the collaborative (i.e. deliberative)
and reactive philosophies. In such a case the reactive component, which would take
precedence over the deliberative one, brings about the following benefits: robustness, faster
response times and adaptability. The frame problem is also better ameliorated by the reactive
component. The deliberative part of the agent would handle the longer term goal-oriented
issues. Typically, such hybrid architectures end up having a layered architecture as is
evidenced by Muller et al.’s (1995) InteRRaP, Ferguson’s (1992) Touring Machines, and
Hayes-Roth’s (1991) architectures. We describe them briefly below.

5.6.2 Hybrid Agent Architectures

 As is the case with reactive agents, there are just but a few hybrid agent architectures. A
prototypical example of a hybrid example is Muller et al.’s layered InteRRaP architecture

35

shown in Figure 8 developed at the German Research Centre for AI. It is an architecture that
implements a layered approach to agent design.

SG PS

SG PS

PSSG

PS

PS

World
Model

Mental
Model

Social
Model

Perception Communication Action

Agent KB Agent Control Unit

Cooperative
Planning Layer

Local
Planning Layer

Behaviour-based
Layer

World Interface/Body

Figure 8 - The InteRRaP Hybrid Architecture (from Fischer et al., 1995)

This architecture can be used to construct an agent such as an autonomous robot. As shown, it
consists of an agent knowledge base and its associated control unit sitting ‘on top’ of the
perception-action component which also handles the low-level communications. There are
three control layers in this architecture: the behaviour-based layer (BBL), the local planning
layer (LPL) and the cooperative planning layer (CPL). Clearly, the architecture marries the
deliberative and the reactive philosophies. The reactive part of the framework which allows
for efficiency, reactivity and robustness are implemented by the BBL which contains a set of
patterns of behaviour (PoBs), in effect, situation-action rules. These describe the agents
reactive skills which implements fast situation recognition in order to react to time-critical
situations. The intermediate LPL implements local goal-directed behaviour while the topmost
CPL enables the agent to plan/cooperate with other agents in order to achieve multi-agent
plans, as well as resolve conflicts. LPL and CPL allow for more deliberation. These layers all
work with different models in the agent’s knowledge base: BBL, LPL and CPL operate with
the world, mental and social models respectively. Each InteRRaP layer also consists of two
processes, SG and PS, which interact with each other as well as with neighbouring layers.
These layers work asynchronously. The InteRRaP architecture has been evaluated by
constructing a FORKS application which simulates forklift robots working in an automated
loading dock environment. For more details on the InteRRaP architecture (whose redesign
has been completed recently) and the results of the evaluation, consult Muller et al. (1995),
Muller (1994) and Fischer et al. (1996).

Ferguson’s (1992a) TouringMachines architecture is another good example of a hybrid
“architecture for dynamic, rational and mobile agents” (Ferguson, 1992b), though the word
‘mobile’ does not refer to mobile agents as in Telescript agents, but to mobile agents as in
autonomous robots. This architecture, which is similar to Brook’s subsumption architecture
(see Figure 7), consists of three control layers: the reactive layer, the planning layer and the
modelling layer which all work concurrently. A key distinction between TouringMachines
and Brook’s subsumption architecture on the one hand, and InteRRaP on the other is that the
former are horizontal architectures while the latter is a vertical architecture. This means that
all the layers in TouringMachines and the subsumption architecture have access to the
perception/sensing data and all the layers can contribute to the actions (as shown in Figure 7),
while only the bottom layer in InteRRaP receives and acts on the perceptual data (see Figure
8). Therefore to achieve coordination in TouringMachines, Ferguson has control rules

36

capable of suppressing the input to a certain layer, much similar to the suppression/inhibition
mechanisms in the subsumption architecture.

Hayes-Roth’s (1995) integrated architecture for intelligent agents consists of two layers: the
physical layer which performs perception-action coordination, i.e. it senses, interprets, filters
and reacts to the dynamic environment in which the agent is embedded; the cognitive layer
receives perceptual input from the physical controller to construct an evolving model, and to
perform interpretation, reasoning and planning. Her goal is to provide an architecture for
constructing adaptive intelligent agents which can operate in specialised, but challenging,
“niches”; indeed, she argues cogently that AI agents must, of necessity, be niche-bound
because they are knowledge-bound. The fundamental theoretical concept which underlies her
architecture captures succinctly the hybridism that belies it: to construct an agent which
“dynamically constructs explicit control plans to guide its choices among situated-triggered
behaviors”, p. 334. Hence, the physical layer implements reactive situated behaviour while
the cognitive layer performs some longer term, deliberative planning and scheduling, drawing
from the evolving model. Though the Hayes-Roth (1991) paper was largely a design proposal
(aiming to provide sophisticated adaptive, intelligent, versatile and coherent agents), Hayes-
Roth (1995) reports that the architecture has not only been implemented, but has also been
used to implement several experimental agents. For example, she reports on an agent,
Guardian, which has been constructed for one niche - Intensive Care Unit (ICU) monitoring.
Guardian is currently able to monitor on the order of twenty continuously sensed patient data
variables amongst several other occasionally sensed ones. A new demonstrator, Guardian 5,
under development will monitor on the order of a hundred variables. She also reports that she
has begun applying the architecture to other niches including Aibots - adaptive intelligent
robots. Hayes-Roth et al. (1995) report on an evolving testbed application - an animated
improvisational theatre company for children. The idea is to have animated characters (hybrid
agents) which can display spontaneous, situated, opportunistic and goal-directed behaviour.
The agents collaborate via directed improvisation and the goal is to have the animated
characters produce “a joint performance that follows the script and directions in an engaging
manner”, p. 153.

There are a few other hybrid architectures which we do not review here, an obvious one being
the procedural reasoning system (PRS) in which the OASIS prototype (Rao & Georgeff,
1995) mentioned in Section 5.1.4 was implemented. The main reference for PRS is Georgeff
& Ingrand (1989). Another hybrid system is CIRCA (Musliner et al., 1993).

5.6.3 A Brief Critical Review of Hybrid Architectures and Challenges

Hybrid agent architectures are still relatively few in numbers but the case for having them is
overwhelming. There are usually three typical criticisms of hybrid architectures in general,
not necessarily the ones reviewed above. Firstly, hybridism usually translates to ad hoc or
unprincipled designs with all its attendant problems. Secondly, many hybrid architectures
tend to be very application-specific, and for good reasons too. Thirdly, the theory which
underpin hybrid systems is not usually specified. Therefore, we see the challenges for hybrid
agents research as quite similar to those identified for reactive agents (see Section 5.5.4). In
addition to these, we would also expect to see hybrids of other philosophies than
reactive/deliberative ones. For example, there is scope for more hybrids within a singular
agent: combining the interface agent and mobile agent philosophies which would enable
mobile agents to be able to harness features of typical interface agents or some other
combination.

37

5.7 Heterogeneous Agent Systems: An Overview

Heterogeneous agent systems, unlike hybrid systems described in the preceding section,
refers to an integrated set-up of at least two or more agents which belong to two or more
different agent classes. A heterogeneous agent system may also contain one or more hybrid
agents. As for the other classes, we next discuss their motivation, benefit, how they work, an
example and some challenges.

5.7.1 Hypothesis, Motivation and Benefits

Genesereth & Ketchpel (1994) articulate clearly the motivation for heterogeneous agent
systems. The essential argument is that the world abounds with a rich diversity of software
products providing a wide range of services for a similarly wide range of domains. Though
these programs work in isolation, there is an increasing demand to have them interoperate -
hopefully, in such a manner such that they provide ‘added-value’ as an ensemble than they do
individually. The hypothesis is that this is plausible. Indeed, a new domain called agent-based
software engineering has been invented in order to facilitate the interoperation of
miscellaneous software agents. A key requirement for interoperation amongst heterogeneous
agents is having an agent communication language (ACL) via which the different software
‘agents’ can communicate with each other. The potential benefits for having heterogeneous
agent technology are several:

• Standalone applications can be made to provide ‘value-added’ services by enhancing
them in order to participate and interoperate in cooperative heterogeneous set-ups;

• The legacy software problem may be ameliorated because it could obviate the need for
costly software rewrites as they be given ‘new leases of life’ by getting them to
interoperate with other systems. At the very least, heterogeneous agent technology may
cushion or lessen the blow or effect of routine software maintenance, upgrade or
rewrites;

• Agent-based software engineering provides a radical new approach to software design,
implementation and maintenance in general, and software interoperability in particular.
Its ramifications (e.g. moving from passive modules in traditional software engineering
to proactive agent-controlled ones) would only be clear as this methodology and its
tools become clearer.

Genesereth & Ketchpel (1994) note that agent-based software engineering is often compared
to object-oriented programming in that an agent, like an object, provides a message-based
interface to its internal data structures and algorithms. However, they note that there is a key
distinction: in object-oriented programming, the meaning of a message may differ from
object to object (this is the principle of polymorphism); in agent-based software engineering,
agents use a common language with an agent-independent semantics. They highlight three
important questions raised by the new agent-oriented software engineering paradigm. They
include (p. 48):

• What is an appropriate agent communication language?

• How are agents capable of communicating in this language constructed?

• What communication architectures are conducive to cooperation?

In their paper, they begin addressing such issues via ACL - an agent communication language
they have been developing as part of a DARPA initiative. ACL, inter alia, consists of the

38

Knowledge Interchange Format (KIF), the Knowledge Query and Manipulation Language
(KQML) (Finin & Wiederhold, 1991) and Ontolingua (Gruber, 1991).

5.7.2 How Heterogeneous Agent Systems Work

To commence, we provide the rather specific definition of the word ‘agent’ proffered in
agent-based software engineering. It defines a software agent as such

“if an only if it communicates correctly in an agent communication language” (Genesereth &
Ketchpel, 1994, p. 50).

If new agents are constructed such that they abide by this dictum, then putting them together
in a heterogeneous set-up is possible, though not trivial. However, with legacy software, they
need to be converted into software agents first. The latter authors note that there are three
ways of doing this conversion. Firstly, the legacy software may totally be rewritten to meet
the criteria for agenthood - a most costly approach. Secondly, a transducer approach may be
used. The transducer is a separate piece of software which receives messages from other
agents and translates them into the legacy software’s native communication protocol, and
passes the messages into the program. Likewise, it also translates the program’s responses
into ACL which is sent on to other agents. This is the favoured approach in many situations
where the code may be too delicate to tamper with or is unavailable. Lastly, another approach
is the wrapper technique. In this approach, some code is “injected” into the program in order
to allow it communicate in ACL. The wrapper can access directly and modify the program’s
data structures. This is clearly a more interventionist approach which requires the code to be
available, but offers greater efficiency than the transduction approach.

Once the agents are available, there are two possible architectures to choose from: one in
which all the agents handle their own coordination or another in which groups of agents can
rely on special system programs to achieve coordination. The disadvantage of the former is
that the communication overhead does not ensure scalability which is a necessary
requirement for the future of agents. As a consequence, the latter federated approach (see
Figure 9) is preferred typically.

Agent

Facilitator

Agent Agent

Facilitator

Agent Agent

Figure 9 - A Federated System (Adapted from Genesereth & Ketchpel, 1994)

In the above federated set-up, there are five agents distributed in two machines, one with two
agents and the other with three. The agents do not communicate directly with one another but
do so through intermediaries called facilitators which are similar to Wiederhold’s (1992)
mediators. Essentially, the agents surrender some of their autonomy to the facilitators who
are able to locate other agents on the network capable of providing various services. They
also establish the connection across the environments and ensure correct ‘conversation’
amongst agents. ARCHON (Wittig, 1992) used such an architecture.

39

5.7.3 A Brief Critical Review of Heterogeneous Agent Systems Work

PACT is an acronym for Palo Alto Collaborative Testbed which exemplifies the
heterogeneous agents approach. It is an interesting experiment which begins to examine

“the technological and sociological issues of building large-scale, distributed concurrent
engineering systems. The approach has been to integrate existing multi-tool systems that are
themselves frameworks, each developed with no anticipation that they would subsequently
be integrated” (Cutkosky et al., 1993).

The prototype they built integrated four legacy concurrent engineering systems into a
common framework. More specifically, it involved thirty one agent-based programs
executing on fifteen workstations and microcomputers. The agents were organised into a
hierarchy based around facilitators (see Figure 9). Agents communicate with other agents via
their facilitators. This PACT experiment was also part of the DARPA knowledge sharing
effort.

A related area to heterogeneous agent systems is the new discipline of Intelligent and
Cooperative Information Systems (ICIS), born in 1992, which seeks to integrate information
systems, software engineering, databases and AI by using information agents. Papazoglou et
al. (1992) describe such a framework which integrates geographically-dispersed database and
knowledge base systems (KBSs). In ICIS, an agent is attached to each database or
information system, and thus they behave like their front-ends, i.e. a transduction approach is
used. This framework allows for requests for some global piece of information that cuts
across these databases and KBSs. The requests need to be decomposed by information agents
into sub-requests and disseminated to the appropriate systems and the responses are later
collated. Another similar architecture is the Carnot architecture (Huhns et al., 1993) at MCC
which is also addressing the problem of logically unifying physically distributed, enterprise-
wide, heterogeneous information. The essential component of Carnot agents are the
Extensible Service Switches (ESSs) which are the communication aides to the legacy
systems. Essentially, ESSs are facilitators which enable both syntactic and semantic
communication between the heterogeneous information systems. Unlike in the agent-based
software engineering paradigm, there is a global schema to describe the information in the
databases. All communication between two information systems, A and B say, is as follows:
the query in A’s local context is translated to the global schema which in turn gets translated
to B’s local context and vice versa.

The work on heterogeneous agent systems is ongoing and there is a need for methodologies,
tools, techniques and standards for achieving such interoperability amongst heterogeneous
information sources. The challenges, yet to be met, are captured succinctly in the three
questions posed by Genesereth & Ketchpel noted in Section 5.7.1. Such work, as is evidenced
in their paper, is already underway.

This concludes our panoramic overview of the different classes of agents identified in Section
4.

6 Some General Issues and the Future of Agents

“Smart agents are here to stay. Once unleashed, technologies do not disappear” (Norman,
1994, p. 71).

We agree fully with these sentiments which is why we believe agent technology is not a
passing fad. We have now overviewed a broad range of work which goes under the banner of
‘agents’. We have outlined their various promises as well as their challenges. However, apart

40

from such technical issues, there is also a range of societal (i.e. social) and ethical problems
which are looming. Donald Norman writes:

“Probably all the major software manufacturers are exploring the use of intelligent agents.
Myths, promises, and reality are all colliding. But the main difficulties I foresee are social,
not technical. How will intelligent agents interact with people and perhaps more importantly,
how might people think about agents?” (Norman, 1994, p. 68).

We disagree with Norman as regards the major technical hurdles ahead; as shown in the
previous section, there are some extremely demanding technical issues to be resolved in most
of the agent classes reviewed. However, we agree that he poses an extremely pertinent
question. There are issues which society would have to grapple with through various
legislations and they would be very thorny. They include the following:

• Privacy: how do you ensure your agents maintain your much needed privacy when
acting on your behalf?

• Responsibility which goes with relinquished authority: when you relinquish some of
your responsibility to software agent(s) (as you would do implicitly), be aware of the
authority that is being transferred to it/them. How would you like to come back home
after a long hard day at work being the proud owner of a used car negotiated and bought
for, courtesy of one of your (Kasbah) software agents? How do you ensure the agent
does not run amok and run up a huge credit card bill on your behalf?

• Legal issues: following on from the latter, imagine your agent (which you probably
bought off-the-shelf and customised) offers some bad advice to other peer agents
resulting in liabilities to other people, who is responsible? The company who wrote the
agent? You who customised it? Both? We envisage a new raft of legislation would need
to be developed in the future to cover software agents.

• Ethical issues: these would also need to be considered. Already, David Eichmann
(1994b) is already concerned enough about the ethics of software agents that he has
proposed an agent etiquette for information service and user agents as they gather
information on the WWW. They include the following:

• Agents must identify themselves;

• They must moderate the pace and frequency of their requests to some server;

• They must limit their searches to appropriate servers;

• They must share information with others;

• They must respect the authority placed on them by server operators;

• An agent’s services much be accurate and up-to-date.

Etzioni & Weld (1994) have proposed others including:

• Safety - the agent should not destructively alter the world;

• Tidiness - the agent should leave the world as it found it;

• Thrift - the agent should limit its consumption of scarce resources;

• Vigilance - the agent should not allow client actions with unanticipated results.

41

However, such issues are not that critical immediately, but would be in the medium to long
terms. In the short term, we expect some basic agent-based software to be rolled out e.g.
some basic interface agents such as mail filtering or calendar scheduling agents. More basic
mobile agent services would also be provided in the short term. We can also predict
comfortably that many vendors would claim that their products are agent-based even though
they most certainly are not. For example, we are already hearing of ‘compression agents’ and
‘system agents’ when ‘disk compressers’ and ‘operating systems’ would do respectively, and
have done in the past. As Guilfoyle (1995) warns:

“there is a danger, however, that customers may be disappointed by the gap between
colourful press reports about smart agents handling half the work, and the reality of ‘if-then’
rules for message routing”, p. 139.

In the medium term (3 to 5 years), some more decent agent applications would be rolled out
for most of the classes of agents overviewed in this paper. Perhaps, there would be
collaborative agents and/or integrated heterogeneous agent applications doing limited, but
real workflow or air traffic management or controlling real telecommunication networks say,
etc., rather than just simulations. Useful, but limited, interface agents should be available
which perform roles including the following: eager assistants, WWW guides, memory aids,
entertainment and WWW filters/critics. Indeed, the HOMR/Ringo system is already being
marketed as Firefly by Agents Inc. - a Boston-based agents company. Open Sesame
(Caglayan et al., 1996) - another interface agent which employs a neural network learning
technique, is already on the market from Charles River Analytics (Cambridge, MA). More
mobile and information agent applications and languages would soon be rolled out by
vendors. We expect reactive and/or hybrid agent technology to start delivering some real
everyday industrial applications during this period. Furthermore, during this medium term,
we expect the WWW to be commercialised, to some degree, enabling agents of different
classes to play a role in paying for services and performing some restricted buying and selling
on our behalf, as Kasbah agents propose to do. We would also start seeing a proliferation of
specialist agents conferences: agents in the aviation industry, agents in law, etc. We also
envisage that the new domain of agent-based software engineering will grow from strength to
strength. In the long term (> 7 years), we would expect to see agents which approximate true
‘smartness’ in that they can collaborate and learn, in addition to being autonomous in their
settings. They would possess rich negotiation skills and some may demonstrate what may be
referred to, arguably, as ‘emotions’. We caution against the usage of such words as the latter,
not least because the agent literature abounds with such vocabulary which have subtle and
complex meanings in the human context (Smith, 1996a). However, it is also at this stage
society would need to begin to confront some of the legal and ethical issues which are bound
to follow the large scale fielding of agent technology. In the long term too, agents would also
provide another design approach to constructing complex pieces of software.

Indermaur (1994) writes:

“they can’t fly yet, but intelligent agents and smart software are beginning to walk” p. 97.

Our view is different: using Indermaur’s metaphor, we argue that limited software agents are
just to about to ‘crawl’ out of research laboratories; apart from a few interface and
information agents, there is still a very long way, yet, to them ‘walking’, yet alone to their
adolescence.

In summary, we believe, like Greif (1994), that agents can have an enormous effect, but that
this will appear in everyday products as an evolutionary process, rather than a revolutionary

42

one predicted by much press coverage. For example, the Ovum figures quoted in Guilfoyle’s
(1995) paper suggest a seven to eight fold increase in the agents market, in Europe and USA
alone by the year 2000 (i.e. in four years time) - this suggests a revolution! Greif notes
correctly that agents would initially leverage simpler technologies available in most
applications (e.g. word processors, spreadsheets or knowledge-based systems). Then agents
would gradually be evolved into more complicated applications. We hope the over optimistic
claims about agent technology are moderated. It is a sad fact that the only jarring voices in
this hymn of confident approbation about agent technology come from those doing the real
research, and who know what some of the real technical, social and ethical challenges are.

7 Conclusion and a Postscript

This paper has pilfered from a diverse literature in order to overview, in a single paper, the
rapidly evolving area of software agents. Only one other paper (Wooldridge & Jennings,
1995a) has attempted a similar extensive review of this area, which they do from a theories,
architecture and languages angle. In this paper, we have overviewed the same area from the
viewpoint of the clear diversity of agents being investigated in universities and research
laboratories worldwide. We hope it provides a useful contribution to understanding this
exciting field of software agents. However, we conclude this paper with the following,
arguably controversial and/or casual, postscript.

The word ‘agent’ is currently in vogue in the popular computing press as it is within the
artificial intelligence (AI) and computer science communities. It has become a buzzword
because it is both a technical concept and a metaphor. However, its rampant use should
conjure up the problems faced with other flamboyant titles including ‘artificial intelligence’
itself: far too ambitious claims precede the real technical work that follows; the subject tends
to attract dilettantes who just ‘jump on the bandwagon’ in order to make a “quick buck” or
for some other ulterior motives; and coupled with another contentious word such as
‘intelligent’ as in ‘intelligent agent’, prima facie at least, it generates unrealistic expectations
of the state-of-the-art. These exaggerated claims, over-expectations and the ‘oversell’
eventually drown out the real (and sometimes excellent) achievements, which never match
the hype. In short, much is promised but little is delivered! The aftermath of all this is usually
quite predictable: interest in the area soon wanes and the research funding, gradually or
rapidly, disappears. Eventually, the dilettantes leave in search for ‘greener pastures’ and leave
the real researchers to pick up the pieces. Is this the fate for agents research - a passing fad?
Hopefully not!

There are several things which the serious agent researchers can do. Firstly, they can drop the
‘intelligent’ in intelligent agents as we have done in the title of this paper: its connotation,
and hence expectations, are much less. Secondly, they could attempt to ensure, where
possible, that dilettantes do not publish articles on agents in the popular press, at least not
until it has been reviewed by someone whose interest in the area is more than superficial.
This is sometimes possible because some experts usually get asked to review such articles
before they go to press. Thirdly, they (i.e. experts) should not themselves engage in
overselling the domain and, lastly, they must always be critical of the progress in the area in
order to provide a more realistic appraisal of the state-of-the-art. In this overview paper, we
have attempted to abide by the principles of this doctrine. It is up to the reader to judge how
successful we have been in meeting these principles in this paper.

43

8 Acknowledgements

We acknowledge Nader Azarmi for encouraging us to write this paper, particularly through
his provision of a fraction of the literature referenced in it. David Griffiths also encouraged
the writing of this article. Several informal discussions with Barry Crabtree, Mark Wiegand,
Paul O’Brien, Robin Smith and Nader Azarmi have also shaped some of the views
propounded in it. Barry, Robin, Nader, Divine Ndumu and Brian Odgers have also provided
feedback which has improved the quality of this paper. Lastly, we acknowledge the
comments of the three anonymous reviewers, though two of them were not so anonymous
afterall. The author bears all the responsibility for any misunderstandings and/or errors
therein. The views expressed are also those of the author, and not necessarily those of BT plc.
This work was funded by BT Laboratories.

9 References
Agre, P. E. (1988), The Dynamic Structure of Everyday Life, Ph.D Thesis, Department of

Electrical Engineering and Computer Science, MIT.
Agre, P. E. & Chapman, D. (1987), “Pengi: An Implementation of a Theory of Activity”,

Proceedings of the 6th National Conference on Artificial Intelligence, San Mateo, CA:
Morgan Kaufmann, 268-272.

Ambros-Ingerson, J. & Steel, S. (1988), “Integrating Planning, Execution and Monitoring”,
In Proceedings of the 7th National Conference on Artificial Intelligence (AAAI-88), St
Paul, MN, 83-88.

Amstrong, R., Freitag, D., Jopachims, T. & Mitchell, T. (1995), “Webwatcher: A Learning
Apprentice for the World Wide Web”, In Proceedings of the Symposium on Information
Gathering from Heterogeneous, Distributed Environments, AAAI Press.

Appleby, S. & Steward, S. (1994), “Mobile Software Agents for Control in
Telecommunications Networks”, BT Technological Journal 12 (2), 104-113, April.

Bates, J. (1994), “The Role of Emotion in Believable Characters”, Communications of the
ACM 37 (7), 122-125.

Bond, A. H. & Gasser, L. (1988), Readings in Distributed Artificial Intelligence, San Mateo,
CA: Morgan Kaufmann.

Bratman, M. E., Israel, D, J. & Pollack, M. E. (1988), “Plans and Resource-Bounded
Practical Reasoning”, Computational Intelligence 4, 349-355.

Brooks, R. A. (1986), “A Robust Layered Control System for a Mobile Robot”, IEEE
Journal of Robotics and Automation 2 (1), 14-23.

Brooks, R. A. (1991a), “Elephants Don’t Play Chess”, In Maes, P. (ed) (1991), Designing
Autonomous Agents: Theory and Practice from Biology to Engineering and Back, London:
The MIT press, 3-15.

Brooks, R. A. (1991b), “Intelligence without Representation”, Artificial Intelligence 47, 139-
159.

Brooks, R. A. (1991c), “Intelligence without Reason”, In Proceedings of the 12th
International Joint Conference on Artificial Intelligence, Menlo Park, CA: Morgan
Kaufmann, 569-595.

Caglayan, A., Snorrason, M., Jacoby, J., Mazzu, J. & Jones, R. (1996), “Lessons from Open
Sesame! a User Interface Learning Agent”, In Proceedings the First International
Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology
(PAAM ‘96), London, 22-24 April, 61-74.

44

Carver, N. & Lesser, V. (1995), “The DRESUN Testbed for Researcg in FA/C Distribution
Situation Assessment: Extensions to the Model of External Evidence”, In Proceedings of
the 1st International Conference on Multi-Agent Systems (ICMAS-95), San Francisco,
USA, June, 33-40.

Carver, N., Cvetanovic, Z. & Lesser, V. (1991), “Sophisticated Cooperation in Distributed
Problem Solving”, in Proceedings of the 9th National Conference on Artificial
Intelligence 1, Anaheim, 191-198.

Chaib-draa, B., Moulin, B., Mandiau, R. & Millot, P. (1992), “Trends in Distributed
Artificial Intelligence”, Artificial Intelligence Review 6, 35-66.

Chapman, D. (1992), Vision, Instruction and Action, London: MIT Press.
Chavez, A. & Maes, P. (1996), “Kasbah: An Agent Marketplace for Buying and Selling

Goods”, In Proceedings the First International Conference on the Practical Application of
Intelligent Agents and Multi-Agent Technology (PAAM ‘96), London, 22-24 April, 75-90.

Cohen, P. R. & Levesque, H. J. (1990), “Intention is Choice with Commitment”, Artificial
Intelligence 42, 213-261.

Connah, D. (1994), “The Design of Interacting Agents for Use in Interfaces”, in Brouwer-
Janse, D. & Harringdon, T. L. (eds.), Human-Machine Communication for Educational
Systems Design, NATO ASI Series, Series F, Computer and Systems Sciences 129,
Heidelberg: Springer Verlag.

Cutkosky, M. R., Engelmore, R. S., Fikes, R. E., Genesereth, M. R., Gruber, T. R.,
Tenenbaum, J. M. & Weber, J. C. (1993), “PACT: An Experiment in Integrating
Concurrent Engineering Systems”, IEEE Computer 1, January, 28-37.

Davies, N. J. & Weeks, R. (1995), “Jasper: Communicating Information Agents”, in
Proceedings of the 4th International Conference on the World Wide Web, Boston, USA,
December.

Davis, R. & Smith, R. G. (1983), “Negotiation as a Metaphor for Distributed Problem
Solving”, Artificial Intelligence 20, 63-109.

Decker, K. S. (1995), “Distributed Artificial Intelligence Testbeds”, In O’Hare, G. &
Jennings, N. (eds.), Foundations of Distributed Artificial Intelligence, Chapter 3, London:
Wiley, forthcoming.

Decker, K. S. & Lesser, V. R. (1993), “Designing a Family of Coordination Algorithms”, in
Proceedings of the 11th National Conference on Artificial Intelligence, Washington, 217-
224.

Dent, L., Boticario, J., McDermott, J., Mitchell, T. & Zabowski, D. A. (1992), “A Personall
Learning Apprentice”, In Proceedings of the 10th National Conference on Artificial
Intelligence, San Jose, California, AAAI Press, 96-103.

Doran, J., Carvajal, H., Choo, Y. & Li, Y. (1991), “The MCS Multi-agent Testbed:
Developments and Experiments”, in Deen, S. (ed.), Cooperating Knowledge based
Systems, Heidelberg: Springer-Verlag, 240-251.

Durfee, E. H. & Montogomery, T. A. (1989), “MICE: A Flexible Testbed for Intelligent
Coordination Experiments”, In Proceedings of the 1989 Distributed Artificial Intelligence
Workshop, 25-40.

Durfee, E. H., Lesser, V. R. & Corkill, D. (1987), “Coherent Cooperation among
Communicating Problem Solvers”, IEEE Transactions on Computers C-36(11), 1275-
1291.

Eichmann, D. T. (1994a), “The RBSE Spider -- Balancing Effective Search Against Web
Load”, In Proceedings of the First International Conference on the World Wide Web,
Geneva, Switzerland, May 25-27, 369-378.

45

Eichmann, D. T. (1994b), “Ethical Web Agents”, Proceedings of the 2nd WWW Conference,
http://www.ncsa.uiuc.edu/SDG/IT94/

Etzioni, O. (1993), “Intelligence without Robots: A Reply to Brooks”, AI Magazine 14 (4), 7-
13.

Etzioni, O. & Weld, D. (1994), A Softbot-Based Interface to the Internet”, Communications
of the ACM 37 (7), 72-76.

Ferber, J. (1994), “Simulating with Reactive Agents”, In Hillebrand, E. & Stender, J. (Eds.),
Many Agent Simulation and Artificial Life, Amsterdam: IOS Press, 8-28.

Ferguson, I. A. (1992a), “Towards an Architecture for Adaptive, Rational, Mobile Agents”,
In Werner, E. & Demazeau, Y. (eds.), Decentralized AI 3: Proceedings of the 3rd
European Workshop on Modelling Autonomous Agents and Multi-Agent Worlds
(MAAMAW-91), Amsterdam: Elsevier, 249-262.

Ferguson, I. A. (1992b), TouringMachines: An Architecture for Dynamic, Rational, Mobile
Agents, PhD Thesis, Computer Laboratory, University of Cambridge, UK.

Fikes, R. E. & Nilsson, N. J. (1971), “STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving”, Artificial Intelligence 2, 189-208.

Finin, T. & Wiederhold, G. (1991), “An Overview of KQML: A Knowledge Query and
Manipulation Language”, Department of Computer Science, Stanford University.

Fisher, K., Muller, J. P. & Pischel, M. (1996), “Unifying Control in a Layered Agent
Architecture”, Technical Report TM-94-05, German Research Center for AI - (DFKI
GmbH).

Foner, L. (1993), “What’s an Agent, Anyway? A Sociological Case Study”, Agents Memo
93-01, MIT Media Lab, Cambridge, MA.

Foner, L. (1996), “A Multi-Agent Referral System for MatchMaking”, In Proceedings the
First International Conference on the Practical Application of Intelligent Agents and
Multi-Agent Technology (PAAM ‘96), London, 22-24 April, 245-262.

Gasser, L. (1991), “Social Conceptions of Knowledge and Action: DAI Foundations and
Open Systems”, Artificial Intelligence 47, 107-138.

Gasser, L. & Huhns, M. (1989), Distributed Artificial Intelligence 2, San Mateo, CA: Morgan
Kaufmann.

Gasser, L., Braganza, C. & Herman, N. (1987), “MACE: A Flexible Testbed fo Distributed
AI Research”, In Huhns, M. (ed.), Distributed Artificial Intelligence, Research Notes in
Artificial Intelligence, London: Pitman, Chapter 5, 119-152.

Gasser, L. , Rosenschein, J. S. & Ephrati, E. (1995), “Introduction to Multi-Agent Systems”,
Tutorial A Presented at the 1st International Conference on Multi-Agent Systems, San
Francisco, CA, June.

Georgeff, M. (1996), “Agents with Motivation: Essential Technology for Real World
Applications”, The First International Conference on the Practical Applications of
Intelligent Agents and Multi-Agent Technology, London, UK, 24th April 1996.

Georgeff, M. P. & Ingrand, F. F. (1989), “Decision-Making in an Embedded Reasoning
System”, In Proceedings of the 11th International Joint Conference on Artificial
Intelligence, Detroit, MI, Menlo Park, CA: Morgan Kaufmann, 972-978.

Genesereth, M. R. & Ketchpel, S. P. (1994), “Software Agents”, Communications of the
ACM 37 (7), 48-53.

Graham, M. & Wavish, P. R. (1991), “Simulating and Implementing Agents and Multiple
Agent Systems”, In Proceedings of the European Simulation Multi-Conferencce,
Copenhagen, June.

46

Greif, I. (1994), “Desktop Agents in Group-Enabled Products”, Communications of the ACM
37 (7), 100-105.

Gruber, T. “Ontolingua: A Mechanism to Support Portable Ontologies”, KSL-91-66, Stanford
University Knowledge Systems Laboratory.

Guilfoyle, C. (1995), “Vendors of Agent Technology”, UNICOM Seminar on Intelligent
Agents and their Business Applications, 8-9 November, London, 135-142.

Hayes-Roth, B. (1991), “An Integrated Architecture for Intelligent Agents”, SIGART Bulletin
2, (4), 79-81.

Hayes-Roth, B. (1995), “An Architecture for Adpative Intelligent Systems”, Artificial
Intelligence 72 (1-2), 329-365.

Hayes-Roth, B. Brownston, L. & van Gent, R. (1995), “Multiagent Collaboration in Directed
Improvisation”, In Proceedings of the 1st International Conference on Multi-Agent
Systems (ICMAS-95), San Francisco, USA, June, 148-153.

Hermens, L. & Schlimmer, J. (1993), “A Machine Learning Apprentice for the Completion of
Repetitive Forms”, In Proceedings of the 9th IEEE Conference on Artificial Intelligence
Applications, Orlando, Florida: IEEE Press, 164-170.

Hewitt, C. (1977), “Viewing Control Structures as Patterns of Passing Messages”, Artificial
Intelligence 8(3), 323-364.

Huhns, M. N. & Singh, M. P. (1994), “Distributed Artificial Intelligence for Information
Systems”, CKBS-94 Tutorial, June 15, University of Keele, UK.

Indermaur, K. (1995), “Baby Steps”, Byte, March, 97-104.
Huhns, M. N. , Jacobs, N., Ksieyk, T., Shen, W-M, Singh, M. P. & Cannata, P. E. (1993),

“Integrating Enterprise Information Models in Carnot”, Proceedings of the International
Conference on Intelligent abd Cooperative Information Systems (ICI-CIS), 32-42.

Jennings, N. R. (1993), “Specification and Implementation of a Belief Desire Joint-Intention
Architecture for Collaborative Problem Solving”, Journal of Intelligent and Cooperative
Information Systems 2(3), 289-318.

Jennings, N. R., Varga, L. Z., Aarnts, R. P., Fuchs, J. & Skarek, P. (1993), “Transforming
StandAlone Expert Systems into a Community of Cooperating Agents”, International
Journal of Engineering Applications of Artificial Intelligence 6(4), 317-331.

Jennings, N., Corera, J. M., Laresgoiti, L., Mamdani, E., Perriollat, F., Skarek, P. & Varga, L.
(1995), “Using ARCHON to Develop Real-World DAI Applications for Electricity
Transportation and Particle Accelerator Control”, IEEE Expert, Special Issue on Real
World Applications of DAI systems.

Kaebling, L. P. & Rosenschein, S. J. (1990), “Action and Planning in Embedded Agents, In
Maes, P. (ed) (1991), Designing Autonomous Agents: Theory and Practice from Biology to
Engineering and Back, London: The MIT press, 35-48.

Kay, A. “User Interface: A Personal View”, In Laurel, B. (ed.), The Art of Himan-Computer
Interface Design, Reading, Mass: Addison-Wesley.

King, J. A. (1995), “Intelligent Agents: Bringing Good Things to Life”, AI Expert, February,
17-19.

Kozierok, R. & Maes, P. (1993), “A Learning Interface Agent for Scheduling Meetings”,
Proceedings of the ACM-SIGCHI International Workshop on Intelligent User Interfaces,
Florida, 81-93.

Lang, K. (1995), “Newsweeder: Learning to Filter Netnews”, In Proceedings of the Machine
Learning Conference.

47

Lashkari, Y., Metral, M. & Maes, P. (1994), “Collaborative Interface Agents”, In
Proceedings of the 12th National Conference on Artificial Intelligence 1, Seattle, WA,
AAAI Press, 444-449.

Lesser, V. & Corkill, D. (1981), “Functionally Accurate, Cooperative Distributed Systems,
IEEE Transactions on Systems, Man, and Cybernetics C-11(1), 81-96.

Levitt, R., Cohen, P., Kunz, J., Nass, C., Christiansen, T. & Jin, Y. (1994), “The Virtual
Design Team: Simulating how Organisational Structure and Communication Tools affect
Team Performance”, In Carley, K. & Prietula, M. (eds.) Computational Organisation
Theory, San Francisco: Lawrence Erlbaum.

Lieberman, H. (1995), “Letizia: An Agent that Assists Web Browsing”, In Proceedings of
IJCAI 95, AAAI Press.

Maes, P. (ed) (1991a), Designing Autonomous Agents: Theory and Practice from Biology to
Engineering and Back, London: The MIT press.

Maes, P. (1991b), “Situated Agents Can Have Goals”, In Maes, P. (ed) (1991a), Designing
Autonomous Agents: Theory and Practice from Biology to Engineering and Back, London:
The MIT press, 49-70.

Maes, P. (1994), “Agents that Reduce Work and Information Overload”, Communications of
the ACM 37 (7), 31-40.

Maes, P. (1995a), “Intelligent Software”, Scientific American 273 (3), September.
Maes, P. (1995b), “Artificial Intelligence meets Entertainment: Lifelike Autonomous

Agents”, Communications of the ACM 38 (11), November, 108-114.
Minsky, M. (1985), The Society of Mind, New York: Simon & Schuster.
Mitchell, T., Caruana, R., Freitag, D., McDermott, J. & Zabowski, D. (1994), “Experience

with a Learning Personal Assistant”, Communications of the ACM 37 (7), 81-91.
Moukas, A. (1996), “Amalthaea: Information Discovery and Filtering using a Multiagent

Evolving Ecosystem”, Proceedings the First International Conference on the Practical
Application of Intelligent Agents and Multi-Agent Technology (PAAM ‘96), London, 22-24
April, 421-436.

Muller, J. P. (1994), “A Conceptual Model for Agent Interaction”, In Deen, S. M. (ed.),
Proceedings of the 2nd International Working Conference on Cooperative Knowledge
Based Systems (CKBS-94), Keele University: Dake Centre, 213-234.

Muller, J. P., Pishel, M. & Thiel, M. (1995), “Modelling Reactive Behaviour in Vertically
Layered Agent Architectures”, In Wooldridge, M. & Jennings, N. (eds.) (1995b),
Intelligent Agents, Lecture Notes in Artificial Intelligence 890, Heidelberg: Springer
Verlag, 261-276.

Musliner, D. H., Durfee, E. H. & Shin, K. G. (1993), “CIRCA: A Cooperative Intelligent
Real-Time Control Architecture”, IEEE Transactions on Systems, Man Cybernetics 23.

Newell, A. (1982), “The Knowledge Level”, Artificial Intelligence 18, 87-127.
Norman, D. (1994), “How might people interact with agents”, Communications of the ACM

37 (7), 68-76.
Nwana, H. S. (1993), “Simulating a Children’s Playground in ABLE”, Working Report,

Department of Computer Science, Keele University, UK.
Nwana, H. S. (1996), “The Potential Benefits of Software Agent Technology to BT”, Internal

Technical Report, Project NOMADS, Intelligent Systems Research, AA&T, BT Labs,
UK.

Nwana, H. S., Lee, L. & Jennings, N. R. (1996), “Coordination in Software Agent Systems”,
British Telecommunications Technology Journal 14 (4), October.

48

Nwana, H. S. & Wooldridge, M. (1996), “Software Agent Technologies”, British
Telecommunications Technology Journal 14 (4) , October.

O’Brien, P. & Wiegand, M. (1996), “Agents of Change in Business Process Management”,
British Telecommunications Technology Journal 14 (4), October.

Ovum (1994), Ovum Report on ‘Intelligent Agents: The New Revolution in Software”.
Papazoglou, M. P., Laufman, S. C. & Sellis, T. K. (1992), “An Organisational Framework for

Cooperating Intelligent Information Systems”, Intelligent and Cooperative Information
Systems 1(1), 169-202.

Plu, M. (1995), “Software Agents in Telecommunications Network Environments”,
UNICOM Seminar on Intelligent Agents and their Business Applications, 8-9 November,
London, 225-243.

Pylyshyn, Z. W. (1987), (ed.), The Robot’s Dilemma: The Frame Problem Problem in
Artificial Intelligence, Norwood, NJ: Ablex.

Rao, A. S. & Georgeff, M. P. (1995), “BDI Agents: From Theory to Practice”, In
Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS-95), San
Francisco, USA, June, 312-319.

Reinhardt, A. (1994), “The Network with Smarts”, Byte, October, 51-64.
Rosenschein, J. S. (1985), Rational Interaction: Cooperation Among Intelligent Agents, PhD

Thesis, Stanford University.
Rosenschein, J. S. & Zlotkin, G. (1994), Rules of Encounter: Designing Conventions for

Automated Negotiation among Computers, Cambridge: MIT Press.
Rhodes, B. J. & Starner, T. (1996), “Remembrance Agent: A Continuously Automated

Information Retrieval System”, In Proceedings the First International Conference on the
Practical Application of Intelligent Agents and Mullti-Agent Technology (PAAM ‘96),
London, 22-24 April, 487-496.

Shardanand, U. & Maes, P. (1995), “Social Information Filtering for Automating “Word of
Mouth””, In Proceedings of CHI-95, Denver, CO., May.

Sheth, B. & Maes, P. (1993), “Evolving Agents for Personalised Information Filtering”, In
Proceedings of the 9th IEEE Conference on Artificial Intelligence for Applications.

Shoham, Y. (1993), “Agent-Oriented Programming”, Artificial Intelligence 60(1), 51-92.
Smith, R. G. (1980), “The Contract Net Protocol: High-Level Communication and Control in

a Distributed Problem Solver”, IEEE Transactions on Computers C29 (12).
Smith, R. (1996a), “Software Agent Technology”, Proceedings ofThe First International

Conference on the Practical Applications of Intelligent Agents and Multi-Agent
Technology, London, UK, 557-571.

Smith, R. (1996b), Personal Communication.
Steels, L. (1990), “Cooperation between Distributed Agents Through Self-Organisation”, In

Demazeau, Y. & Muller, J. P. (eds.), Decentralized AI - Proceedings of the 1st MAAMAW,
Amsterdam: Elsevier, 175-196.

Suchman, L. A. (1987), Plans and Situated Actions: The Problem of Human-Machine
Communication, Cambridge: Cambridge University Press.

Sycara, K. (1995), “Intelligent Agents and the Information Revolution”, UNICOM Seminar
on Intelligent Agents and their Business Applications, 8-9 November, London, 143-159.

Titmuss, R., Winter, C. S. & Crabtree, B. (1996), “Agents, Mobility & Multimedia
Information”, Proceedings the First International Conference on the Practical Application
of Intelligent Agents and Mullti-Agent Technology (PAAM ‘96), London, 22-24 April,
693-708.

URL1: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-5/www/pleiades.html.

49

URL2: http://www.genmagic.com.
URL3: http://www.sel.sony.com.
URL4: http://www.metacrawler.com.
URL5: http://haas.berkeley.edu/~heilman/agents/
Wavish, P. & Graham, M. (1994), “Roles, Skills and Behaviour”, In Wooldridge, M. &

Jennings, N. (eds.) (1995b), Intelligent Agents, Lecture Notes in Artificial Intelligence
890, Heidelberg: Springer Verlag, 371-386.

Wavish, P. & Graham, M. (1995), “A Situated Action Approach to Implementing Characters
in Computer Games”, Applied AI Journal, (to appear).

Wayner, P. (1995a), “Free Agents”, Byte, March, 105-114.
Wayner, P. (1995b), Agents Unleashed: A Public Domain Look at Agent Technology, Boston,

MA: AP Professional.
Wayner, P. & Joch, A. (1995), “Agents of Change”, Byte, March 94-95.
Wiederhold, G. (1992), “Mediators in the Architecture of Future Information Systems”, IEEE

Computer 25 (3), 38-49.
Wittig, T. (1992) (ed.) ARCHON: An Architecture for Multi-Agent Systems, London: Ellis

Horwood.
Wolfson, D., Voorhees,, E. & Flatley, M. (1989), “Intelligent Routers” In Proceedings of the

9th International Conference on Distributed Computing Systems DCS-9, Newport Beach,
CA, June 5-9, IEEE Computer Society Press, 371-376.

Wooldridge, M. (1995), “Conceptualising and Developing Agents”, In Proceedings of the
UNICOM Seminar on Agent Software, 25-26 April, London, 40-54.

Wooldridge, M. & Jennings, N. (1995a), “Intelligent Agents: Theory and Practice”, The
Knowledge Engineering Review 10 (2), 115-152.

Wooldridge, M. & Jennings, N. (eds.) (1995b), Intelligent Agents, Lecture Notes in Artificial
Intelligence 890, Heidelberg: Springer Verlag.

Wooldridge, M., Mueller, J. P. & Tambe, M. (1996), Intelligent Agents II, Lecture Notes in
Artificial Intelligence 1037, Heidelberg: Springer Verlag.

Zlotkin, G. & Rosenschein, J. S. (1989), “Negotiation and Task Sharing among Autonomous
Agents in Cooperative Domains”, Proceedings of the 11th IJCAI, Detroit, Michigan, 912-
917.

