
Soitware Agents 

he software world 
is one of great rich- 
ness and diversity 
Many thousands of 
software products 
are available to 
users today, provid- 
ing a wide variety of 
information and 
services in a wide 
variety of domains. 
While most of these programs 
provide their users with sitg~ificmt 
value when used in isolation, there 
is increasing demand for programs 
that can in&m@afP-that is 
exchange information and services 
with other programs and thereby 
solve problems that cannot be 
solved atone. 

Part of what makes interopera- 
tion difficult is heterogeneity. 
Programs are written by different 
people, at different times, in dif- 
ferent languages. Consequently, 
they often provide different inter- 
faces. The difficulties created by 
heterogeneity are exacerbated by 
dynamics in the software environ- 
ment. Programs are frequently 
rewritten, new programs are 
added, and old programs are 
removed. 

Agent-bawd soffwm mp’nem’ng 
was invented to facilitate the 
creation of software able to inter- 
operate in such settings. In this 
approach to software develop- 
ment, application programs are 
written as Software agents, i.e., soft- 
ware components that communi- 
cate with their peers by ex- 
changing messages in an erpres- 
sive agent rommunicalion languz~. 

While agents can he as simple as 
subroutines, typically they are 
larger entities with some sort of 
persistent control (e.g., distinct 
control threads within a single 
address space, distinct processes 
on a single machine, or separate 
processes on different machines). 

The salient tea- 
tore of the lan- 
guage used by 
agents is its expres- 
sivrness. It allows 
for the exchange 
of data and logical 
information, ind- 
vidual commands 
and scripts (i.e., prw 
grams). Using this 

lilll~wg~, agent.3 can c”!llmu”Kate 

comptex information and goals, 
directly or indirectly programming 
otw another in usetid ways. 

Agent-hased software engineering 
is often compared to “Qect-oriented 
programming. Like an o+ct, an 
agent provides a messagr-bard in- 
terface independent of its internal 
data structures and algorithms. The 
primary dilterence between the two 
approaches lies in the languagr of the 
interface. In general object-oriented 
programming, the meaning of a mes- 
sage can vary ti-om one object to an- 
other. In agent-based software engi- 
neering, agents use a C”rnrn”” 
language with an agent-independent 
semantics. 

The concept of agent-based soft- 
ware engineering raises a number of 
important questions: 

I. What is an appropriate agent com- 
munication language? 
2. How do we build agents capable of 
communicating in this language? 
3. What communication architec- 
tures are conducive to cooperation? 

(For more information on agent- 
based software engineering. see [5, 
61. Also see [I41 for a description of a 
variation of agent-based software 
engineering known as agent-oriented 
programming.) 

Agent Communication 
Language 
C~nnnlunication language standards 
facilitate the creation ofinteroperable 
















