Software Agents

Michael R. Genesereth

he software world
is one of great rich-
ness and diversity.
Many thousands of
software products
are available to
users today, provid-
ing a wide variety of
information and
services in a wide
variety of domains.
While most of these programs
provide their users with significant
value when used in isolation, there
is increasing demand for programs
that can interoperate—that is
exchange information and services
with other programs and thereby
solve problems that cannot be
solved alone.

Part of what makes interopera-
tion difficult is heterogeneity.
Programs are written by different
people, at different times, in dif-
ferent languages. Consequently,
they often provide different inter-
faces. The difficulties created by
heterogeneity are exacerbated by
dynamics in the software environ-
ment. Programs are frequently
rewritien, new programs are
added, and old programs are
removed.

Agent-based software engineering
was invented to facilitate the
creation of software able to inter-
operate in such settings, In this
approach to software develop-
ment, application programs are
written as software agents, i.e., soft-
ware components that communi-
cate with their peers by ex-
changing messages in an expres-
sive agent communication language.

While agents can be as simple as
subroutines, typically they are
larger entities with some sort of
persistent control (e.g., distinct
control threads within a single
address space, distinct processes
on a single machine, or separate
processes on different machines}.

‘8 July 1994/Vol.37, No.7 COMMUNICATIONS OF THE ACM

The salient fea-
ture of the lan-
guage used by
agents is its expres-
siveness. It allows
for the cxchange
of data and logical
information, indi-
vidual commands
and scripts (i.e., pro-
grams). Using this
Language, agents can communicate
complex information and goals,
directly or indirectly programming
one another in useful ways.

Agent-based software engineering
is often compared to object-oriented
programming. Like an object, an
agent provides a message-based in-
terface independent of its internal
data structures and algorithms. The
primary difference between the two
approaches lies in the language of the
interface. In general object-oriented
programming, the meaning of a mes-
sage can vary hom one Object to an-
other. In agent-based software engi-
neering, agents use a common
language with an agent-independent
semantics.

The concept of agent-based soft-
ware engineering raises a number of
important questions:

1. What is an appropriate agent com-
munication language?

2. How do we build agents capable of
communicating in this languager

3. What communication architec-
tures are conducive to cooperation?

(For more information on agent-
based software engineering, see [5,
6]. Also see [14] for a description of a
variation of agent-based software
engineering known as agent-oriented
programming.)

Agent Communication
Language

Communication language standards
facilitate the creation of interoperable

software by decoupling implementa-
tion from interface. As long as pro-
grams abide by the details of the stan-
dards, it does not matter how they are
implemented. Today, standards exist
for a wide variety of domains. Fo
example, email programs from dif-
manage to inter-
operate through the use of mail stan-
dards like SMTP. Disparate graphics

ferent vendors

progrdins]-[Htf]'U[)t'l'H[t' llbi[]g Stdn-
dard formats like GIF and JPEG.
Text tormatting programs and print-
ers interoperate using languages like
PostScript.

Unfortunately, problems
when it becomes necessary for pro-
grams that use one language to inter-
operate with programs that use a dif-
ferent language. To begin with, there

arise

can be inconsistencies in the use of

syntax or vocabulary. One program
may use a word or expression to
mean one thing while another pro-
gram uses the same word or expres-
sion to mean something entirely dit-
ferent. At the same time, there can be
incompatibilities. Different programs
may use different words or expres-
sions to say the same thing.

Agent-based software engineering
attacks these problems by mandating
a universal communication language,
one in which inconsistencies and arbi-
trary notational variations are elimi-
nated. There are two popular ap-
proaches to the design of such a
language—the procedural approach
and the declarative approach.

The procedural approach is based
on the idea that communication can

be best modeled as the exchange of

procedural directives. Scripting lan-
guages, such as TCL, Apple Events,
and Telescript, are based on this ap-
proach. They are both simple and
powerful. They allow programs to
transmit not only individual com-
mands but entire programs, thus
implementing delayed or persistent
goals of various sorts. They are also
(usually) directly and efficiently exe-
cutable.

Unfortunately, there are disadvan-
tages to purely procedural languages.
For one, devising procedures some-
times requires information about the
recipient that may not be available to
the sender. Second, procedures are

unidirectional. Much information
that agents must share should be us-
able in both directions—to compute
quantity ¢ from quantity b at one time
and to compute quanuty b from
quantity @ at another. Most signifi-
cantly, scripts are difficult to merge.
"T'his is no problem as long as all com-
munication s one-on-one. However,
things must be run simultaneously
and may interfere with one another.
Merging procedural information is
much more difficult than merging
declarative specifications or mixed
mode information such as condition-
action rules.

In contrast with this procedural
approach, the declarative approach
to language design is based on the
idea that communication can be best
modeled as the exchange of declara-
tive statements (definitions, assump-
tion, among others). To be maximally
useful, a declarative language must
be sufficiently expressive to commu-
nicate widely varying sorts of infor-
mation including procedures. At the
same time, the language must be rea-
sonably compact. It must ensure that
communication is possible without
excessive growth over specialized lan-
guages. As an exploration of this ap-
proach to communication, research-
ers in the ARPA Knowledge Sharing
Eftort [12] have defined the compo-
nents of an agent communication lan-
guage (ACL) that satisties these
needs.

ACL can best be thought of as con-
sisting of three parts—its vocabulary,
an inner language called KIF
(Knowledge Interchange Format),
and an outer language called KQML
(Knowledge Query and Manipula-
tion Language). An ACL message is a
KQML expression in which the “ar-
guments” are terms or sentences in
KIF formed from words in the ACL
vocabulary.

The vocabulary of ACL 1s listed in a
large and open-ended dictionary o
words appropriate to common appli-
cation areas [9]. Each word in the dic-
tionary has an English description for
use by humans in understanding the
meaning of the word; and each word
has formal annotations (written in
KIF) for use by programs. The dictio-
nary is open-ended to allow for the

addition of new words within existing
areas and in new application areas.

It should be noted that the exis-
tence of such a dictionary does not
imply there is only one way to de-
scribe an application area. Indeed,
the dictionary can contain multiple
ontologies for any given area. For
example, 1t contains vocabulary for
describing 3D geometry in terms of
polar coordinates, rectangular coor-
dinates, cylindrical coordinates, and
so forth. A program can use which-
ever ontology is most convenient.
The formal definitions of the words
associated with any one of these on-
tologies can then be used by system
programs in translating messages
using one ontology into messages
using other ontologies.

KIF is a prefix version of first
order predicate calculus, with various
extensions to enhance its expressive-
ness. It provides for the encoding of
simple data, constraints, negations,
disjunctions, rules, quantified expres-
sions, metalevel information, and s
forth. (See “Knowledge Interchange
Format” for a briet summary.)

While it is possible to design an
entire communication framework in
which all messages take the form of
KIF sentences, this would be ineffi-
cient. Because of the contextual inde-
pendence of KIF's semantics, each
message would have to include any
implicit information about the
sender, the receiver, the time of the
message history, and so forth. The
efficiency of communication can be
enhanced by providing a linguistic
layer in which context is taken into
account. This is the functuon of
KQML. (See “Knowledge Query and
Manipulation Language” for a brief
Suminary.)

ACL has been used in several
large-scale demonstrations of soft-
ware interoperation, and the results
are promising. Full specifications are
available, and parts of the language
are making their way through vari-
ous standards organizations. Several
start-up companies are proposing to
offer commercial products for pro-
cessing ACL, and a number of estab-
lished computer system vendors are
looking at ACL as a possible language
for communication among heteroge-

COMMUNICATIONS OF THE ACM July 1994/Voi.37, Nu.7 49

neous syslt‘ms.

As of this writing, it is not clear
which of these two approaches will
succeed. The declarative approach
seems inevitable in the long run.
However, scripting languages are
likely to be popular in the short run
because of their familiarity. There-
fore, the ultimate agent communica-
tion language may end up looking

more like a scripting language than
ACL.

Agents

The criterion for agenthood is a be-
havioral one. An entity is a software
agent if and only if it communicates
correctly in an agent communication
language such as ACL. This means
that the entity must be able to read

Knowliedge Interchange Format

calculus with various extensions to enhance its expressiveness.

KIF [71 is a prefix version of the language of first-order predicate

First and foremost, KIF provides for the expression of simple
data. For example, the following sentences encode 3 tuples in a personnel
database. The first argument in each Is the Social Security number of an
individual, the second argument Is the department within which the Indi-
vidual works, and the third argument is the individual's salary.

(salary 015-46-3946 widgdets 72000)

(salary 026-40-9152 grommets 36000)

(salary 41B-33-4707 fidgets 42000)

More complicated pleces of information can be expressed through the
use of complex terms. For example, the following sentence states that one

chip is larger than another.

(> (* (width chip1) (length chipl)) (* (width chip2) (length chip)))

KIF inciudes a variety of logical operators to assist in the encoding of log-
ical information (such as negations, disjunctions, rules, quantified formulas).
The following expression is an exampie of a complex sentence in KIF. It as-
serts that the number obtained by raising any real-number ?x to an even

power ?n is positive.

(=> (and (real-number ?x) (even-number ?n)) (> (expt ?x ?n) 0))

One of the distinctive features of KIF is its ability to encode knowledge
about knowledge, using the ' and , operators and related vocabulary. For
example, the following sentence asserts that agent Joe Is interested in re-
celving triples in the salary relation. The use of commas signals that the
variables shouid not be taken literally. Without the commas, this sentence
would say that Joe is interested In the sentence (salary ?x ?y ?z) instead

of its instances.

(interested joe ‘(salary ,?x ,?y ,?2))

KIF can aiso be used to describe procedures, I.e., to write programs or
scripts for agents to follow. Given the prefix syntax of KIF, such programs
resemble Lisp or Scheme. The following Is an example of a three-step pro-
cedure written in KIF. The first step ensures that there is a fresh line on the
standard output stream; the second step Is to print Hello! to the standard
out stream; the final step is to add a carriage return to get to a new fresh

line.

(progn (fresh-line t) (print *“Hello!”’) (fresh-line t))

The semantics of the KIF core (KIF without rules and definitions) is similar
to that of first-order logic. There is an extension to handie nonstandard
operators (like * and ,), and there s a restriction to models that satisfy vari-
ous axiom schemata (to give meaning to the basic vocabulary in the for-
mat). Despite these extensions and restrictions, the core language retains
the fundamental characteristics of first-order logic, including compactness
and the semidecidabllity of logical entailment.

50 July 1994/Vol.37, No.7 COMMUNICATIONS OF THE ACM

and write ACL messages, and it
means that the entity must abide by
the behavioral constraints implicit in
the meanings of those messages.

The specific constraints associated
with a message derive from the con-
tent of that message and general
principles of agent behavior. For ex-
ample, there is veracity (an agent
must tell the truth), autonomy (an
agent may not constrain another
agent to perform a service unless the
other agent had advertised its willing-
ness to HCCCP[Sl].Ch d]‘CunS[), com-
mitment (if an agent advertises a will-
ingness to perform a service, then it is
obliged to perform that service when
asked to do so), and so forth.

From a theoretical perspective, it is
interesting to note that all of these
principles can be derived from the
single principle of veracity. In other
words, if all agents are constrained to
tell the truth, then qualities such as
autonomy and commitment will fol-
low. To many people the principle of
veracity sounds too strong, but it is
not difficult to achieve. An agent can
always state its own inputs, outputs,
and definitions with confidence, and
it can nest conjectures inside of state-
ments about its beliefs. Unfortunately,
a full account of this issue is beyond
the scope of this article, and interest-
ing as it may be theoretically, it has
only indirect practical value.

For our purposes here, it is suffi-
cient to say the use of ACL brings
with it behavioral constraints. How-
ever, this leaves a wide range of possi-
bilities. At one extreme, we can imag-
ine perfect agents that retain all of the
information they receive and act in
accordance with the logical conse-
quences of this information. At the
other extreme, we can imagine sim-
ple agents, like calculators, that an-
swer arithmetic problems and ignore
everything else. More powerful
agents utilize a larger portion of ACL.
Less powerful agents use a smaller
subset. All are agents, as long as they
use the language correctly.

Given a clear statement of the lan-
guage and the behavioral principles
that agents must satisfy, it is straight-
forward to write programs that
behave correctly. But what about all
of the programs that have already

been written, our so-called legacy

software? Are there any standard
techniques for converting such pro-
grams into software agents? In work
thus far, a number of different ap-
proaches have been taken as shown
in Figure 1.

One approach (the leftmost dia-
gram in Figure 1) is to implement a
transducer that mediates between an
existing program and other agents.
The transducer accepts messages
from other agents, translates them
into the program’s native communi-
cation protocol, and passes those
messages to the program. It accepts
the program’s responses, translates
into ACL, and sends the resulting
messages on to other agents.

This approach has the advantage
that it requires no knowledge of the
program other than its communica-
tion behavior. It is, therefore, espe-
cially useful for situations in which
the code for the program is unavail-
able or too delicate to modify.

This approach also works for other
types of
and people. It is a simple matter to
write a program to read or modify an
existing file with a specialized
format, thereby providing access to
that file via ACL. Similarly, it is possi-
ble to provide a graphical user inter-
face (GUI) for a person, allowing one
to interact with the system in a spe-
cialized graphical language, which is
then converted into ACL,
vice versa.

A second approach to dealing with
legacy software (the middle diagram
in Figure 1) is to implement a wrap-
per, i.e., inject code into a program to
allow it to communicate in ACL. The
wrapper can directly examine the
data structures of the program and
can modify those data structures.
Furthermore, it may be possible to
inject calls out of the program so it
can take advantage of externally
available information and services.

This approach has the advantage
of greater efliciency than the trans-
duction approach, since there is less
serial communication. It also works
for cases having no interprocess com-
munication ability in the original pro-
gram. However, it requires the code
for the program be available.

resources, such as files

and

g < o

Transducer

Wrapper

Rewrite

Figure 1. Three approaches to agentification

The third and most drastic ap-
proach to dealing with legacy soft-
ware (the rightmost diagram in Fig-
ure 1) is to rewrite the original
program. The advantage of this ap-
proach is that it may be possible to
enhance its efficiency or capability
beyond what would be possible in ei-
ther the transduction or wrapping
approaches.

The best examples of this ap-
proach come from the engineering
domain. Many automated design
programs work to completion before
communicating with other programs.
For example, the output of a logic
synthesis program is passed as input
to a printed circuit board layout and
routing program, whose output is in
turn passed to an assembly planning
program. This process is repeated
down the line. Recent work in con-
current engineering suggests there is
much advantage to be gained by writ-
ing programs that communicate par-
tial results in the course of their activ-
ity and accept partial results and
feedback from other programs. By
communicating a partial result and
getting early feedback, a program can
save work on what may turn out to be
an unworkable alternative [11].

Figure 2. Federated system

Architecture of Multiagent
Systems

Once we have a language and the
ability to build agents, there remains
the question of how these agents
should be organized to enhance col-
laboration. Two very different ap-
proaches have been explored: direct
communication, in which agents han-
dle their own coordination and as-
sisted coordination, in which agents
rely on special system programs to
achieve coordination.

The advantage of direct communi-
cation is that it does not rely on the
existence, capabilities, or biases of any
other programs. Two popular archi-
tectures for direct communication are
the contract-net approach and speci-
fication sharing.

In the contract net approach to in-
teroperation [2], agents in need of
services distribute requests for pro-
posals to other agents. The recipients
of these messages evaluate those re-
quests and submit bids to the origi-
nating agents. The originators use
these bids to decide which agents to

COMMUNICATIONS OF THE AcM July 1994/Vol 37, No.7 51

task and then award contracts to

those agents.

In the specification sharing ap-
proach to interoperation, agents sup-
ply other agents with information
about their capabilities and needs.
These agents can then use this infor-
mation to coordinate their activities.

The specification sharing approach is
often more efficient than the contract
net approach because it decreases the
amount of communication that must
take place.

One disadvantage of direct com-
munication is cost. So long as the
number of agents is small, this is not a

Knowledge Query and
Manipuilation Language

s used in ACL, KQML messages are similar to KIF expressions. Each

message Is a list of components enclosed in matching parenthe-

ses. The first word in the list indicates the type of communica-
tion. The subsequent entries are KIF expressions appropriate to that com-
munication, in effect the arguments.

Intuitively, each message in KQML is one piece of a dialogue between the
sender and the recelver, and KQML provides support for a wide variety of
such dialogue types.

The expression shown here is the simplest possible KQML dialogue. In this
case, there is just one message-—a simple notification. The sender is con-
veying the enclosed sentence to the receiver. In general, there is no ex-
pectation on the sender's part about what use the receiver will make of
this information.

A to B: (tell (> 330

The following dialogue is a little more interesting. In this case, the first
message is a request for the receiver to execute the operation of printing
a string to its standard i/o stream. The second message tells the sender
that the request has been satisfied.

A to B: (perform (print “‘Hellol” t))
B to A: (reply done)

In the dialogue shown next, the sender is asking the receiver a question
in an ask-if message. The receiver then sends the answer to the original
sender in a reply message.

A to B: (ask-if (> (size chipl) (size chip2)))
B to A: (reply true)

In the following case, the sender asks the receiver to send it a notifica-
tion whenever it receives information about the position of an object. The
recelver sends It three such sentences, after which the original sender can-
cels the service.

A to B: (subscribe (position ?x ?r ?¢))

B to A: (tell (position chipl 8 10))

B to A: (tell (position chip? 8 46))

B to A: (tell (position chip3 8 64))

A to B: (unsubscribe (position ?x ?r ?c))

In addition to simple notifications, commands, questions, and subscrip-
tions, as illustrated here, KQML also contains support for delayed and condi-
tional operations, requests for bids, offers, promises, and so forth,

(For those who have seen a little of KOML and wonder where the pack-
ages went, it is worth noting that in addition to the communication layer
described here KQML includes yet another linguistic layer to support the
transmission of messages among agents operating in different processes.
This layer characterizes the additional information that must be conveyed
in communication protocols between distributed systems, such as email
and TCP connections. The details of this package layer are irrelevant to the
discussion in this article. See the KQML document for more information.)

52 July 1994/Vol 37, No.7 COMMUNICATIONS OF THE ACM

problem. But, in a setting like the
Internet, with millions of programs,
the cost of broadcasting bids or speci-
fications and the consequential pro-
cessing of those messages is prohibi-
tive. In this case, the only alternative
is to organize the agents in a way that
avoids such broadcasts.

Another disadvantage is imple-
mentational complexity. In the direct
communication schemes, each agent
is responsible for negotiating with
other agents and must contain all of
the code necessary to support this
negotiation. If only these capabilities
could be provided by the system, this
would lessen the complexity of apph-
cation programs.

A popular alternative to direct
communication that eliminates both
of these disadvantages is to organize
agents into what is often called a fed-
erated system. Figure 2 illustrates the
structure of such a system in the sim-
ple case in which there are just three
machines, one with three agents and
two with two agents apiece. As sug-
gested by the diagram, agents do not
communicate directly with one an-
other. Instead, they communicate
only with system programs called fa-
cilitators, and facilitators communicate
with one another. (The concept of a
facilitator [6] derives from and gener-
alizes the concept of a mediator [16].)

In a federated system, agents use
ACL (in practice, a restricted subset
of ACL) to document their needs and
abilities for their local facilitators. In
addition to this metalevel informa-
tion, they also send application-level
information and requests to their fa-
cilitators and accept application-level
information and requests in return.
Facilitators use the documentation
provided by these agents to trans-
form these application-level messages
and route them to the appropriate
places. In effect, the agents form a
federation in which they surrender
their autonomy to their facilitators
and the facilitators take the responsi-
bility for fulfilling their needs.

The concepts of system services in
support of software interoperation
are not new here. For example, direc-
tory assistance programs facilitate
software interoperation by providing
a way for programs to discover which

programs can handle which requests
and which programs are interested in
which pieces of information. Distrib-
uted object managers such as
CORBA, OLE, DSOM provide loca-
tion transparency for ohject-oriented
systems, routing messages to objects
without requiring senders to know
the locations of those objects. Auto-
matic brokers such as the Publish and
Subscribe capabilities on the Macin-
tosh, DDE, BMS, and Tooltalk, com-
bine these capabilities—they not only
compute the appropriate programs
to recelve messages but forward those
messages, handle any problems that
arise, and, where appropriate, return
the answers to the original senders.

The primary difference between
these approaches to software interop-
eration and agent-based software
engineering lies in the sophistication
of the processing done by facilitators.
Using ACL, agents can express their
needs and capabilities more accu-
rately than in pattern-based metalan-
guages, and facilitators can use this
added information to be more dis-
criminating in routing messages. To
deal with notational incompatibilities,
translate messages
from one vocabulary to another using

facilitators can
definitions supplied by agents or re-
trieved from the ACL dictionary. In
so doing, they can decompose mes-
sages into submessages and send
them to different agents. When nec-
essary, they can combine multiple
messages. In some cases this assis-
tance can be rendered interpreuvely
with messages going through the fa-
alitators. In other cases, it can be
done in one-shot fashion with the fa-
cilitators setting up specialized links
among individual agents and then
stepping out of the picture.

To provide these capabilities, cur-
rent implementations of facilitators
take advantage of automated reason-
ing technology developed in the arti-
ficial intelligence (AI) and database
communities. Powerful search con-
trol techniques are used to enhance
normal message-processing perfor-

mance, and automatic generation of

message-routing programs and pair-
wise translators is used for cases re-
quiring greater efficiency.

Even with these enhancements,

these implementations consume
more time in the worst case than sim-
pler processing techniques (like the
pattern-matching method used in
BMS). This is sometimes acceptable,
especially when the alternative is no
interoperation at all. However, in
time-critical applications such as ma-
chine control the extra cost can be
prohibitive.

Ssummary

The agent-based approach o soh-
ware nteroperation described here
has been developed into a practical
technology, which has heen put to
use in a variety of applications neces-
sitating interoperation (e.g., concur-
rent engineering [1], database inte-
gration) and is being used at multiple
institutions in the
software for the national informauon

CC Dllhll'lltli()ll of

mfrastructure.

In order to concentrate on the cen-
tral issues in agent-based software
engineering, we have ignored many
key problems in our presentation,
such as synchronization, security,
payment for services, crash recovery.
and inconsistencies in program speci-
fications. Although parual solutions
to these problems exist, further work
is needed.

In our treatment so far, we have
assumed there is sufficient common
interest among the agents that they
will frequently volunteer to help one
another and receive no direct reward
for their labor. As the Internet be-
comes in('l‘cusingly commercialized,
we envision a world where agents act
on behalf of their creators to make a
profit. Agents will seek payment for
services provided and may negotiate
with one another to maximize thei
expected utility, which might be
measured in a form of
Lronic currency.

elec-

These problems mark the intersec-
tion of economics and distributed Al
(DAI. A number of researchers in
DAIT are using tools developed in eco-
nomics and game theory to evaluate
multiagent interactions [8, 10, 13,
17]. Depending on the prevailing
conditions of the situation, any one of
a number of protocols might be ap-
plicable. In the simplest case, the
agent requesting a service offers a

specific reward for the completion ol

a task. The agent that performs the
task receives the payment. In more
complex scenarios a task may be com-
pleted by a set of agents, who need to
negotiate how to divide the reward.
Dividing the total amount equally
might not be fair if the agents made
different contributions. If there are
many agents (or sets of agents) that
may complete the task, the requester
might try to minimize its cost by seek-
ing muluple bids or holding an auc-
tion. There are a number of alterna-
tives (e.g., English Ascending
Auction, Dutch Descending Auction,
Sealed-Bid, Vickery's Second Price)
that have different properties and
may be applicable or preferred in dif-
ferent situations. The WALRAS sys-
tem [13] is an example of market
mechanics being used to coordinate
agents.

A turther goal of DAI research is to
obviate the need for the truth-telling
assumption. If the selected protocols
are truth dominant, agents tell the
truth out of self-interest, rather than
by fiat. This makes the system as a
whole more resistant to a scheming
agent that might try to exploit other
agents by lying. The next step in this
rescarch thread is to create protocols
that the efforts of
groups of agents that attempt to ma-
nipulate the system for their own
henefit.

In this article we have taken a brief
look at how agent technology can be
used to promote software interopera-
tion. Our long-range vision is one in
which any system—software or hard-
ware—can interoperate with any
other system without the intervention
of human users or their program-
mers. Although many problems re-
main to be solved, we believe the in-
troduction of agent technology will be
an important step toward achieving
this vision. @

are resistant to

References
1. Cutkosky, M. et al. PACT: An experi-
ment in integrated engineering sys-
tems. Compuler 26, 1 (1993), 28-37.
2. Davis, R. and Smith, R.G.. Negotiation
as a metaphor for distributed problem

CONTINUED ON PAGE 147

COMMUNICATIONS OF THE acwm Juiy 1994/ Vo357, No7 53

CONTINUED FROM PAGE 53

solving. Artif. Intell. 20, 1 (1983), 63—
109.

3. Ephrati, E. and Rosenschein, J.5. The
Clarke Tax as a consensus mechanism
among automated agents. In Proceed-
ings of the Ninth National Conference on
Artificial Intelligence (Anaheim, Calif.,
1991). AAAI Press, Menlo Park, Calif.,
pp. 173-178.

4, Finin, T. and Wiederhold, G. An over-
view of KQML: A knowledge query
and manipulation language. Available
through the Stanford University
Computer Science Dept., 1991.

5. Genesereth, M.R. A proposal for re-
search on informable agents, Logic-
89-9. Stanford University Logic
Group, June 1989.

6. Genesereth, M.R. An agent-based
approach to software interoperability.
In Proceedings of the DARPA Software
Technology Conference, 1992.

7. Genesereth, M.R., Fikes, R.E. et al.
Knowledge Interchange Format Ver-
sion 3 Reference Manual, Logic-92-1.
Stanford University Logic Group,
1992,

8. Gmytrasiewicz, P.]., Durfee, E.H., and
Wehe, D.K. A decision-theoretic ap-
proach to coordinating multiagent
interactions. In Proceedings of the
Twelfth International Joint Conference On
Artificial Intelligence (Sydney, Austra-
lia, 1991). International Joint Confer-
ences on Artificial Intelligence, Inc.

pp. 62-68.

9. Gruber, T. Ontolingua: A mechanism
to support portable ontologies, KSI.-
91-66, Stanford Knowledge Systems
Laboratory, 1991.

10. Kraus, S. Agents contracting tasks in
noncollaborative environments. In
Proceedings of the Eleventh National Con-
Jerence on Antificial Intelligence {Wash-
ington, D.C., 1993). AAAl Press,
Menlo Park, Calif.,, pp. 243-248.

11. Lander, S.E. and Lesser, V.R. Under-
standing the role of negotiation in dis-
tributed search among heterogeneous
agents. In Praceedings of the Thirteenth
International foint Conference on Artifi-
cial Intelligence (Chambery, France,
1993). International Joint Confer-
ences on Artificial Intelligence, Inc.
pp- 438-444.

12. Neches, R., Fikes, R., Finin, T,
Gruber, T, Patil, R., Senator, T., and
Swartout, W. Enabling technology for
knowledge sharing. Af Mag. 12, 3
(1991), 36-56.

13. Rosenschein,].S. and Genesereth,
M.R. Deals among rational agents. In
Proceedings of the Ninth International
Joint Conference on Artificial Intelligence
(Los Angeles, Calif,, 1985). AAAI
Press, Menlo Park, Calif., pp. 91-99.

14. Shobam, Y. Agent-oriented program-
ming. Artif. Intell. 60, 1 (1993), 51-92.

15. Wellman, M.P. A market-oriented
programming environment and its
application to distributed multicom-
modity flow problems. [. Artif. Intell.

Res. 1 (1993), 1-23,

16. Wiederhold, G. The architecture of
future information systems. Stanford
University Computer Science Dept.,
1989.

17. Zlotkin, G. Mechanisms for
mated negotiation among autono-
mous agents. Ph.D. dissertation. He-
brew University. Feb. 1994.

aulo-

About the Authors:

MICHAEL R. GENESERETH is an asso-
ciate professor in the Computer Science
Department of Stanford University.

STEVEN P. KETCHPEL is a doctoral stu-
dent in the Computer Science Depart-
ment of Stanford University. His research
interests include distributed Al and the
application of game theory and other eco-
nomic techniques to DAI problems.

Authors’ Present Address: Computer
Science Department, Margaret Jacks Hall,
Building 460, Stanford University, Stan-
ford, CA 94305.

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial
advantage, the ACM copyright notice and the
title of the publication and its date appear, and
notice is given that copying is by permission of
the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee
and/or specific permission.

© ACM 0002-0782/94/0700 $3.50

COMMUNICATIONS OF THE ACM July 1994/Vol.37, No.7 “,

