
In Agent-Oriented Software Engineering – Proceedings of the First International Workshop on Agent-Oriented Software
Engineering, 10th June 2000, Limerick, Ireland. P. Ciancarini, M. Wooldridge, (Eds.) Lecture Notes in Computer

Science. Vol. 1957, Springer Verlag, Berlin, January 2001.

207

An Overview of the Multiagent Systems
Engineering Methodology

Mark F. Wood Scott A. DeLoach

Department of Electrical and Computer Engineering
Air Force Institute of Technology

2950 P Street, Wright-Patterson AFB, OH, USA 45433-7765
woodm@stratcom.mil scott.deloach@afit.edu

Abstract. To solve complex problems, agents work cooperatively with other
agents in heterogeneous environments. We are interested in coordinating the
local behavior of individual agents to provide an appropriate system-level
behavior. The use of intelligent agents provides an even greater amount of
flexibility to the ability and configuration of the system itself. With these new
intricacies, software development is becoming increasingly difficult. Therefore,
it is critical that our processes for building the inherently complex distributed
software that must run in this environment be adequate for the task. This paper
introduces a methodology for designing these systems of interacting agents.

1. Introduction

The advent of multiagent systems has brought together many disciplines in an effort
to build distributed, intelligent, and robust applications. They have given us a new
way to look at distributed systems and provided a path to more robust intelligent
applications. However, many of our traditional ways of thinking about and designing
software do not fit the multiagent paradigm. Over the past few years, there have been
several attempts at creating tools and methodologies for building such systems.
Unfortunately, many of the tools focused on specific agent architectures [1, 12] or
have not gone to the necessary level of detail to adequately support complex system
development [8, 24]. In our research, we have been developing both a complete-
lifecycle methodology and a complimentary environment for analyzing, designing,
and developing heterogeneous multiagent systems. The methodology we are
developing is Multiagent Systems Engineering (MaSE).

Constructing multiagent systems is difficult. They have all the problems of
traditional distributed, concurrent systems, plus the additional difficulties that arise
from flexibility requirements and sophisticated interactions. Sycara states in [21] that
there are two technical hurdles to the extensive use of multiagent systems. First, there
is a lack of a proven methodology enabling designers to clearly structure applications
as multiagent systems. Second, there are no general case industrial-strength toolkits
that are flexible enough to specify the numerous characteristics of agents.

This paper addresses the first technical hurdle by proposing a methodology for the
design of multiagent systems. The focus is on the construction of a multiagent system

208

through an entire software development lifecycle from problem description to
implementation. Research into multiagent system methodologies, for the most part,
has focused more on high-level descriptions and concepts than on an actual design
methodology. Other design paradigms - object-oriented systems in particular - do
exist as general-case solutions, but these are neither tuned for, nor particularly useful
in creating a system that is intended to take full advantage of agent capabilities.
Object-oriented design has achieved some maturity and provides a stable foundation
upon which to build. However, object-oriented methodologies are not directly
applicable to agent systems - typical agents are significantly more complex in both
design and behavior than objects.

1.1 Scope

Because of assumptions made to simplify the research, MaSE has a few limitations.
First, we assume that the system being created is closed and that all external interfaces
are encapsulated by an agent that participates in the system communication protocols.
Second, the methodology does not consider dynamic systems where agents can be
created, destroyed, or moved during execution. Third, inter-agent conversations are
assumed to be one-to-one, as opposed to multicast. However, substituting a series of
point-to-point messages can be used to fulfill the requirement for multicast. Finally, it
is assumed that the systems designed with MaSE would not be very large; the target is
ten or less software agent classes. This is not a hard constraint, but simply indicates
that no verification or validation of larger systems was done and that no thought was
given to the potential problems of such systems.

Work is ongoing at the Air Force Institute of Technology (AFIT) to extend this
methodology in these and other areas. Both the problems of dynamic systems and
multicast conversations appear to be relatively straightforward extensions using
predefined move activities and special multicast conversations. While not designed
for open systems, MaSE can also be used to design agents that operate in an open
environment as long as there are appropriately define protocols for the agent to use.

1.2 Related Work

There have been several proposed methodologies for analyzing, designing, and
building multiagent systems [8]. The majority of these are based on existing object-
oriented or knowledge-based methodologies. In fact, the syntax of many of the
models was taken from the Unified Modeling Language even though the methodology
itself is dissimilar to most object-oriented approaches.

Actually, MaSE builds upon the work of many agent-based approaches; it takes
many ideas and combines them into a complete, end-to-end methodology. For
instance, work on goals and roles by Kendall [11] influenced the initial MaSE
analysis steps while the mapping of roles to agent classes builds off the concepts
presented by Kinny, Georgeff, and Rao [12]. Only the Gaia approach [24] attempts to
encompass the entire life cycle, although the authors admit to its shortcomings. The
main advantage of MaSE over previous methodologies is its scope and completeness.

209

2. Multiagent Systems Engineering Methodology

The Multiagent System Engineering (MaSE) methodology, takes an initial system
specification, and produces a set of formal design documents in a graphically based
style. The primary focus of MaSE is to guide a designer through the software
lifecycle from a prose specification to an implemented agent system. MaSE is
independent of a particular multiagent system architecture, agent architecture,
programming language, or message-passing system. A system designed in MaSE
could be implemented in several different ways from the same design. MaSE also
offers the ability to track changes throughout the process. Every design object can be
traced forward or backward through the different phases of the methodology and their
corresponding constructs. MaSE is described in more detail in [4, 22]. An overview
of the methodology and models is shown in Figure 1.

Creating Agent
Classes

Require-
ments

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

Analysis
D

esign

 Fig. 1. The MaSE Methodology

The general operation of MaSE follows the progression of steps shown in Figure 1,
with outputs from one section becoming inputs for the next. The methodology is
iterative across all phases with the intent that successive "passes" will add detail to the
models described later. The gray boxes denote models used within the methodology

210

and the phases are listed down the right side of the figure. The arrows indicate how
the models influence each other.

2.1 Capturing Goals

The first phase in MaSE is Capturing Goals, which takes the initial system
specification and transforms it into a structured set of system goals as shown in a Goal
Hierarchy Diagram (Figure 2). This phase of MaSE is drawn in a large part from
analysis patterns in [11]. In the MaSE methodology, a goal is always defined as a
system-level objective. Lower-level constructs may inherit or be responsible for
goals, but goals always have a system-level context.

1.2.2.1 Create
status reports

1.3.2.1 Notify
analysts of
intelligence taskings

1. Allow commander to
issue intelligence taskings
and receive intelligence
reports

1.4. Link to non-
homogenous intelligence
assets

1.1 Accept
taskings

1.2 Allow commander to
request & receive status
reports

1.3 Deliver intelligence
reports to the
commander

1.4..1 Allow
addition and
deletion of data
sources

1.4.2 Handle
data requests
and taskings

1.1.1 one-time
& time-window
taskings

1.1.2 area,
resources and
combo taskings

1.2.1 Accept
status reports

1.2.2 Deliver
status reports

1.4.1.2 Allow
deletion of data
sources

1.4.1.1 Allow
addition of data
sources

1.3.1 Create
intelligence
reports

1.3.2 Allow analysts
to refine and
resubmit searches

1.3.3 Ensure that
reports to to Intel
before commander

1.3.4 Allow
commander to set
presentation
preferences

Fig. 2. Goal Hierarchy Diagram

There are two parts of the Capturing Goals phase: identifying and structuring goals.
The goals are identified by distilling the essence of the set of requirements. These
requirements may include detailed technical documents, user stories, or formalized
government specifications. Once these goals have been captured and explicitly stated,
they are less likely to change than the detailed steps and activities involved in
accomplishing them.

The goals are then analyzed and structured into a form that can be passed on and
used in the design phases of the MaSE methodology. In a Goal Hierarchy Diagram,
goals are organized by importance. The main sequences of interaction and
subordinate details must be distinguishable from one another. Each level of the

211

hierarchy contains goals that are roughly equal in scope and all sub-goals relate
functionally to their parent.

2.2 Applying Use Cases

It is the conversations between agents that are the real backbone of a multiagent
system, as they enable the distributed operation that is the strength of agent
technology. The second phase of MaSE looks down the road toward constructing
these conversations and creates use cases to ease this difficulty.

The Applying Use Cases phase captures use cases from the initial system
requirements and restructures them as a Sequence Diagram (Figure 3). A sequence
diagram depicts a sequence of messages between multiple agent roles.

newTask

dataRequest

dataReply

rawIntell

intellReport

analystRequest

dataReply

Commander
Interface

Task
Controller

Mission
Controller

Analyst
Interface

Fig. 3. Sequence Diagram

First, use cases are drawn from the system requirements. Use cases are narrative
descriptions of a sequence of events that define desired system behavior. They are
examples of how the user (or the requirements document editor) thinks the system
should behave in a given case.

A Sequence Diagram is used to determine the minimum set of messages that must
be passed between roles. If a message is passed between two roles, then there must be
a corresponding communication path between them. A communication path between
roles played by separate agent classes means that a conversation must exist between
the two agent classes to pass the message. The agent class playing the role that
initiated the communication becomes the initiator of that conversation, while the
receiving agent class becomes the responder. Typically, we create at least one
sequence from a use case. If there are several possible scenarios, multiple Sequence
Diagrams are created.

212

2.3 Refining Roles

The third step of MaSE is to transform the structured goals of the Goal Hierarchy
Diagram into a form more useful for constructing multiagent systems: roles. Roles
are the building blocks used to define agent’s classes and capture system goals during
the design phase. We guarantee that system goals are accounted for by ensuring that
every goal is associated with a role and that every role is played by an agent class.

A role is an abstract description of an entity's expected function and encapsulates
the system goals that it has been assigned the responsibility of fulfilling. Roles are
created to do something. They are similar to the notion of an actor in a play or an
office within an organization. Roles are described in detail in [10,12,24].

The general case transformation of goals to roles is one-to-one; each goal maps to a
role. However, there are many exceptional situations where it is useful to combine
goals. Similar or related goals may be combined into single roles for the sake of
convenience or efficiency. Goals that share a high degree of cohesion as described in
[16] can be combined into a single role.

Some goals imply distributed roles. Any mention of separate machines or other
distribution requires one role for each "side" of the distributed relationship.
Interfacing with an external source is the same. One role must interface with the
source while another may be required to bridge the gap back to the system. This is
also true for any database, file interface, or user interface in the system. A user
interface implies a role by itself and should be separate from other roles as if it were a
separate data source.

Role definitions are captured in a traditional Role Model [10] as shown in Figure 4.
MaSE also allows a more complete version of a Role Model, as shown in Figure 5,
which includes information on interactions between role tasks. However, the
traditional version of the Role Model is more useful at the outset of the role definition
process before tasks have been defined, as well as later in the analysis to provide a
high-level view of the system. In the traditional Role Model, lines between roles
denote possible communications paths between roles. These paths are derived from
the Sequence Diagrams developed in the previous step.

Commander
Interface

1, 1.2, 1.3, 1.3.4

Task Controller
1.1, 1.1.1, 1.1.2,

1.3.3

Mission Controller
1.4

Analyst Interface
1.3.1, 1.3.2, 1.3.4

Registrar
1.4.1, 1.4.1.1,

1.4.1.2

Data Source
Interface

1.4.2

Status Reporter
1.2.1, 1.2.2,

1.2.2.1

Fig. 4. Traditional Role Model

213

In MaSE, roles are typically documented in a more detailed version of a Role
Model as shown in Figure 5. First, the goals associated with each role are listed under
the role name. It also shows the set of tasks associated with each role, which are used
to define the role’s behavior. Roles are denoted by rectangles, while the role tasks are
denoted by ovals attached to the role. Tasks are simply identified in the MaSE Role
Model. The detailed description of a task’s definition is provided in the next section.
Lines between tasks denote communications protocols that occur between the tasks.
The arrows denote the initiator/responder relationship of the protocol with the arrow
pointing from the initiator to the respondent. Solid lines indicate peer-to-peer
communications, which are generally implemented as external communications
protocols. External protocols involve message passing between roles that may
become actual messages if their roles end up being implemented in separate agents.
Dashed lines denote communication between concurrent tasks within the same role.
A lined is dashed if it will only occur within the same instance of the role in the final
system. Roles may not share or duplicate tasks. Sharing of tasks is a sign of
improper role decomposition. Shared tasks should be placed in a separate role, which
can be combined into various agent classes in the Design phase.

Commander
Interface

1, 1.2, 1.3, 1.3.4

Task Controller
1.1, 1.1.1, 1.1.2,

1.3.3

Mission Controller
1.4

Analyst Interface
1.3.1, 1.3.2, 1.3.4

Registrar
1.4.1, 1.4.1.1,

1.4.1.2

Data Source
Interface

1.4.2

Status Reporter
1.2.1, 1.2.2,

1.2.2.1

RequestIntell HandleTasking DataRequest

ProvideReport

InitiateTask Request

Request

InitiateReport

R
ep

or
tIn

te
ll

Fig. 5. MaSE Role Model

After roles are created, tasks are associated with each role. Every goal associated
with a role can have a task that details how the goal is accomplished. This must be
done after role creation since tasks communicate with tasks in other roles. A MaSE
task, which captures a bidder's behavior in a Contract Net Protocol, is shown in Figure
6. A task is a structured set of communications and activities, depicted as a state
diagram.

214

receive(newTask(units, target, window, time))
idle

FindControllers
list = findControllers(units, target)

t = setTimer(time)
n = size(list)

[size(list) < 0] / send(noSources(units, target, window, time))

[size(list) >= 0] / send(dataRequest(units, target), <list>)

wait

[timeout(t) OR n <= 0]
/ send(rawIntell(units, target, window, time, data))

CollectData
data = addData(d, data)

n = n - 1

receive(dataReply(d), c)

Fig. 6. MaSE Task

2.4 Creating Agent Classes

In the Creating Agent Classes phase of the MaSE methodology, the agent classes are
identified from component roles. The product of this phase is an Agent Class
Diagram, shown in Figure 7, which depicts agent classes and the conversations
between them. The boxes in the figure are the agent classes, containing the class
name and its assigned roles. Lines with arrows denote conversations and point from
the initiator of the conversation to the responder, with the name of the conversation
written either over or next to the arrow.

Analyst
Analyst Interface

Cmdr
Commander

Interface

TaskCtl
Status Reporter
Task Controller

MissionCtrl
Mission Controller

DSInterface
Data source

interface

Registrar
Registrar

RefineSearch

SendRawIntel

InitiateTasking

ReqStatusReport
ReqRawData

Register

SendProcessedIntel

GetCapabilities AssignDS GetData

Fig. 7. Agent Class Diagram

215

During this phase of MaSE, agent classes consist of two components: roles and
conversations. In a later MaSE phase, internal details are added to agent classes. The
conversations of an agent class are those that it participates in, either as an initiator or
responder.

The primary difference between the Agent Class Diagram and similar object
diagrams is the semantics of the relationships between agent classes. In Agent Class
Diagrams, these relationships define conversations that are held between agent
classes. In fact, the primary purpose of this phase is to identify the agent classes that
"anchor" each side of a conversation.

Just as before, when mapping goals to roles, there is generally a one-to-one
mapping between roles and agent classes. However, the designer may combine
multiple roles in a single agent class or map a single role to multiple agent classes.
Since agents inherit the communication paths between roles, any paths between two
roles become a conversation between their respective classes. As such, it is desirable,
where possible, to combine two roles that share a high volume of message traffic.
When determining which roles to combine, size and frequency of communications are
important, not just the number of communication paths.

2.5 Constructing Conversations

Constructing Conversations is the next phase of MaSE. It is closely linked with the
phase that follows it, Assembling Agents. As will be discussed later, it is often
beneficial to alternate between the two phases. A MaSE conversation defines a
coordination protocol between two agents. Specifically, a conversation consists of
two Communication Class Diagrams, one each for the initiator and responder. A
Communication Class Diagram is a pair of finite state machines that define the
conversation states of the two participant agent classes. The initiator side of a
conversation is shown in Figure 8 with its associated responder side shown in Figure
9. The initiator begins the conversation by sending the first message.

wait

^ dataRequest(units, target)

dataReply(data)

sorry() ^ dataRequest(units, target)

store
addData(data)

[timeout(t)] ^ cancel()

Fig. 8. Initiator Communication Class Diagram

216

dataRequest(units, target)

^ dataReply(data)

store
data = getData(units, target)

cancel()

wait

validation
valid = validate(units, target)

[NOT valid] ^ sorry()

dataRequest(units, target)

cancel()

cancel()

Fig. 9. Responder Communication Class Diagram

When an agent receives a message, it compares it to its active conversations. Upon
a match, the agent transitions the appropriate conversation to a new state and performs
any required activities from either the transition or the new state. Otherwise, the
agent compares the message to all possible conversations that it may participate in
with the agent that sent the message, and begins a new conversation if the message
matches a transition from the start state. Any activities in a conversation, which may
occur in a state or on a transition, are mapped to methods in the corresponding agent
classes. The syntax of a transition follows conventional UML notation as shown
below, and described in [3].

rec-mess(args1)[cond]/activity^trans-mess(args2)

While the operation of a conversation is relatively simple, its design can be quite
complicated. Conversations are defined at a high level. Specifically, the initiator and
responder agent classes are specified for each conversation in the system. The
problems encountered in this phase deal with building the finite state automata that
define the operation and protocol of conversations.

 Conversations must support and be consistent with all sequence diagrams derived
earlier. They may also incorporate states from tasks. Some tasks, in fact, operate
entirely over single conversations and can be designed directly. In general though,
conversations are built by first adding all possible states and transitions that can be
derived from the Sequence Diagrams and tasks. At this point, much of the
conversation often exists. For the rest of the conversation design, it is a matter of
adding states and transitions as necessary to convey the required messages and
provide robust operation. Automatic verification of conversation correctness is
addressed by Lacey in [13].

2.6 Assembling Agent Classes

In this phase of MaSE, the internals of agent classes are created. Work by Robinson
[18] describes the details of assembling agents from a component-based architecture.
He defines five different architectural style templates: Belief-Desire-Intention (BDI),

217

reactive, planning, knowledge based, and a user-defined architecture. Each
architecture template has a specific set of components. For example, a reactive
architecture includes a Controller, MessageInterface, RuleContainer, and Effectors.

A designer can either define components from scratch or use pre-existing
components. Furthermore, components may have sub-architectures containing
components. Components are joined with either inner- or outer-agent connectors.
Inner-agent connectors (thin arrows) define visibility between components while
outer-agent connectors (thick dashed arrows) define connections with external
resources such as other agents, sensors and effectors, databases, and data stores.
Internal component behavior may be represented by formal operation definitions as
well as state-diagrams that represent events passed between components. An example
of a component-based architecture is shown in Figure 10.

Fig. 10. Generic Reactive Agent Class Architecture

2.7 Constructing Conversations versus Assembling Agent Classes

As discussed in their respective sections, constructing conversations and agent class
assembly are closely related activities. In practice, it is useful to alternate between
these phases while staying within one functional area of the design. The question of
which to do first is answered best by the style of conversations the system uses. In
particular, is the system communication-heavy? Are the communications relatively
complex? The designer should design conversations first if the system consists of
many simple conversations, or if the initial context of the system includes many use
cases. It is generally better to define the agents first if there are complex
conversations, or if many of the agent classes are being reused.

2.8 System Design

The final phase of the MaSE methodology takes the agent classes and instantiates
them as actual agents. It uses a Deployment Diagram to show the numbers, types, and
locations of agents within a system. System design is actually the simplest phase of

218

MaSE, as most of the work was done in previous steps. The idea of instantiating
agents from agent classes is the same as instantiating objects from object classes in
object-oriented programming.

Deployment Diagrams are used to define a system based on agent classes defined
in the previous phases of MaSE. Deployment Diagrams define system parameters
such as the actual number, types, and locations of the agents within the system.
Figure 11 shows an example Deployment Diagram. The three dimensional boxes are
agents, and the connecting lines represent conversations between agents. The agents
are named either after their agent class, or in the form of "designator: class" if there
are multiple instances of a class. A dashed-line box indicates that agents are housed
on the same physical platform.

Fig. 11. MaSE Deployment Diagram

A system must be arranged in a Deployment Diagram before it can be implemented
in code. This is due to the differences between agents and agent classes. An agent
requires information such as a hostname or address to participate in a multiagent
system. A Deployment Diagram also offers another opportunity for the designer to
tune the system. Agents can be arranged among various machine configurations to
take advantage of the available processing power of network bandwidth.

A final element to consider is automatic code generation. The MaSE methodology
is concerned with actually engineering agent systems. As such, all of the steps of the
methodology work toward that end. It is our vision that code generation be a largely
automatic process. Code generation is not a part of MaSE at this time, but is assumed
to happen just after this phase.

219

3. Contributions

MaSE guides a multiagent system designer through the entire software development
lifecycle, beginning from a textual system representation and proceeding in a
structured manner toward a working implementation. MaSE combines several pre-
existing models into a single structured methodology. Most of the models used within
the methodology have therefore been already justified and validated within the realm
of agents and multiagent systems. A sequence of guided transformations connects the
elements of this strong foundation together into a clear high-level picture of how a
designer should go about creating a multiagent system.

In conjunction with the MaSE methodology, we have developed a tool, called
agentTool, to support the development of multiagent systems using MaSE [5]. The
agentTool system currently supports the entire lifecycle from the Goal Hierarchy
diagram down to code generation. Developing the methodology and tool together
allowed us to focus the methodology toward automation. Focusing on automation
forced us to define an unambiguous semantics for the models as well as the
relationships between the models. Using MaSE and agentTool we have shown that
you can develop a multiagent systems development methodology, along with an
automated toolset, that supports multiple types of agent architectures, languages, and
communications frameworks.

4. MaSE Applications

MaSE has been successfully applied in numerous graduate-level projects as well as
several research projects. The Multi-Agent Distributed Goal Satisfaction project [20]
is a collaborative effort between AFIT, the University of Connecticut, and Wright
State University where MaSE is being used to design the collaborative agent
framework to integrate different constraint satisfaction and planning systems. The
Agent-Based Mixed-Initiative Collaboration project [2] is also using MaSE to design
a multiagent system focused on distributed human and machine planning. MaSE has
been used successfully to design an agent-based heterogeneous database integration
system [14] as well as a multi-agent approach to a biologically based computer virus
immune system [7].

5. Acknowledgements

This research was supported by the Air Force Office of Scientific Research
(99NM097) and the Dayton Area Graduate Studies Institute (HE-WSU-99-09). The
views expressed in this article are those of the authors and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the US
Government.

220

References

[1] Brazier, F., Jonker C., Treur, J.: Principles of Compositional Multi-Agent System
Development. Proceedings of the IFIP'98 Conference (1998).

[2] Cox, M., Kerkez, B., Srinivas, C., Edwin, G., Archer, W.: Toward Agent-Based Mixed-
Initiative Interfaces. In Proceedings of the 2000 International Conference on Artificial
Intelligence. CSREA Press (2000).

[3] DeLoach, S.A.: Multiagent Systems Engineering: a Methodology and Language for
Designing Agent Systems. Proceedings of Agent Oriented Information Systems '99
(1999) 45-57.

[4] DeLoach, S. A., Wood M. F.: Multiagent Systems Engineering: the Analysis Phase.
Technical Report, Air Force Institute of Technology, AFIT/EN-TR-00-02, June 2000.

[5] DeLoach, S.A., Wood, M.F.: Developing Multiagent Systems with agentTool. The
Seventh International Workshop on Agent Theories, Architectures, and Languages,
(2000).

[6] Drogoul, A., and Collinot A.: Applying an Agent Oriented Methodology to the Design of
Artificial Organizations: A Case Study in Robotic Soccer. Autonomous Agents and Multi-
Agent Systems, 1(1), 113-129.

[7] Harmer, P.K., Lamont, G.B.: An Agent Architecture for a Computer Virus Immune
System. Genetic and Evolutionary Computation Conference (2000).

[8] Iglesias, C., Garijo, M., Gonzalez, J.: A Survey of Agent-Oriented Methodologies. In:
Müller, J.P., Singh, M.P., Rao, A.S., (Eds.): Intelligent Agents V. Agents Theories,
Architectures, and Languages. Lecture Notes in Computer Science, Vol. 1555. Springer-
Verlag, Berlin Heidelberg (1998) 185-198.

[9] Jennings, N. R., Sycara, K., and Wooldridge, M. 1998 "A Roadmap of Agent Research
and Development" Autonomous Agents and Multi-Agent Systems, 1(1), 7-38.

[10] Kendall, Elizabeth A.: Agent Software Engineering with Role Modelling. In this volume
(2000).

[11] Kendall, Elizabeth A., and Zhao, L.: Capturing and Structuring Goals. Workshop on Use
Case Patterns, Object Oriented Programming Systems Languages and Architectures
(1998).

[12] Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modelling Technique for Systems
of BDI Agents. Agents Breaking Away: Proceedings of the Seventh European Workshop
on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW ’96. Lecture
Notes in Artificial Intelligence, Vol. 1038. Springer-Verlag, Berlin Heidelberg (1996) 56-
71.

[13] Lacey, T., DeLoach, S.A.: Automatic Verification of Multiagent Conversations.
Proceedings of the Eleventh Annual Midwest Artificial Intelligence and Cognitive Science
Conference, (2000) 93-100.

[14] McDonald, J.T., Talbert, M.L., DeLoach, S.A.: Heterogeneous Database Integration Using
Agent Oriented Information Systems. Proceedings of the International Conference on
Artificial Intelligence (2000).

[15] Nwana, H. S.: Software Agents: An Overview. Knowledge Engineering Review. 11(3):
205-244 (1996).

[16] Pressman, R.S.: Software Engineering: A Practitioners Approach, 3rd ed. McGraw-Hill
Inc., New York (1992).

[17] Raphael, Marc J., DeLoach, S.A.: Marc J. Raphael & Scott A. DeLoach. A Knowledge
Base for Knowledge-Based Multiagent System Construction. Proceedings of the National
Aerospace and Electronics Conference (2000).

[18] Robinson, D.J.: A Component Based Approach to Agent Specification. MS thesis,
AFIT/ENG/00M-22. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson Air Force Base Ohio, USA (2000).

221

[19] Rumbaugh, J.: Object-Oriented Modeling and Design, Prentice-Hall Inc., Englewood
Cliffs, New Jersey (1992).

[20] Saba, G.M., Santos, E.: The Multi-Agent Distributed Goal Satisfaction System.
Submitted to International ICSC Symposium on Multi-Agents and Mobile Agents in
Virtual Organizations and E-Commerce (MAMA'2000).

[21] Sycara, K. P.: Multiagent Systems. AI Magazine 19(2): 79-92 (1998).
[22] Wood, M. F.: Multiagent Systems Engineering: A Methodology for Analysis and Design

of Multiagent Systems. MS thesis, AFIT/GCS/ENG/00M-26. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB Ohio, USA (2000).

[23] Wooldridge, M., and Jennings, N.: Intelligent Agents: Theory and Practice. Knowledge
Engineering Review, 10(2): 115-152 (1995).

[24] Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems. 3 (3): (2000).

