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Abstract. To solve complex problems, agents work cooperatively with other 
agents in heterogeneous environments.  We are interested in coordinating the 
local behavior of individual agents to provide an appropriate system-level 
behavior.  The use of intelligent agents provides an even greater amount of 
flexibility to the ability and configuration of the system itself.  With these new 
intricacies, software development is becoming increasingly difficult.  Therefore, 
it is critical that our processes for building the inherently complex distributed 
software that must run in this environment be adequate for the task.  This paper 
introduces a methodology for designing these systems of interacting agents.  

1.  Introduction 

The advent of multiagent systems has brought together many disciplines in an effort 
to build distributed, intelligent, and robust applications.  They have given us a new 
way to look at distributed systems and provided a path to more robust intelligent 
applications.  However, many of our traditional ways of thinking about and designing 
software do not fit the multiagent paradigm.  Over the past few years, there have been 
several attempts at creating tools and methodologies for building such systems.  
Unfortunately, many of the tools focused on specific agent architectures [1, 12] or 
have not gone to the necessary level of detail to adequately support complex system 
development [8, 24].  In our research, we have been developing both a complete-
lifecycle methodology and a complimentary environment for analyzing, designing, 
and developing heterogeneous multiagent systems.  The methodology we are 
developing is Multiagent Systems Engineering (MaSE). 

Constructing multiagent systems is difficult.  They have all the problems of 
traditional distributed, concurrent systems, plus the additional difficulties that arise 
from flexibility requirements and sophisticated interactions.  Sycara states in [21] that 
there are two technical hurdles to the extensive use of multiagent systems.  First, there 
is a lack of a proven methodology enabling designers to clearly structure applications 
as multiagent systems.  Second, there are no general case industrial-strength toolkits 
that are flexible enough to specify the numerous characteristics of agents. 

This paper addresses the first technical hurdle by proposing a methodology for the 
design of multiagent systems.  The focus is on the construction of a multiagent system 
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through an entire software development lifecycle from problem description to 
implementation.  Research into multiagent system methodologies, for the most part, 
has focused more on high-level descriptions and concepts than on an actual design 
methodology.  Other design paradigms - object-oriented systems in particular - do 
exist as general-case solutions, but these are neither tuned for, nor particularly useful 
in creating a system that is intended to take full advantage of agent capabilities.  
Object-oriented design has achieved some maturity and provides a stable foundation 
upon which to build.  However, object-oriented methodologies are not directly 
applicable to agent systems - typical agents are significantly more complex in both 
design and behavior than objects.  

1.1 Scope 

Because of assumptions made to simplify the research, MaSE has a few limitations.  
First, we assume that the system being created is closed and that all external interfaces 
are encapsulated by an agent that participates in the system communication protocols.  
Second, the methodology does not consider dynamic systems where agents can be 
created, destroyed, or moved during execution.  Third, inter-agent conversations are 
assumed to be one-to-one, as opposed to multicast.  However, substituting a series of 
point-to-point messages can be used to fulfill the requirement for multicast.  Finally, it 
is assumed that the systems designed with MaSE would not be very large; the target is 
ten or less software agent classes.  This is not a hard constraint, but simply indicates 
that no verification or validation of larger systems was done and that no thought was 
given to the potential problems of such systems. 

Work is ongoing at the Air Force Institute of Technology (AFIT) to extend this 
methodology in these and other areas.  Both the problems of dynamic systems and 
multicast conversations appear to be relatively straightforward extensions using 
predefined move activities and special multicast conversations.  While not designed 
for open systems, MaSE can also be used to design agents that operate in an open 
environment as long as there are appropriately define protocols for the agent to use.  

1.2 Related Work 

There have been several proposed methodologies for analyzing, designing, and 
building multiagent systems [8].  The majority of these are based on existing object-
oriented or knowledge-based methodologies.  In fact, the syntax of many of the 
models was taken from the Unified Modeling Language even though the methodology 
itself is dissimilar to most object-oriented approaches. 

Actually, MaSE builds upon the work of many agent-based approaches; it takes 
many ideas and combines them into a complete, end-to-end methodology.  For 
instance, work on goals and roles by Kendall [11] influenced the initial MaSE 
analysis steps while the mapping of roles to agent classes builds off the concepts 
presented by Kinny, Georgeff, and Rao [12].  Only the Gaia approach [24] attempts to 
encompass the entire life cycle, although the authors admit to its shortcomings.  The 
main advantage of MaSE over previous methodologies is its scope and completeness. 
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2.  Multiagent Systems Engineering Methodology 

The Multiagent System Engineering (MaSE) methodology, takes an initial system 
specification, and produces a set of formal design documents in a graphically based 
style.  The primary focus of MaSE is to guide a designer through the software 
lifecycle from a prose specification to an implemented agent system.  MaSE is 
independent of a particular multiagent system architecture, agent architecture, 
programming language, or message-passing system.  A system designed in MaSE 
could be implemented in several different ways from the same design.  MaSE also 
offers the ability to track changes throughout the process.  Every design object can be 
traced forward or backward through the different phases of the methodology and their 
corresponding constructs.  MaSE is described in more detail in [4, 22].  An overview 
of the methodology and models is shown in Figure 1. 

Creating Agent
Classes

Require-
ments

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

Analysis
D

esign

 

 Fig. 1.  The MaSE Methodology 

The general operation of MaSE follows the progression of steps shown in Figure 1, 
with outputs from one section becoming inputs for the next.  The methodology is 
iterative across all phases with the intent that successive "passes" will add detail to the 
models described later.  The gray boxes denote models used within the methodology 
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and the phases are listed down the right side of the figure.  The arrows indicate how 
the models influence each other. 

2.1 Capturing Goals 

The first phase in MaSE is Capturing Goals, which takes the initial system 
specification and transforms it into a structured set of system goals as shown in a Goal 
Hierarchy Diagram (Figure 2).  This phase of MaSE is drawn in a large part from 
analysis patterns in [11].  In the MaSE methodology, a goal is always defined as a 
system-level objective.  Lower-level constructs may inherit or be responsible for 
goals, but goals always have a system-level context. 
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Fig. 2.  Goal Hierarchy Diagram 

There are two parts of the Capturing Goals phase: identifying and structuring goals.  
The goals are identified by distilling the essence of the set of requirements.  These 
requirements may include detailed technical documents, user stories, or formalized 
government specifications.  Once these goals have been captured and explicitly stated, 
they are less likely to change than the detailed steps and activities involved in 
accomplishing them.  

The goals are then analyzed and structured into a form that can be passed on and 
used in the design phases of the MaSE methodology.  In a Goal Hierarchy Diagram, 
goals are organized by importance.  The main sequences of interaction and 
subordinate details must be distinguishable from one another.  Each level of the 
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hierarchy contains goals that are roughly equal in scope and all sub-goals relate 
functionally to their parent. 

2.2 Applying Use Cases 

It is the conversations between agents that are the real backbone of a multiagent 
system, as they enable the distributed operation that is the strength of agent 
technology.  The second phase of MaSE looks down the road toward constructing 
these conversations and creates use cases to ease this difficulty. 

The Applying Use Cases phase captures use cases from the initial system 
requirements and restructures them as a Sequence Diagram (Figure 3).  A sequence 
diagram depicts a sequence of messages between multiple agent roles. 
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Fig. 3.  Sequence Diagram 

First, use cases are drawn from the system requirements.  Use cases are narrative 
descriptions of a sequence of events that define desired system behavior.  They are 
examples of how the user (or the requirements document editor) thinks the system 
should behave in a given case. 

A Sequence Diagram is used to determine the minimum set of messages that must 
be passed between roles.  If a message is passed between two roles, then there must be 
a corresponding communication path between them.  A communication path between 
roles played by separate agent classes means that a conversation must exist between 
the two agent classes to pass the message.  The agent class playing the role that 
initiated the communication becomes the initiator of that conversation, while the 
receiving agent class becomes the responder.  Typically, we create at least one 
sequence from a use case.  If there are several possible scenarios, multiple Sequence 
Diagrams are created. 
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2.3 Refining Roles 

The third step of MaSE is to transform the structured goals of the Goal Hierarchy 
Diagram into a form more useful for constructing multiagent systems: roles.  Roles 
are the building blocks used to define agent’s classes and capture system goals during 
the design phase.  We guarantee that system goals are accounted for by ensuring that 
every goal is associated with a role and that every role is played by an agent class. 

A role is an abstract description of an entity's expected function and encapsulates 
the system goals that it has been assigned the responsibility of fulfilling.  Roles are 
created to do something.  They are similar to the notion of an actor in a play or an 
office within an organization.  Roles are described in detail in [10,12,24]. 

The general case transformation of goals to roles is one-to-one; each goal maps to a 
role.  However, there are many exceptional situations where it is useful to combine 
goals.  Similar or related goals may be combined into single roles for the sake of 
convenience or efficiency.  Goals that share a high degree of cohesion as described in 
[16] can be combined into a single role.   

Some goals imply distributed roles.  Any mention of separate machines or other 
distribution requires one role for each "side" of the distributed relationship.  
Interfacing with an external source is the same.  One role must interface with the 
source while another may be required to bridge the gap back to the system.  This is 
also true for any database, file interface, or user interface in the system.  A user 
interface implies a role by itself and should be separate from other roles as if it were a 
separate data source. 

Role definitions are captured in a traditional Role Model [10] as shown in Figure 4.  
MaSE also allows a more complete version of a Role Model, as shown in Figure 5, 
which includes information on interactions between role tasks.  However, the 
traditional version of the Role Model is more useful at the outset of the role definition 
process before tasks have been defined, as well as later in the analysis to provide a 
high-level view of the system.  In the traditional Role Model, lines between roles 
denote possible communications paths between roles.  These paths are derived from 
the Sequence Diagrams developed in the previous step.   
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Fig. 4.  Traditional Role Model 
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In MaSE, roles are typically documented in a more detailed version of a Role 
Model as shown in Figure 5.  First, the goals associated with each role are listed under 
the role name.  It also shows the set of tasks associated with each role, which are used 
to define the role’s behavior.  Roles are denoted by rectangles, while the role tasks are 
denoted by ovals attached to the role.  Tasks are simply identified in the MaSE Role 
Model.  The detailed description of a task’s definition is provided in the next section.  
Lines between tasks denote communications protocols that occur between the tasks.  
The arrows denote the initiator/responder relationship of the protocol with the arrow 
pointing from the initiator to the respondent.  Solid lines indicate peer-to-peer 
communications, which are generally implemented as external communications 
protocols.  External protocols involve message passing between roles that may 
become actual messages if their roles end up being implemented in separate agents.  
Dashed lines denote communication between concurrent tasks within the same role.  
A lined is dashed if it will only occur within the same instance of the role in the final 
system.  Roles may not share or duplicate tasks.  Sharing of tasks is a sign of 
improper role decomposition.  Shared tasks should be placed in a separate role, which 
can be combined into various agent classes in the Design phase. 
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Fig. 5.  MaSE Role Model 

After roles are created, tasks are associated with each role.  Every goal associated 
with a role can have a task that details how the goal is accomplished.  This must be 
done after role creation since tasks communicate with tasks in other roles.  A MaSE 
task, which captures a bidder's behavior in a Contract Net Protocol, is shown in Figure 
6.  A task is a structured set of communications and activities, depicted as a state 
diagram. 



214 

receive(newTask(units, target, window, time))
idle

FindControllers
list = findControllers(units, target)

t = setTimer(time)
n = size(list)

[size(list) <  0] / send(noSources(units, target, window, time))

[size(list) >= 0] / send(dataRequest(units, target), <list>)

wait

[timeout(t) OR n <= 0]
/ send(rawIntell(units, target, window, time, data))

CollectData
data = addData(d, data)

n = n - 1

receive(dataReply(d), c)

 

Fig. 6.  MaSE Task 

2.4 Creating Agent Classes 

In the Creating Agent Classes phase of the MaSE methodology, the agent classes are 
identified from component roles.  The product of this phase is an Agent Class 
Diagram, shown in Figure 7, which depicts agent classes and the conversations 
between them.  The boxes in the figure are the agent classes, containing the class 
name and its assigned roles.  Lines with arrows denote conversations and point from 
the initiator of the conversation to the responder, with the name of the conversation 
written either over or next to the arrow. 

Analyst
Analyst Interface

Cmdr
Commander

Interface

TaskCtl
Status Reporter
Task Controller

MissionCtrl
Mission Controller

DSInterface
Data source

interface

Registrar
Registrar

RefineSearch

SendRawIntel

InitiateTasking

ReqStatusReport
ReqRawData

Register

SendProcessedIntel

GetCapabilities AssignDS GetData

 

Fig. 7.  Agent Class Diagram 
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During this phase of MaSE, agent classes consist of two components: roles and 
conversations.  In a later MaSE phase, internal details are added to agent classes.  The 
conversations of an agent class are those that it participates in, either as an initiator or 
responder. 

The primary difference between the Agent Class Diagram and similar object 
diagrams is the semantics of the relationships between agent classes.  In Agent Class 
Diagrams, these relationships define conversations that are held between agent 
classes.  In fact, the primary purpose of this phase is to identify the agent classes that 
"anchor" each side of a conversation. 

Just as before, when mapping goals to roles, there is generally a one-to-one 
mapping between roles and agent classes.  However, the designer may combine 
multiple roles in a single agent class or map a single role to multiple agent classes.  
Since agents inherit the communication paths between roles, any paths between two 
roles become a conversation between their respective classes.  As such, it is desirable, 
where possible, to combine two roles that share a high volume of message traffic.  
When determining which roles to combine, size and frequency of communications are 
important, not just the number of communication paths.   

2.5 Constructing Conversations 

Constructing Conversations is the next phase of MaSE.  It is closely linked with the 
phase that follows it, Assembling Agents.  As will be discussed later, it is often 
beneficial to alternate between the two phases.  A MaSE conversation defines a 
coordination protocol between two agents.  Specifically, a conversation consists of 
two Communication Class Diagrams, one each for the initiator and responder.  A 
Communication Class Diagram is a pair of finite state machines that define the 
conversation states of the two participant agent classes.  The initiator side of a 
conversation is shown in Figure 8 with its associated responder side shown in Figure 
9.  The initiator begins the conversation by sending the first message. 

wait

^ dataRequest(units, target)

dataReply(data)

sorry() ^ dataRequest(units, target)

store
addData(data)

[timeout(t)] ^ cancel()

 

Fig. 8.  Initiator Communication Class Diagram 
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dataRequest(units, target)

^ dataReply(data)

store
data = getData(units, target)

cancel()

wait

validation
valid = validate(units, target)

[NOT valid] ^ sorry()

dataRequest(units, target)

cancel()

cancel()

 

Fig. 9.  Responder Communication Class Diagram 

When an agent receives a message, it compares it to its active conversations.  Upon 
a match, the agent transitions the appropriate conversation to a new state and performs 
any required activities from either the transition or the new state.  Otherwise, the 
agent compares the message to all possible conversations that it may participate in 
with the agent that sent the message, and begins a new conversation if the message 
matches a transition from the start state.  Any activities in a conversation, which may 
occur in a state or on a transition, are mapped to methods in the corresponding agent 
classes.  The syntax of a transition follows conventional UML notation as shown 
below, and described in [3].  

rec-mess(args1)[cond]/activity^trans-mess(args2)

While the operation of a conversation is relatively simple, its design can be quite 
complicated.  Conversations are defined at a high level.  Specifically, the initiator and 
responder agent classes are specified for each conversation in the system.  The 
problems encountered in this phase deal with building the finite state automata that 
define the operation and protocol of conversations. 

 Conversations must support and be consistent with all sequence diagrams derived 
earlier.  They may also incorporate states from tasks.  Some tasks, in fact, operate 
entirely over single conversations and can be designed directly.  In general though, 
conversations are built by first adding all possible states and transitions that can be 
derived from the Sequence Diagrams and tasks.  At this point, much of the 
conversation often exists.  For the rest of the conversation design, it is a matter of 
adding states and transitions as necessary to convey the required messages and 
provide robust operation.  Automatic verification of conversation correctness is 
addressed by Lacey in [13]. 

2.6 Assembling Agent Classes 

In this phase of MaSE, the internals of agent classes are created.  Work by Robinson 
[18] describes the details of assembling agents from a component-based architecture.  
He defines five different architectural style templates: Belief-Desire-Intention (BDI), 
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reactive, planning, knowledge based, and a user-defined architecture.  Each 
architecture template has a specific set of components.  For example, a reactive 
architecture includes a Controller, MessageInterface, RuleContainer, and Effectors.  

A designer can either define components from scratch or use pre-existing 
components.  Furthermore, components may have sub-architectures containing 
components.  Components are joined with either inner- or outer-agent connectors.  
Inner-agent connectors (thin arrows) define visibility between components while 
outer-agent connectors (thick dashed arrows) define connections with external 
resources such as other agents, sensors and effectors, databases, and data stores.  
Internal component behavior may be represented by formal operation definitions as 
well as state-diagrams that represent events passed between components.  An example 
of a component-based architecture is shown in Figure 10. 

 

Fig. 10.  Generic Reactive Agent Class Architecture 

2.7 Constructing Conversations versus Assembling Agent Classes 

As discussed in their respective sections, constructing conversations and agent class 
assembly are closely related activities.  In practice, it is useful to alternate between 
these phases while staying within one functional area of the design.  The question of 
which to do first is answered best by the style of conversations the system uses.  In 
particular, is the system communication-heavy?  Are the communications relatively 
complex?  The designer should design conversations first if the system consists of 
many simple conversations, or if the initial context of the system includes many use 
cases.  It is generally better to define the agents first if there are complex 
conversations, or if many of the agent classes are being reused. 

2.8 System Design 

The final phase of the MaSE methodology takes the agent classes and instantiates 
them as actual agents.  It uses a Deployment Diagram to show the numbers, types, and 
locations of agents within a system.  System design is actually the simplest phase of 
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MaSE, as most of the work was done in previous steps.  The idea of instantiating 
agents from agent classes is the same as instantiating objects from object classes in 
object-oriented programming. 

Deployment Diagrams are used to define a system based on agent classes defined 
in the previous phases of MaSE.  Deployment Diagrams define system parameters 
such as the actual number, types, and locations of the agents within the system.  
Figure 11 shows an example Deployment Diagram.  The three dimensional boxes are 
agents, and the connecting lines represent conversations between agents.  The agents 
are named either after their agent class, or in the form of "designator: class" if there 
are multiple instances of a class.  A dashed-line box indicates that agents are housed 
on the same physical platform. 

 

Fig. 11.  MaSE Deployment Diagram 

A system must be arranged in a Deployment Diagram before it can be implemented 
in code.  This is due to the differences between agents and agent classes.  An agent 
requires information such as a hostname or address to participate in a multiagent 
system.  A Deployment Diagram also offers another opportunity for the designer to 
tune the system.  Agents can be arranged among various machine configurations to 
take advantage of the available processing power of network bandwidth.  

A final element to consider is automatic code generation.  The MaSE methodology 
is concerned with actually engineering agent systems.  As such, all of the steps of the 
methodology work toward that end.  It is our vision that code generation be a largely 
automatic process.  Code generation is not a part of MaSE at this time, but is assumed 
to happen just after this phase.  
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3.  Contributions 

MaSE guides a multiagent system designer through the entire software development 
lifecycle, beginning from a textual system representation and proceeding in a 
structured manner toward a working implementation.  MaSE combines several pre-
existing models into a single structured methodology.  Most of the models used within 
the methodology have therefore been already justified and validated within the realm 
of agents and multiagent systems.  A sequence of guided transformations connects the 
elements of this strong foundation together into a clear high-level picture of how a 
designer should go about creating a multiagent system. 

In conjunction with the MaSE methodology, we have developed a tool, called 
agentTool, to support the development of multiagent systems using MaSE [5].  The 
agentTool system currently supports the entire lifecycle from the Goal Hierarchy 
diagram down to code generation.  Developing the methodology and tool together 
allowed us to focus the methodology toward automation.  Focusing on automation 
forced us to define an unambiguous semantics for the models as well as the 
relationships between the models.  Using MaSE and agentTool we have shown that 
you can develop a multiagent systems development methodology, along with an 
automated toolset, that supports multiple types of agent architectures, languages, and 
communications frameworks.   

4.  MaSE Applications 

MaSE has been successfully applied in numerous graduate-level projects as well as 
several research projects.  The Multi-Agent Distributed Goal Satisfaction project [20] 
is a collaborative effort between AFIT, the University of Connecticut, and Wright 
State University where MaSE is being used to design the collaborative agent 
framework to integrate different constraint satisfaction and planning systems.  The 
Agent-Based Mixed-Initiative Collaboration project [2] is also using MaSE to design 
a multiagent system focused on distributed human and machine planning.  MaSE has 
been used successfully to design an agent-based heterogeneous database integration 
system [14] as well as a multi-agent approach to a biologically based computer virus 
immune system [7].  
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