
Agent-Oriented Software Engineering:
The State of the Art

Michael Wooldridge
�

and Paolo Ciancarini �

�
Department of Computer Science
University of Liverpool
Liverpool L69 7ZF, UK
M.J.Wooldridge@csc.liv.ac.uk

�
Dipartimento di Scienze dell’Informazione
University of Bologna
Mura Anteo Zamboni 7, 47127 Bologna, Italy
ciancarini@cs.unibo.it

Abstract. Software engineers continually strive to develop tools and techniques
to manage the complexity that is inherent in software systems. In this article,
we argue that intelligent agents and multi-agent systems are just such tools. We
begin by reviewing what is meant by the term “agent”, and contrast agents with
objects. We then go on to examine a number of prototype techniques proposed for
engineering agent systems, including methodologies for agent-oriented analysis
and design, formal specification and verification methods for agent systems, and
techniques for implementing agent specifications.

1 Introduction

Over the past three decades, software engineers have derived a progressively better un-
derstanding of the characteristics of complexity in software. It is now widely recognised
that interaction is probably the most important single characteristic of complex soft-
ware. Software architectures that contain many dynamically interacting components,
each with their own thread of control, and engaging in complex coordination protocols,
are typically orders of magnitude more complex to correctly and efficiently engineer
than those that simply compute a function of some input through a single thread of
control.

Unfortunately, it turns out that many (if not most) real-world applications have pre-
cisely these characteristics. As a consequence, a major research topic in computer sci-
ence over at least the past two decades has been the development of tools and techniques
to model, understand, and implement systems in which interaction is the norm.

Many researchers now believe that in future, computation itself will be understood
as chiefly as a process of interaction. This has in turn led to the search for new com-
putational abstractions, models, and tools with which to conceptualise and implement
interacting systems.

Since the 1980s, software agents and multi-agent systems have grown into what is
now one of the most active areas of research and development activity in computing

generally. There are many reasons for the current intensity of interest, but certainly
one of the most important is that the concept of an agent as an autonomous system,
capable of interacting with other agents in order to satisfy its design objectives, is a
natural one for software designers. Just as we can understand many systems as being
composed of essentially passive objects, which have state, and upon which we can
perform operations, so we can understand many others as being made up of interacting,
semi-autonomous agents.

Our aim in this article is to survey the state of the art in agent-oriented software
engineering. The article is structured as follows:

– in the sub-sections that follows, we provide brief introductions to agents and multi-
agent systems, and comment on the relationship between agents and objects (in the
sense of object-oriented programming);

– in section 2, we survey some preliminary methodologies for engineering multi-
agent systems — these methodologies provide structured but non-mathematical
approaches to the analysis and design of agent systems, and for the most part take
inspiration either from object-oriented analysis and design methodologies or from
knowledge-engineering approaches; and finally,

– in section 3, we comment on the use of formal methods for engineering multi-agent
systems.

We conclude the main text of the article with a brief discussion of open problems,
challenges, and issues that must be addressed if agents are to achieve their potential
as a software engineering paradigm. In an appendix, we provide pointers to further
information about agents.

1.1 What are Agent-Based Systems?

Before proceeding any further, it is important to gain an understanding of exactly what
we mean by an agent-based system. By an agent-based system, we mean one in which
the key abstraction used is that of an agent. Agent-based systems may contain a single
agent, (as in the case of user interface agents or software secretaries [50]), but arguably
the greatest potential lies in the application of multi-agent systems [5]. By an agent, we
mean a system that enjoys the following properties [75, pp.116–118]:

– autonomy: agents encapsulate some state (that is not accessible to other agents), and
make decisions about what to do based on this state, without the direct intervention
of humans or others;

– reactivity: agents are situated in an environment, (which may be the physical world,
a user via a graphical user interface, a collection of other agents, the INTERNET, or
perhaps many of these combined), are able to perceive this environment (through
the use of potentially imperfect sensors), and are able to respond in a timely fashion
to changes that occur in it;

– pro-activeness: agents do not simply act in response to their environment, they are
able to exhibit goal-directed behaviour by taking the initiative;

– social ability: agents interact with other agents (and possibly humans) via some
kind of agent-communication language [28], and typically have the ability to en-
gage in social activities (such as cooperative problem solving or negotiation) in
order to achieve their goals.

These properties are more demanding than they might at first appear. To see why, let
us consider them in turn. First, consider pro-activeness: goal directed behavior. It is not
hard to build a system that exhibits goal directed behavior — we do it every time we
write a procedure in Pascal, a function in C, or a method in Java. When we write such
a procedure, we describe it in terms of the assumptions on which it relies (formally,
its pre-condition) and the effect it has if the assumptions are valid (its post-condition).
The effects of the procedure are its goal: what the author of the software intends the
procedure to achieve. If the pre-condition holds when the procedure is invoked, then
we expect that the procedure will execute correctly: that it will terminate, and that upon
termination, the post-condition will be true, i.e., the goal will be achieved. This is goal
directed behavior: the procedure is simply a plan or recipe for achieving the goal. This
programming model is fine for many environments. For example, its works well when
we consider functional systems — those that simply take some input � , and produce
as output some some function

��� ��� of this input. Compilers are a classic example of
functional systems.

But for non-functional systems, this simple model of goal directed programming
is not acceptable, as it makes an important limiting assumption. It assumes that the
environment does not change while the procedure is executing. If the environment does
change, and in particular, if the assumptions (pre-condition) underlying the procedure
become false while the procedure is executing, then the behavior of the procedure may
not be defined — often, it will simply crash. Similarly, it is assumed that the goal, that
is, the reason for executing the procedure, remains valid at least until the procedure
terminates. If the goal does not remain valid, then there is simply no reason to continue
executing the procedure.

In many environments, neither of these assumptions are valid. In particular, in do-
mains that are too complex for an agent to observe completely, that are multi-agent (i.e.,
they are populated with more than one agent that can change the environment), or where
there is uncertainty in the environment, these assumptions are not reasonable. In such
environments, blindly executing a procedure without regard to whether the assumptions
underpinning the procedure are valid is a poor strategy. In such dynamic environments,
an agent must be reactive, in just the way that we described above. That is, it must
be responsive to events that occur in its environment, where these events affect either
the agent’s goals or the assumptions which underpin the procedures that the agent is
executing in order to achieve its goals.

As we have seen, building purely goal directed systems is not hard. Similarly, build-
ing purely reactive systems — ones that continually respond to their environment — is
also not difficult; we can implement them as lookup tables that simply match environ-
mental stimuli to action responses. However, what turns out to be very hard is building
a system that achieves an effective balance between goal-directed and reactive behav-
ior. We want agents that will attempt to achieve their goals systematically, perhaps by
making use of complex procedure-like recipes for action. But we don’t want our agents

to continue blindly executing these procedures in an attempt to achieve a goal either
when it is clear that the procedure will not work, or when the goal is for some reason
no longer valid. In such circumstances, we want our agent to be able to react to the new
situation, in time for the reaction to be of some use. However, we do not want our agent
to be continually reacting, and hence never focussing on a goal long enough to actually
achieve it.

On reflection, it should come as little surprise that achieving a good balance be-
tween goal directed and reactive behavior is hard. After all, it is comparatively rare to
find humans that do this very well. How many of us have had a manager who stayed
blindly focussed on some project long after the relevance of the project was passed, or
it was clear that the project plan was doomed to failure? Similarly, how many have en-
countered managers who seem unable to stay focussed at all, who flit from one project
to another without ever managing to pursue a goal long enough to achieve anything?
This problem — of effectively integrating goal-directed and reactive behavior — is one
of the key problems facing the agent designer. As we shall see, a great many proposals
have been made for how to build agents that can do this — but the problem is essentially
still open.

Finally, let us say something about social ability, the final component of flexible
autonomous action as defined here. In one sense, social ability is trivial: every day, mil-
lions of computers across the world routinely exchange information with both humans
and other computers. But the ability to exchange bit streams is not really social ability.
Consider that in the human world, comparatively few of our meaningful goals can be
achieved without the cooperation of other people, who cannot be assumed to share our
goals — in other words, they are themselves autonomous, with their own agenda to
pursue. This type of social ability — involving the ability to dynamically negotiate and
coordinate — is much more complex, and much less well understood, than simply the
ability to exchange bitstreams.

An obvious question to ask is why agents and multi-agent systems are seen as an
important new direction in software engineering. There are several reasons [40, pp.6–
10]:

– Natural metaphor.
Just as the many domains can be conceived of consisting of a number of interacting
but essentially passive objects, so many others can be conceived as interacting,
active, purposeful agents. For example, a scenario currently driving much R&D
activity in the agents field is that of software agents that buy and sell goods via the
Internet on behalf of some users. It is natural to view the software participants in
such transactions as (semi-)autonomous agents.

– Distribution of data or control.
For many software systems, it is not possible to identify a single locus of control:
instead, overall control of the systems is distributed across a number computing
nodes, which are frequently geographically distributed. In order to make such sys-
tems work effectively, these nodes must be capable of autonomously interacting
with each other — they must agents.

– Legacy systems.

A natural way of incorporating legacy systems into modern distributed information
systems is to agentify them: to “wrap” them with an agent layer, that will enable
them to interact with other agents.

– Open systems.
Many systems are open in the sense that it is impossible to know at design time ex-
actly what components the system will be comprised of, and how these components
will be used to interact with one-another. To operate effectively in such systems, the
ability to engage in flexible autonomous decision-making is critical.

1.2 On the Relationship between Agents and Objects

Programmers familiar with object-oriented approaches often fail to see anything novel
or new in the idea of agents. When one stops to consider the relative properties of agents
and objects, this is perhaps not surprising. Objects are defined as computational entities
that encapsulate some state, are able to perform actions, or methods on this state, and
communicate by message passing. There are clearly close links between agents and
objects, which are made stronger by our tendency to anthropomorphisize objects. For
example, the following is from a textbook on object-oriented programming:

There is a tendency [. . .] to think of objects as “actors” and endow them with
human-like intentions and abilities. It’s tempting to think about objects “decid-
ing” what to do about a situation, [and] “asking” other objects for information.
[. . .] Objects are not passive containers for state and behaviour, but are said to
be the agents of a program’s activity. [37, p.7]

While there are obvious similarities, there are also significant differences between agents
and objects. The first is in the degree to which agents and objects are autonomous. Re-
call that the defining characteristic of object-oriented programming is the principle of
encapsulation — the idea that objects can have control over their own internal state.
In programming languages like Java, we can declare instance variables (and methods)
to be private, meaning they are only accessible from within the object. (We can of
course also declare them public, meaning that they can be accessed from anywhere,
and indeed we must do this for methods so that they can be used by other objects. But
the use of public instance variables is usually considered poor programming style.)
In this way, an object can be thought of as exhibiting autonomy over its state: it has
control over it. But an object does not exhibit control over it’s behavior. That is, if an
object has a public method m, then other objects can invoke m whenever they wish —
once an object has made a method public, then it subsequently has no control over
whether or not that method is executed.

Of course, an object must make methods available to other objects, or else we would
be unable to build a system out of them. This is not normally an issue, because if we
build a system, then we design the objects that go in it, and they can thus be assumed to
share a “common goal”. But in many types of multi-agent system, (in particular, those
that contain agents built by different organisations or individuals), no such common
goal can be assumed. It cannot be for granted that an agent � will execute an action
(method) � just because another agent � wants it to — � may not be in the best interests

of � . We thus do not think of agents as invoking methods upon one-another, but rather
as requesting actions to be performed. If � requests � to perform � , then � may perform
the action or it may not. The locus of control with respect to the decision about whether
to execute an action is thus different in agent and object systems. In the object-oriented
case, the decision lies with the object that invokes the method. In the agent case, the
decision lies with the agent that receives the request. This distinction between objects
and agents has been nicely summarized in the following slogan: Objects do it for free;
agents do it because they want to.

The second important distinction between object and agent systems is with respect
to the notion of flexible (reactive, pro-active, social) autonomous behavior. The standard
object model has nothing whatsoever to say about how to build systems that integrate
these types of behavior. One could point out that we can build object-oriented programs
that do integrate these types of behavior. And indeed we can, but this argument misses
the point, which is that the standard object-oriented programming model has nothing to
do with these types of behavior.

The third important distinction between the standard object model and our view of
agent systems is that agents are each considered to have their own thread of control.
Agents are assumed to be continually active, and typically are engaged in an infinite
loop of observing their environment, updating their internal state, and selecting and
executing an action to perform. In contrast, objects are assumed to be quiescent for
most of the time, becoming active only when another object requires their services by
dint of method invocation.

Of course, a lot of work has recently been devoted to concurrency in object-oriented
programming. For example, the Java language provides built-in constructs for multi-
threaded programming. There are also many programming languages available (most of
them admittedly prototypes) that were specifically designed to allow concurrent object-
based programming. But such languages do not capture the idea we have of agents as
autonomous entities. Perhaps the closest that the object-oriented community comes is
in the idea of active objects:

An active object is one that encompasses its own thread of control [. . .]. Active
objects are generally autonomous, meaning that they can exhibit some behavior
without being operated upon by another object. Passive objects, on the other
hand, can only undergo a state change when explicitly acted upon. [6, p.91]

Thus active objects are essentially agents that do not necessarily have the ability to
exhibit flexible autonomous behavior.

To summarize, the traditional view of an object and our view of an agent have at
least three distinctions:

– agents embody stronger notion of autonomy than objects, and in particular, they
decide for themselves whether or not to perform an action on request from another
agent;

– agents are capable of flexible (reactive, pro-active, social) behavior, and the stan-
dard object model has nothing to say about such types of behavior;

– a multi-agent system is inherently multi-threaded, in that each agent is assumed to
have at least one thread of control.

2 Agent-Oriented Analysis and Design

The first main strand of work we consider on approaches to developing agent systems
involves principled but informal development methodologies for the analysis and design
of agent-based system. These can be broadly divided into two groups:

– those that take their inspiration from object-oriented development, and either ex-
tend existing OO methodologies or adapt OO methodologies to the purposes of
AOSE [10, 45, 77, 54, 18, 3, 44, 56, 70];

– those that adapt knowledge engineering or other techniques [8, 49, 36, 16].

In the remainder of this section, we review some representative samples of this work.
As representatives of the first category, we survey the AAII methodology of Kinny et al
[45], the Gaia methodology of Wooldridge et al [77], and summarise work on adapting
UML [54, 18, 3]. As representatives of the second category, we survey the Cassiopeia
methodology of Collinot et al [16], the DESIRE framework of Treur et al [8], and the
use of Z for specifying agent systems [49].

Kinny et al: The AAII Methodology The Australian AI Institute (AAII) has been
developing agent-based systems for a decade. The primary development environment
in which this work has been carried out is the belief-desire-intention technology [74] of
the Procedural Reasoning System (PRS) and its successor, the Distributed Multi-Agent
Reasoning System (DMARS) [62]. The PRS, originally developed at Stanford Research
Institute, was the first agent architecture to explicitly embody the belief-desire-intention
paradigm, and has proved to be the most durable agent architecture developed to date. It
has been applied in several of the most significant multi-agent applications so far built,
including an air-traffic control system called OASIS that is currently undergoing field
trials at Sydney airport, a simulation system for the Royal Australian Air Force called
SWARMM, and a business process management system called SPOC (Single Point of
Contact), that is currently being marketed by Agentis Solutions [29]. The AAII method-
ology for agent-oriented analysis and design was developed as a result of experience
gained with these major applications. It draws primarily upon object-oriented method-
ologies, and enhances them with some agent-based concepts. The methodology itself
is aimed at the construction of a set of models which, when fully elaborated, define an
agent system specification.

The AAII methodology provides both internal and external models. The external
model presents a system-level view: the main components visible in this model are
agents themselves. The external model is thus primarily concerned with agents and the
relationships between them. It is not concerned with the internals of agents: how they
are constructed or what they do. In contrast, the internal model is entirely concerned
with the internals of agents: their beliefs, desires, and intentions.

The external model is intended to define inheritance relationships between agent
classes, and to identify the instances of these classes that will appear at run-time. It
is itself composed of two further models: the agent model and the interaction model.
The agent model is then further divided into an agent class model and an agent in-
stance model. These two models define the agents and agent classes that can appear,

and relate these classes to one-another via inheritance, aggregation, and instantiation
relations. Each agent class is assumed to have at least three attributes, for beliefs, de-
sires, and intentions. The analyst is able to define how these attributes are overridden
during inheritance. For example, it is assumed that by default, inherited intentions have
less priority than those in sub-classes. The analyst may tailor these properties as desired.

Details of the internal model are not given, but it seems clear that developing an
internal model corresponds fairly closely to implementing a PRS agent, i.e., designing
the agent’s belief, desire, and intention structures.

The AAII methodology is aimed at elaborating the models described above. It may
be summarised as follows:

1. Identify the relevant roles in the application domain, and on the basis of these,
develop an agent class hierarchy. An example role might be weather monitor,
whereby agent � is required to make agent � aware of the prevailing weather condi-
tions every hour.

2. Identify the responsibilities associated with each role, the services required by and
provided by the role, and then determine the goals associated with each service.
With respect to the above example, the goals would be to find out the current
weather, and to make agent � aware of this information.

3. For each goal, determine the plans that may be used to achieve it, and the context
conditions under which each plan is appropriate. With respect to the above example,
a plan for the goal of making agent � aware of the weather conditions might involve
sending a message to � .

4. Determine the belief structure of the system — the information requirements for
each plan and goal. With respect to the above example, we might propose a unary
predicate � ��� �����	�
�
� � ��� to represent the fact that the current wind speed is � . A
plan to determine the current weather conditions would need to be able to represent
this information.

Note that the analysis process will be iterative, as in more traditional methodologies.
The outcome will be a model that closely corresponds to the PRS agent architecture. As
a result, the move from end-design to implementation using PRS is relatively simple.

Wooldridge et al: Gaia The Gaia1 methodology is intended to allow an analyst to go
systematically from a statement of requirements to a design that is sufficiently detailed
that it can be implemented directly. Note that we view the requirements capture phase as
being independent of the paradigm used for analysis and design. In applying Gaia, the
analyst moves from abstract to increasingly concrete concepts. Each successive move
introduces greater implementation bias, and shrinks the space of possible systems that
could be implemented to satisfy the original requirements statement. (See [42, pp.216-
222] for a discussion of implementation bias.) Analysis and design can be thought of as
a process of developing increasingly detailed models of the system to be constructed.

1 The name comes from the Gaia hypothesis put forward by James Lovelock, to the effect that all
the organisms in the earth’s biosphere can be viewed as acting together to regulate the earth’s
environment.

Abstract Concepts Concrete Concepts
Roles Agent Types
Permissions Services
Responsibilities Acquaintances
Protocols
Activities
Liveness properties
Safety properties

Table 1. Abstract and concrete concepts in Gaia

Gaia borrows some terminology and notation from object-oriented analysis and de-
sign, (specifically, FUSION [15]). However, it is not simply a naive attempt to apply such
methods to agent-oriented development. Rather, it provides an agent-specific set of con-
cepts through which a software engineer can understand and model a complex system.
In particular, Gaia encourages a developer to think of building agent-based systems as
a process of organisational design.

The main Gaian concepts can be divided into two categories: abstract and concrete;
abstract and concrete concepts are summarised in Table 1. Abstract entities are those
used during analysis to conceptualise the system, but which do not necessarily have any
direct realisation within the system. Concrete entities, in contrast, are used within the
design process, and will typically have direct counterparts in the run-time system.

The objective of the analysis stage is to develop an understanding of the system
and its structure (without reference to any implementation detail). In the Gaia case, this
understanding is captured in the system’s organisation. An organisation is viewed as a
collection of roles, that stand in certain relationships to one another, and that take part
in systematic, institutionalised patterns of interactions with other roles.

The idea of a system as a society is useful when thinking about the next level in the
concept hierarchy: roles. It may seem strange to think of a computer system as being
defined by a set of roles, but the idea is quite natural when adopting an organisational
view of the world. Consider a human organisation such as a typical company. The com-
pany has roles such as “president”, “vice president”, and so on. Note that in a concrete
realisation of a company, these roles will be instantiated with actual individuals: there
will be an individual who takes on the role of president, an individual who takes on the
role of vice president, and so on. However, the instantiation is not necessarily static.
Throughout the company’s lifetime, many individuals may take on the role of company
president, for example. Also, there is not necessarily a one-to-one mapping between
roles and individuals. It is not unusual (particularly in small or informally defined or-
ganisations) for one individual to take on many roles. For example, a single individual
might take on the role of “tea maker”, “mail fetcher”, and so on. Conversely, there may
be many individuals that take on a single role, e.g., “salesman”.

A role is defined by four attributes: responsibilities, permissions, activities, and
protocols. Responsibilities determine functionality and, as such, are perhaps the key
attribute associated with a role. An example responsibility associated with the role of
company president might be calling the shareholders meeting every year. Responsibili-

ties are divided into two types: liveness properties and safety properties [57]. Liveness
properties intuitively state that “something good happens”. They describe those states
of affairs that an agent must bring about, given certain environmental conditions. In
contrast, safety properties are invariants. Intuitively, a safety property states that “noth-
ing bad happens” (i.e., that an acceptable state of affairs is maintained across all states
of execution). An example might be “ensure the reactor temperature always remains in
the range 0-100”.

In order to realise responsibilities, a role has a set of permissions. Permissions are
the “rights” associated with a role. The permissions of a role thus identify the resources
that are available to that role in order to realise its responsibilities. Permissions tend to
be information resources. For example, a role might have associated with it the ability
to read a particular item of information, or to modify another piece of information. A
role can also have the ability to generate information.

The activities of a role are computations associated with the role that may be carried
out by the agent without interacting with other agents. Activities are thus “private”
actions, in the sense of [65].

Finally, a role is also identified with a number of protocols, which define the way
that it can interact with other roles. For example, a “seller” role might have the protocols
“Dutch auction” and “English auction” associated with it; the Contract Net Protocol is
associated with the roles “manager” and “contractor” [66].

Odell et al: Agent UML Over the past two decades, many different notations and as-
sociated methodologies have been developed within the object-oriented development
community (see, e.g., [6, 64, 15]). Despite many similarities between these notations
and methods, there were nevertheless many fundamental inconsistencies and differ-
ences. The Unified Modelling Language — UML — is an attempt by three of the
main figures behind object-oriented analysis and design (Grady Booch, James Rum-
baugh, and Ivar Jacobson) to develop a single notation for modelling object-oriented
systems [7]. It is important to note that UML is not a methodology; it is, as its name
suggests, a language for documenting models of systems; associated with UML is a
methodology known as the Rational Unified Process [7, pp.449–456].

The fact that UML is a de facto standard for object-oriented modelling promoted
its rapid takeup. When looking for agent-oriented modelling languages and tools, many
researchers felt that UML was the obvious place to start [54, 18, 3]. The result has been
a number of attempts to adapt the UML notation for modelling agent systems. Odell and
colleagues have discussed several ways in which the UML notation might usefully be
extended to enable the modelling of agent systems [54, 3]. The proposed modifications
include:

– support for expressing concurrent threads of interaction (e.g., broadcast messages),
thus enabling UML to model such well-known agent protocols as the Contract
Net [66];

– a notion of “role” that extends that provided in UML, and in particular, allows the
modelling of an agent playing many roles.

Both the Object Management Group (OMG) [55], and the Foundation for Intelligent
Physical Agents (FIPA) [27] are currently supporting the development of UML-based

notations for modelling agent systems, and there is therefore likely to be considerable
work in this area.

Treur et al: DESIRE In an extensive series of papers (see, e.g., [8, 19]), Treur and col-
leagues have described the DESIRE framework. DESIRE is a framework for the design
and formal specification of compositional systems. As well as providing a graphical
notation for specifying such compositional systems, DESIRE has associated with it a
graphical editor and other tools to support the development of agent systems.

Collinot et al: Cassiopeia In contrast to Gaia and the AAII methodology, the Cas-
siopeia method proposed by Collinot et al is essentially bottom up in nature [16]. Es-
sentially, with the Cassiopeia method, one starts from the behaviours required to carry
out some task; this is rather similar to the behavioural view of agents put forward by
Brooks and colleagues [9]. Essentially, the methodology proposes three steps:

1. identify the elementary behaviours that are implied by the overall system task;
2. identify the relationships between elementary behaviours;
3. identify the organisational behaviours of the system, for example, the way in which

agents form themselves into groups.

Collinot et al illustrate the methodology by way of the design of a RoboCup soccer
team (see [38]).

Luck and d’Inverno: Agents in Z Luck and d’Inverno have developed an agent spec-
ification framework in the Z language [68], although the types of agents considered in
this framework are somewhat different from those discussed above [48, 49]. They de-
fine a four-tiered hierarchy of the entities that can exist in an agent-based system. They
start with entities, which are inanimate objects — they have attributes (colour, weight,
position), but nothing else. They then define objects to be entities that have capabilities
(e.g., tables are entities that are capable of supporting things). Agents are then defined to
be objects that have goals, and are thus in some sense active; finally, autonomous agents
are defined to be agents with motivations. The idea is that a chair could be viewed as
taking on my goal of supporting me when I am using it, and can hence be viewed as an
agent for me. But we would not view a chair as an autonomous agent, since it has no
motivations (and cannot easily be attributed them). Starting from this basic framework,
Luck and d’Inverno go on to examine the various relationships that might exist between
agents of different types. In [49], they examine how an agent-based system specified in
their framework might be implemented. They found that there was a natural relationship
between their hierarchical agent specification framework and object-oriented systems:

The formal definitions of agents and autonomous agents rely on inheriting
the properties of lower-level components. In the Z notation, this is achieved
through schema inclusion [. . .]. This is easily modelled in C++ by deriving
one class from another. [. . .] Thus we move from a principled but abstract
theoretical framework through a more detailed, yet still formal, model of the
system, down to an object-oriented implementation, preserving the hierarchical
structure at each stage. [49]

The Luck-d’Inverno formalism is attractive, particularly in the way that it captures the
relationships that can exist between agents. The emphasis is placed on the notion of
agents acting for another, rather than on agents as rational systems, as we discussed
above. The types of agents that the approach allows us to develop are thus inherently
different from the “rational” agents discussed above. So, for example, the approach does
not help us to construct agents that can interleave pro-active and reactive behaviour. This
is largely a result of the chosen specification language: Z. This language is inherently
geared towards the specification of operation-based, functional systems. The basic lan-
guage has no mechanisms that allow us to easily specify the ongoing behaviour of an
agent-based system2.

2.1 Discussion

The predominant approach to developing methodologies for multi-agent systems is to
adapt those developed for object-oriented analysis and design: hence the AAII method-
ology takes inspiration from Rumbaugh’s work, Gaia takes inspiration from FUSION,
and so on. There are obvious advantages to such an approach, the most obvious being
that the concepts, notations, and methods associated with object-oriented analysis and
design (and UML in particular) are increasingly familiar to a mass audience of software
engineers. However, there are several disadvantages. First, the kinds of decomposition
that object-oriented methods encourage is at odds with the kind of decomposition that
agent oriented design encourages. Put crudely, agents are more coarse-grained compu-
tational objects than are agents; they are typically assumed to have the computational
resources of a UNIX process, or at least a Java thread. Agent systems implemented
using object-oriented programming languages will typically contain many objects (per-
haps millions), but will contain far fewer agents. A good agent oriented design method-
ology would encourage developers to achieve the correct decomposition of entities into
either agents or objects.

Note that an alternative would be to model every entity in a system as an agent.
However, while this may be in some sense conceptually clean, does not lead to effi-
cient systems (see the discussion in [76]). The situation reflects the treatment of integer
data types in object-oriented programming languages; in “pure” OO languages, all data
types, including integers, are objects. However, viewing such primitive data types as ob-
jects, while ensuring a consistent treatment of data, is not terribly efficient, and for this
reason, more pragmatic OO languages (such as Java) do not treat integers, booleans,
and the like as objects.

Another problem is that object-oriented methodologies simply do not allow us to
capture many aspects of agent systems; for example, it is hard to capture in object mod-
els such notions as an agent pro-actively generating actions or dynamically reacting to
changes in their environment, still less how to effectively cooperate and negotiate with
other self-interested agents. The extensions to UML proposed by Odell et al [54, 18, 3]
address some, but by no means all of these deficiencies. At the heart of the problem
is the problem of the relationship between agents and objects, which has not yet been
satisfactorily resolved.

2 There are of course extensions to Z designed for this purpose.

Note that a valuable survey of methodologies for agent-oriented software engineer-
ing can be found in [35].

3 Formal Methods for AOSE

One of the most active areas of work in agent-oriented software engineering has been
on the use of formal methods (see, e.g., [75] for a survey). Broadly speaking, formal
methods play three roles in software engineering:

– in the specification of systems;
– for directly programming systems; and
– in the verification of systems.

In the subsections that follow, we consider each of these roles in turn. Note that these
subsections pre-suppose some familiarity with formal methods, and logic in particular.

3.1 Formal Methods in Specification

In this section, we consider the problem of specifying an agent system. What are the
requirements for an agent specification framework? What sort of properties must it be
capable of representing? Taking the view of agents as practical reasoning systems that
we discussed above, the predominant approach to specifying agents has involved treat-
ing them as intentional systems that may be understood by attributing to them mental
states such as beliefs, desires, and intentions [17, 75, 74]. Following this idea, a number
of approaches for formally specifying agents have been developed, which are capable
of representing the following aspects of an agent-based system:

– the beliefs that agents have — the information they have about their environment,
which may be incomplete or incorrect;

– the goals that agents will try to achieve;
– the actions that agents perform and the effects of these actions;
– the ongoing interaction that agents have — how agents interact with each other and

their environment over time.

We refer to a theory which explains how these aspects of agency interact to generate
the behaviour of an agent as an agent theory. The most successful approach to (formal)
agent theory appears to be the use of a temporal modal logic (space restrictions prevent a
detailed technical discussion on such logics — see, e.g., [75] for extensive references).
Two of the best known such logical frameworks are the Cohen-Levesque theory of
intention [14], and the Rao-Georgeff belief-desire-intention model [60, 74]. The Cohen-
Levesque model takes as primitive just two attitudes: beliefs and goals. Other attitudes
(in particular, the notion of intention) are built up from these. In contrast, Rao-Georgeff
take intentions as primitives, in addition to beliefs and goals. The key technical problem
faced by agent theorists is developing a formal model that gives a good account of
the interrelationships between the various attitudes that together comprise an agents

internal state [75]. Comparatively few serious attempts have been made to specify real
agent systems using such logics — see, e.g., [26] for one such attempt.

A specification expressed in such a logic would be a formula � . The idea is that
such a specification would express the desirable behavior of a system. To see how this
might work, consider the following, intended to form part of a specification of a process
control system.

if
� believes valve 32 is open

then
� should intend that � should believe valve 32 is open

Expressed in the BDI logic developed in [74], this statement becomes the formula:

������� ��� �	� � �
	 ��� 	 ���� � ��� ��� ��� � ������� ��� �	� � �
	 ��� 	 ���� � � �
It should be intuitively clear how a system specification might be constructed using
such formulae, to define the intended behavior of a system.

One of the main desirable features of a software specification language is that it
should not dictate how a specification will be satisfied by an implementation. The spec-
ification above has exactly this property: it does not dictate how agent � should go about
making � aware that valve 32 is open. We simply expect � to behave as a rational agent
given such an intention [74].

There are a number of problems with the use of languages such as for specification.
The most worrying of these is with respect to their semantics. The semantics for the
modal connectives (for beliefs, desires, and intentions) are given in the normal modal
logic tradition of possible worlds [11]. So, for example, an agent’s beliefs in some state
are characterized by a set of different states, each of which represents one possibility
for how the world could actually be, given the information available to the agent. In
much the same way, an agent’s desires in some state are characterized by a set of states
that are consistent with the agent’s desires. Intentions are represented similarly. There
are several advantages to the possible worlds model: it is well studied and well under-
stood, and the associated mathematics of correspondence theory is extremely elegant.
These attractive features make possible worlds the semantics of choice for almost every
researcher in formal agent theory. However, there are also a number of serious draw-
backs to possible worlds semantics. First, possible worlds semantics imply that agents
are logically perfect reasoners, (in that their deductive capabilities are sound and com-
plete), and they have infinite resources available for reasoning. No real agent, artificial
or otherwise, has these properties.

Second, possible worlds semantics are generally ungrounded. That is, there is usu-
ally no precise relationship between the abstract accessibility relations that are used to
characterize an agent’s state, and any concrete computational model. As we shall see
in later sections, this makes it difficult to go from a formal specification of a system
in terms of beliefs, desires, and so on, to a concrete computational system. Similarly,
given a concrete computational system, there is generally no way to determine what the
beliefs, desires, and intentions of that system are. If temporal modal logics such as are
to be taken seriously as specification languages, then this is a significant problem.

3.2 Formal Methods in Implementation

Specification is not (usually!) the end of the story in software development. Once given
a specification, we must implement a system that is correct with respect to this specifi-
cation. The next issue we consider is this move from abstract specification to concrete
computational model. There are at least three possibilities for achieving this transfor-
mation:

1. manually refine the specification into an executable form via some principled but
informal refinement process (as is the norm in most current software development);

2. directly execute or animate the abstract specification; or
3. translate or compile the specification into a concrete computational form using an

automatic translation technique.

In the subsections that follow, we shall investigate each of these possibilities in turn.

Refinement. At the time of writing, most software developers use structured but in-
formal techniques to transform specifications into concrete implementations. Probably
the most common techniques in widespread use are based on the idea of top-down re-
finement. In this approach, an abstract system specification is refined into a number of
smaller, less abstract subsystem specifications, which together satisfy the original spec-
ification. If these subsystems are still too abstract to be implemented directly, then they
are also refined. The process recurses until the derived subsystems are simple enough
to be directly implemented. Throughout, we are obliged to demonstrate that each step
represents a true refinement of the more abstract specification that preceded it. This
demonstration may take the form of a formal proof, if our specification is presented in,
say, Z [68] or VDM [42]. More usually, justification is by informal argument. Object-
oriented analysis and design techniques, which also tend to be structured but informal,
are also increasingly playing a role in the development of systems (see, e.g., [6]).

For functional systems, which simply compute a function of some input and then
terminate, the refinement process is well understood, and comparatively straightfor-
ward. Such systems can be specified in terms of pre- and post-conditions (e.g., using
Hoare logic [32]). Refinement calculi exist, which enable the system developer to take
a pre- and post-condition specification, and from it systematically derive an implemen-
tation through the use of proof rules [53]. Part of the reason for this comparative sim-
plicity is that there is often an easily understandable relationship between the pre- and
post-conditions that characterize an operation and the program structures required to
implement it.

For agent systems, which fall into the category of Pnuelian reactive systems (see the
discussion in chapter 1), refinement is not so straightforward. This is because such sys-
tems must be specified in terms of their ongoing behavior — they cannot be specified
simply in terms of pre- and post-conditions. In contrast to pre- and post-condition for-
malisms, it is not so easy to determine what program structures are required to realize
such specifications. As a consequence, researchers have only just begun to investigate
refinement and design technique for agent-based systems.

Directly Executing Agent Specifications. One major disadvantage with manual re-
finement methods is that they introduce the possibility of error. If no proofs are pro-
vided, to demonstrate that each refinement step is indeed a true refinement, then the
correctness of the implementation process depends upon little more than the intuitions
of the developer. This is clearly an undesirable state of affairs for applications in which
correctness is a major issue. One possible way of circumventing this problem, which
has been widely investigated in mainstream computer science, is to get rid of the refine-
ment process altogether, and directly execute the specification.

It might seem that suggesting the direct execution of complex agent specification
languages is naive — it is exactly the kind of suggestion that detractors of logic-based
AI hate. One should therefore be very careful about what claims or proposals one makes.
However, in certain circumstances, the direct execution of agent specification languages
is possible.

What does it mean, to execute a formula � of logic � ? It means generating a logical
model, � , for � , such that ��� � � [24]. If this could be done without interference
from the environment — if the agent had complete control over its environment — then
execution would reduce to constructive theorem-proving, where we show that � is sat-
isfiable by building a model for � . In reality, of course, agents are not interference-free:
they must iteratively construct a model in the presence of input from the environment.
Execution can then be seen as a two-way iterative process:

– environment makes something true;
– agent responds by doing something, i.e., making something else true in the model;
– environment responds, making something else true;
– . . .

Execution of logical languages and theorem-proving are thus closely related. This tells
us that the execution of sufficiently rich (quantified) languages is not possible (since
any language equal in expressive power to first-order logic is undecidable).

A useful way to think about execution is as if the agent is playing a game against
the environment. The specification represents the goal of the game: the agent must
keep the goal satisfied, while the environment tries to prevent the agent from doing
so. The game is played by agent and environment taking turns to build a little more
of the model. If the specification ever becomes false in the (partial) model, then the
agent loses. In real reactive systems, the game is never over: the agent must continue to
play forever. Of course, some specifications (logically inconsistent ones) cannot ever be
satisfied. A winning strategy for building models from (satisfiable) agent specifications
in the presence of arbitrary input from the environment is an execution algorithm for
the logic.

Concurrent METATEM is a programming language for multiagent systems, that
is based on the idea of directly executing linear time temporal logic agent specifica-
tions [25, 23]. A Concurrent METATEM system contains a number of concurrently exe-
cuting agents, each of which is programmed by giving it a temporal logic specification
of the behavior it is intended the agent should exhibit. An agent specification has the
form ���	� � ��
 � , where � � is a temporal logic formula referring only to the present or
past, and
 � is a temporal logic formula referring to the present or future. The � � ��
 �

formulae are known as rules. The basic idea for executing such a specification may be
summed up in the following slogan:

on the basis of the past do the future.

Thus each rule is continually matched against an internal, recorded history, and if a
match is found, then the rule fires. If a rule fires, then any variables in the future time part
are instantiated, and the future time part then becomes a commitment that the agent will
subsequently attempt to satisfy. Satisfying a commitment typically means making some
predicate true within the agent. Here is a simple example of a Concurrent METATEM
agent definition:

���������������������������� � ��� � ��� �	��
 � 	 � � ����� � ��� � ����� �
 � 	 � � ����� � � ��� � ��� � � � �
 � 	 � � ���

 � 	 � � ������
 � 	 � ��� ��� � � � � �

The agent in this example is a controller for a resource that is infinitely renewable,
but which may only be possessed by one agent at any given time. The controller must
therefore enforce mutual exclusion. The predicate � ��� � ��� means that agent � has asked
for the resource. The predicate
 � 	 � � ��� means that the resource controller has given
the resource to agent � . The resource controller is assumed to be the only agent able
to “give” the resource. However, many agents may ask for the resource simultaneously.
The three rules that define this agent’s behavior may be summarized as follows:

– Rule 1: if someone asks, then eventually give;
– Rule 2: don’t give unless someone has asked since you last gave; and
– Rule 3: if you give to two people, then they must be the same person (i.e., don’t

give to more than one person at a time).

Concurrent METATEM agents can communicate by asynchronous broadcast message
passing, though the details are not important here.

Compiling Agent Specifications. An alternative to direct execution is compilation. In
this scheme, we take our abstract specification, and transform it into a concrete compu-
tational model via some automatic synthesis process. The main perceived advantages
of compilation over direct execution are in run-time efficiency. Direct execution of an
agent specification, as in Concurrent METATEM, above, typically involves manipulat-
ing a symbolic representation of the specification at run time. This manipulation gen-
erally corresponds to reasoning of some form, which is computationally costly (and in
many cases, simply impracticable for systems that must operate in anything like real
time). In contrast, compilation approaches aim to reduce abstract symbolic specifica-
tions to a much simpler computational model, which requires no symbolic represen-
tation. The “reasoning” work is thus done off-line, at compile-time; execution of the
compiled system can then be done with little or no run-time symbolic reasoning. As a
result, execution is much faster. The advantages of compilation over direct execution
are thus those of compilation over interpretation in mainstream programming.

Compilation approaches usually depend upon the close relationship between mod-
els for temporal/modal logic (which are typically labeled graphs of some kind), and
automata-like finite state machines. Crudely, the idea is to take a specification � , and
do a constructive proof of the implementability of � , wherein we show that the spec-
ification is satisfiable by systematically attempting to build a model for it. If the con-
struction process succeeds, then the specification is satisfiable, and we have a model to
prove it. Otherwise, the specification is unsatisfiable. If we have a model, then we “read
off” the automaton that implements � from its corresponding model. The most common
approach to constructive proof is the semantic tableaux method of Smullyan [67].

In mainstream computer science, the compilation approach to automatic program
synthesis has been investigated by a number of researchers. Perhaps the closest to our
view is the work of Pnueli and Rosner [58] on the automatic synthesis of reactive sys-
tems from branching time temporal logic specifications. The goal of their work is to
generate reactive systems, which share many of the properties of our agents (the main
difference being that reactive systems are not generally required to be capable of ratio-
nal decision making in the way we described above). To do this, they specify a reactive
system in terms of a first-order branching time temporal logic formula ����� ��� � � ��� � � :
the predicate � characterizes the relationship between inputs to the system (�) and out-
puts (

�
). Inputs may be thought of as sequences of environment states, and outputs as

corresponding sequences of actions. The
�

is the universal path quantifier. The specifi-
cation is intended to express the fact that in all possible futures, the desired relationship
� holds between the inputs to the system, � , and its outputs,

�
. The synthesis process it-

self is rather complex: it involves generating a Rabin tree automaton, and then checking
this automaton for emptiness. Pnueli and Rosner show that the time complexity of the
synthesis process is double exponential in the size of the specification, i.e., � � ���
	�� � ,
where � is a constant and � � � � � is the size of the specification � . The size of the
synthesized program (the number of states it contains) is of the same complexity.

Similar automatic synthesis techniques have also been deployed to develop concur-
rent system skeletons from temporal logic specifications. Manna and Wolper present
an algorithm that takes as input a linear time temporal logic specification of the syn-
chronization part of a concurrent system, and generates as output a program skeleton
(based upon Hoare’s CSP formalism [33]) that realizes the specification [52]. The idea
is that the functionality of a concurrent system can generally be divided into two parts:
a functional part, which actually performs the required computation in the program,
and a synchronization part, which ensures that the system components cooperate in the
correct way. For example, the synchronization part will be responsible for any mutual
exclusion that is required.

Perhaps the best-known example of this approach to agent development is the situ-
ated automata paradigm of Rosenschein and Kaelbling [63]. In this approach, an agent
has two main components:

– a perception part, which is responsible for observing the environment and updating
the internal state of the agent; and

– an action part, which is responsible for deciding what action to perform, based on
the internal state of the agent.

Rosenschein and Kaelbling developed two programs to support the development of the
perception and action components of an agent respectively. The RULER program takes a
declarative perception specification and compiles it down to a finite state machine. The
specification is given in terms of a theory of knowledge. The semantics of knowledge in
the declarative specification language are given in terms of possible worlds, in the way
described above. Crucially, however, the possible worlds underlying this logic are given
a precise computational interpretation, in terms of the states of a finite state machine. It
is this precise relationship that permits the synthesis process to take place.

The action part of an agent in Rosenschein and Kaelbling’s framework is specified
in terms of goal reduction rules, which encode information about how to achieve goals.
The GAPPS program takes as input a goal specification, and a set of goal reduction
rules, and generates as output a set of situation action rules, which may be thought of
as a lookup table, defining what the agent should do under various circumstances, in
order to achieve the goal. The process of deciding what to do is then very simple in
computational terms, involving no reasoning at all.

3.3 Formal Verification

Once we have developed a concrete system, we need to show that this system is correct
with respect to our original specification. This process is known as verification, and it
is particularly important if we have introduced any informality into the development
process. For example, any manual refinement, done without a formal proof of refine-
ment correctness, creates the possibility of a faulty transformation from specification to
implementation. Verification is the process of convincing ourselves that the transforma-
tion was sound. We can divide approaches to the verification of systems into two broad
classes: (1) axiomatic; and (2) semantic (model checking). In the subsections that fol-
low, we shall look at the way in which these two approaches have evidenced themselves
in agent-based systems.

Axiomatic Approaches: Deductive Verification. Axiomatic approaches to program
verification were the first to enter the mainstream of computer science, with the work of
Hoare in the late 1960s [32]. Axiomatic verification requires that we can take our con-
crete program, and from this program systematically derive a logical theory that repre-
sents the behavior of the program. Call this the program theory. If the program theory
is expressed in the same logical language as the original specification, then verification
reduces to a proof problem: show that the specification is a theorem of (equivalently, is
a logical consequence of) the program theory.

The development of a program theory is made feasible by axiomatizing the pro-
gramming language in which the system is implemented. For example, Hoare logic
gives us more or less an axiom for every statement type in a simple Pascal-like lan-
guage. Once given the axiomatization, the program theory can be derived from the
program text in a systematic way.

Perhaps the most relevant work from mainstream computer science is the specifi-
cation and verification of reactive systems using temporal logic, in the way pioneered
by Pnueli, Manna, and colleagues [51]. The idea is that the computations of reactive

systems are infinite sequences, which correspond to models for linear temporal logic.
Temporal logic can be used both to develop a system specification, and to axiomatize a
programming language. This axiomatization can then be used to systematically derive
the theory of a program from the program text. Both the specification and the program
theory will then be encoded in temporal logic, and verification hence becomes a proof
problem in temporal logic.

Comparatively little work has been carried out within the agent-based systems com-
munity on axiomatizing multiagent environments. I shall review just one approach.

In [71], an axiomatic approach to the verification of multiagent systems was pro-
posed. Essentially, the idea was to use a temporal belief logic to axiomatize the prop-
erties of two multiagent programming languages. Given such an axiomatization, a pro-
gram theory representing the properties of the system could be systematically derived
in the way indicated above.

A temporal belief logic was used for two reasons. First, a temporal component was
required because, as we observed above, we need to capture the ongoing behavior of a
multiagent system. A belief component was used because the agents we wish to verify
are each symbolic AI systems in their own right. That is, each agent is a symbolic rea-
soning system, which includes a representation of its environment and desired behav-
ior. A belief component in the logic allows us to capture the symbolic representations
present within each agent.

The two multiagent programming languages that were axiomatized in the temporal
belief logic were Shoham’s AGENT0 [65], and Fisher’s Concurrent METATEM (see
above). The basic approach was as follows:

1. First, a simple abstract model was developed of symbolic AI agents. This model
captures the fact that agents are symbolic reasoning systems, capable of communi-
cation. The model gives an account of how agents might change state, and what a
computation of such a system might look like.

2. The histories traced out in the execution of such a system were used as the semantic
basis for a temporal belief logic. This logic allows us to express properties of agents
modeled at stage (1).

3. The temporal belief logic was used to axiomatize the properties of a multiagent
programming language. This axiomatization was then used to develop the program
theory of a multiagent system.

4. The proof theory of the temporal belief logic was used to verify properties of the
system (cf. [20]).

Note that this approach relies on the operation of agents being sufficiently simple that
their properties can be axiomatized in the logic. It works for Shoham’s AGENT0 and
Fisher’s Concurrent METATEM largely because these languages have a simple seman-
tics, closely related to rule-based systems, which in turn have a simple logical seman-
tics. For more complex agents, an axiomatization is not so straightforward. Also, cap-
turing the semantics of concurrent execution of agents is not easy (it is, of course, an
area of ongoing research in computer science generally).

Semantic Approaches: Model Checking. Ultimately, axiomatic verification reduces
to a proof problem. Axiomatic approaches to verification are thus inherently limited

by the difficulty of this proof problem. Proofs are hard enough, even in classical logic;
the addition of temporal and modal connectives to a logic makes the problem consider-
ably harder. For this reason, more efficient approaches to verification have been sought.
One particularly successful approach is that of model checking [13]. As the name sug-
gests, whereas axiomatic approaches generally rely on syntactic proof, model-checking
approaches are based on the semantics of the specification language.

The model-checking problem, in abstract, is quite simple: given a formula � of
language � , and a model � for � , determine whether or not � is valid in � , i.e.,
whether or not � � ��� � . Verification by model checking has been studied in connection
with temporal logic [13]. The technique once again relies upon the close relationship
between models for temporal logic and finite-state machines. Suppose that � is the
specification for some system, and � is a program that claims to implement � . Then, to
determine whether or not � truly implements � , we proceed as follows:

– take � , and from it generate a model ��� that corresponds to � , in the sense that
��� encodes all the possible computations of � ;

– determine whether or not ��� � � � , i.e., whether the specification formula � is
valid in ��� ; the program � satisfies the specification � just in case the answer is
“yes.”

The main advantage of model checking over axiomatic verification is in complexity:
model checking using the branching time temporal logic CTL [12] can be done in time
� � � � ��� � � � � , where � � � is the size of the formula to be checked, and � � � is the size of
the model against which � is to be checked — the number of states it contains.

In [61], Rao and Georgeff present an algorithm for model checking BDI systems.
More precisely, they give an algorithm for taking a logical model for their (proposi-
tional) BDI logic, and a formula of the language, and determining whether the formula
is valid in the model. The technique is closely based on model-checking algorithms for
normal modal logics [13]. They show that despite the inclusion of three extra modal-
ities (for beliefs, desires, and intentions) into the CTL branching time framework, the
algorithm is still quite efficient, running in polynomial time. So the second step of the
two-stage model-checking process described above can still be done efficiently. Similar
algorithms have been reported for BDI-like logics in [4].

The main problem with model-checking approaches for BDI is that it is not clear
how the first step might be realized for BDI logics. Where does the logical model char-
acterizing an agent actually come from? Can it be derived from an arbitrary program
� , as in mainstream computer science? To do this, we would need to take a program
implemented in, say, PASCAL, and from it derive the belief-, desire-, and intention-
accessibility relations that are used to give a semantics to the BDI component of the
logic. Because, as we noted earlier, there is no clear relationship between the BDI logic
and the concrete computational models used to implement agents, it is not clear how
such a model could be derived.

3.4 Discussion

This section is an updated and modified version of [73], which examined the possibility
of using logic to engineer agent-based systems. Since this article was published, several
other authors have proposed the use of agents in software engineering (see, e.g., [39]).

Structured but informal refinement techniques are the mainstay of real-world soft-
ware engineering. If agent-oriented techniques are ever to become widely used out-
side the academic community, then informal, structured methods for agent-based de-
velopment will be essential. One possibility for such techniques, followed by Luck and
d’Inverno, is to use a standard specification technique (in their case, Z), and use tradi-
tional refinement methods (in their case, object-oriented development) to transform the
specification into an implementation [49]. This approach has the advantage of being
familiar to a much larger user-base than entirely new techniques, but suffers from the
disadvantage of presenting the user with no features that make it particularly well-suited
to agent specification. It seems certain that there will be much more work on manual re-
finement techniques for agent-based systems in the immediate future, but exactly what
form these techniques will take is not clear.

With respect to the possibility of directly executing agent specifications, a number
of problems suggest themselves. The first is that of finding a concrete computational
interpretation for the agent specification language in question. To see what we mean
by this, consider models for the agent specification language in Concurrent METATEM.
These are very simple: essentially just linear discrete sequences of states. Temporal
logic is (among other things) simply a language for expressing constraints that must
hold between successive states. Execution in Concurrent METATEM is thus a process
of generating constraints as past-time antecedents are satisfied, and then trying to build
a next state that satisfies these constraints. Constraints are expressed in temporal logic,
which implies that they may only be in certain, regular forms. Because of this, it is
possible to devise an algorithm that is guaranteed to build a next state if it is possible to
do so. Such an algorithm is described in [1].

The agent specification language upon which Concurrent METATEM is based thus
has a concrete computational model, and a comparatively simple execution algorithm.
Contrast this state of affairs with languages like , where we have not only a temporal
dimension to the logic, but also modalities for referring to beliefs, desires, and so on.
In general, models for these logics have ungrounded semantics. That is, the semantic
structures that underpin these logics (typically accessibility relations for each of the
modal operators) have no concrete computational interpretation. As a result, it is not
clear how such agent specification languages might be executed.

Another obvious problem is that execution techniques based on theorem-proving
are inherently limited when applied to sufficiently expressive (first-order) languages, as
first-order logic is undecidable. However, complexity is a problem even in the proposi-
tional case. For “vanilla” propositional logic, the decision problem for satisfiability is
NP-complete [20, p.72]; richer logics, or course have more complex decision problems.

Despite these problems, the undoubted attractions of direct execution have led to a
number of attempts to devise executable logic-based agent languages. Rao proposed
an executable subset of BDI logic in his AGENTSPEAK(L) language [59]. Building
on this work, Hindriks and colleagues developed the 3APL agent programming lan-

guage [30, 31]. Lespérance, Reiter, Levesque, and colleagues developed the GOLOG

language throughout the latter half of the 1990s as an executable subset of the situation
calculus [46, 47]. Fagin and colleagues have proposed knowledge-based programs as a
paradigm for executing logical formulae which contain epistemic modalities [20, 21].
Although considerable work has been carried out on the properties of knowledge-based
programs, comparatively little research to date has addressed the problem of how such
programs might be actually executed.

Turning to automatic synthesis, we find that the techniques described above have
been developed primarily for propositional specification languages. If we attempt to
extend these techniques to more expressive, first-order specification languages, then we
again find ourselves coming up against the undecidability of quantified logic. Even in
the propositional case, the theoretical complexity of theorem-proving for modal and
temporal logics is likely to limit the effectiveness of compilation techniques: given an
agent specification of size 1,000, a synthesis algorithm that runs in exponential time
when used off-line is no more useful than an execution algorithm that runs in exponen-
tial time on-line.

Another problem with respect to synthesis techniques is that they typically result
in finite-state, automata-like machines, which are less powerful than Turing machines.
In particular, the systems generated by the processes outlined above cannot modify
their behavior at run-time. In short, they cannot learn. While for many applications, this
is acceptable — even desirable — for equally many others, it is not. In expert assistant
agents, of the type described in [50], learning is pretty much the raison d’etre. Attempts
to address this issue are described in [43].

Turning to verification, axiomatic approaches suffer from two main problems. First,
the temporal verification of reactive systems relies upon a simple model of concurrency,
where the actions that programs perform are assumed to be atomic. We cannot make
this assumption when we move from programs to agents. The actions we think of agents
as performing will generally be much more coarse-grained. As a result, we need a more
realistic model of concurrency. One possibility, investigated in [72], is to model agent
execution cycles as intervals over the real numbers, in the style of the temporal logic of
reals [2]. The second problem is the difficulty of the proof problem for agent specifi-
cation languages. The theoretical complexity of proof for many of these logics is quite
daunting.

Hindriks and colleagues have used Plotkin’s structured operational semantics to
axiomatize their 3APL language [30, 31].

With respect to model-checking approaches, the main problem, as we indicated
above, is again the issue of ungrounded semantics for agent specification languages. If
we cannot take an arbitrary program and say, for this program, what its beliefs, desires,
and intentions are, then it is not clear how we might verify that this program satisfied a
specification expressed in terms of such constructs.

4 Conclusions

Agent-oriented software engineering is at an early stage of evolution. While there are
many good paper arguments to support the view that agents represent an important di-

rection for software engineering, there is as yet a dearth of actual experience to underpin
these arguments. Preliminary methodologies and software tools to support the deploy-
ment of agent systems are beginning to appear, but slowly. In this final section, we point
to some of what we believe are the key obstacles that must be overcome in order for
AOSE to become “mainstream”:

– Sorting out the relationship of agents to other software paradigms — objects in
particular.
It is not yet clear how the development of agent systems will coexist with other
software paradigms, such as object-oriented development.

– Agent-oriented methodologies.
Although, as we have seen in this article, a number of preliminary agent-oriented
analysis and design methodologies have been proposed, there is comparatively little
consensus between these. In most cases, there is not even agreement on the kinds of
concepts the methodology should support. The waters are muddied by the presence
of UML as the predominant modelling language for object-oriented systems [7]:
we suggested earlier that the kinds of concepts and notations supported by UML
are not necessarily those best-suited to the development of agent systems.

– Engineering for open systems.
We argued that agents are suitable for open systems. In such systems, we believe it
is essential to be capable of reacting to unforeseen events, exploiting opportunities
where these arise, and dynamically reaching agreements with system components
whose presence could not be predicted at design time. However, it is difficult to
know how to specify such systems; still less how to implement them. In short, we
need a better understanding of how to engineer open systems.

– Engineering for scalability.
Finally, we need a better understanding of how to safely and predictably engineer
systems comprised of massive numbers of agents dynamically interacting with one-
another in order to achieve their goals. Such systems seem prone to problems such
as unstable/chaotic behaviours, feedback, and so on, and may fall prey to malicious
behaviour such as viruses.

Appendix: How to Find Out More About Agents

There are now many introductions to intelligent agents and multiagent systems. Fer-
ber [22] is an undergraduate textbook, although as its name suggests, this volume fo-
cussed on multiagent aspects rather than on the theory and practice of individual agents.
A first-rate collection of articles introducing agent and multiagent systems is Weiß [69].
Two collections of research articles provide a comprehensive introduction to the field
of autonomous rational agents and multiagent systems: Bond and Gasser’s 1988 col-
lection, Readings in Distributed Artificial Intelligence, introduces almost all the basic
problems in the multiagent systems field, and although some of the papers it contains
are now rather dated, it remains essential reading [5]; Huhns and Singh’s more recent
collection sets itself the ambitious goal of providing a survey of the whole of the agent
field, and succeeds in this respect very well [34]. For a general introduction to the the-
ory and practice of intelligent agents, see Wooldridge and Jennings [75], which focuses

primarily on the theory of agents, but also contains an extensive review of agent archi-
tectures and programming languages. For a collection of articles on the applications of
agent technology, see [41]. A comprehensive roadmap of agent technology was pub-
lished as [40].

References

1. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: A framework for
programming in temporal logic. In REX Workshop on Stepwise Refinement of Distributed
Systems: Models, Formalisms, Correctness (LNCS Volume 430), pages 94–129. Springer-
Verlag: Berlin, Germany, June 1989.

2. H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model and its temporal
logic. In Proceedings of the Thirteenth ACM Symposium on the Principles of Programming
Languages, pages 173–183, 1986.

3. Bernhard Bauer, Jörg P. Müller, and James Odell. Agent UML: A formalism for specifying
multiagent software systems. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented
Software Engineering — Proceedings of the First International Workshop (AOSE-2000).
Springer-Verlag: Berlin, Germany, 2000.

4. M. Benerecetti, F. Giunchiglia, and L. Serafini. A model checking algorithm for multiagent
systems. In J. P. Müller, M. P. Singh, and A. S. Rao, editors, Intelligent Agents V (LNAI
Volume 1555). Springer-Verlag: Berlin, Germany, 1999.

5. A. H. Bond and L. Gasser, editors. Readings in Distributed Artificial Intelligence. Morgan
Kaufmann Publishers: San Mateo, CA, 1988.

6. G. Booch. Object-Oriented Analysis and Design (second edition). Addison-Wesley: Read-
ing, MA, 1994.

7. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley: Reading, MA, 1999.

8. F. Brazier, B. Dunin-Keplicz, N. R. Jennings, and J. Treur. Formal specification of multi-
agent systems: a real-world case. In Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS-95), pages 25–32, San Francisco, CA, June 1995.

9. R. A. Brooks. Cambrian Intelligence. The MIT Press: Cambridge, MA, 1999.
10. Birgit Burmeister. Models and methodologies for agent-oriented analysis and design. In

Klaus Fischer, editor, Working Notes of the KI’96 Workshop on Agent-Oriented Program-
ming and Distributed Systems. 1996. DFKI Document D-96-06.

11. B. Chellas. Modal Logic: An Introduction. Cambridge University Press: Cambridge, Eng-
land, 1980.

12. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In D. Kozen, editor, Logics of Programs — Proceedings 1981
(LNCS Volume 131), pages 52–71. Springer-Verlag: Berlin, Germany, 1981.

13. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press: Cambridge,
MA, 2000.

14. P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intelligence,
42:213–261, 1990.

15. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes. Object-
Oriented Development: The FUSION Method. Prentice Hall International: Hemel Hempstead,
England, 1994.

16. Anne Collinot, Alexis Drogoul, and Philippe Benhamou. Agent oriented design of a soccer
robot team. In Proceedings of the Second International Conference on Multi-Agent Systems
(ICMAS-96), pages 41–47, Kyoto, Japan, 1996.

17. D. C. Dennett. The Intentional Stance. The MIT Press: Cambridge, MA, 1987.
18. Ralph Depke, Reiko Heckel, and Jochen Malte Kuester. Requirement specification and de-

sign of agent-based systems with graph transformation, roles, and uml. In P. Ciancarini and
M. Wooldridge, editors, Agent-Oriented Software Engineering — Proceedings of the First
International Workshop (AOSE-2000). Springer-Verlag: Berlin, Germany, 2000.

19. B. Dunin-Keplicz and J. Treur. Compositional formal specification of multi-agent systems.
In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Architectures,
and Languages (LNAI Volume 890), pages 102–117. Springer-Verlag: Berlin, Germany, Jan-
uary 1995.

20. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. The MIT
Press: Cambridge, MA, 1995.

21. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Knowledge-based programs. Distributed
Computing, 10(4):199–225, 1997.

22. J. Ferber. Multi-Agent Systems. Addison-Wesley: Reading, MA, 1999.
23. M. Fisher. A survey of Concurrent METATEM — the language and its applications. In

D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic — Proceedings of the First Inter-
national Conference (LNAI Volume 827), pages 480–505. Springer-Verlag: Berlin, Germany,
July 1994.

24. M. Fisher. An introduction to executable temporal logic. The Knowledge Engineering Re-
view, 11(1):43–56, 1996.

25. M. Fisher and M. Wooldridge. Executable temporal logic for distributed A.I. In Proceed-
ings of the Twelfth International Workshop on Distributed Artificial Intelligence (IWDAI-93),
pages 131–142, Hidden Valley, PA, May 1993.

26. M. Fisher and M. Wooldridge. On the formal specification and verification of multi-agent
systems. International Journal of Cooperative Information Systems, 6(1):37–65, 1997.

27. The Foundation for Intelligent Physical Agents. See http://www.fipa.org/.
28. M. R. Genesereth and S. P. Ketchpel. Software agents. Communications of the ACM,

37(7):48–53, July 1994.
29. M. P. Georgeff and A. S. Rao. A profile of the Australian AI Institute. IEEE Expert,

11(6):89–92, December 1996.
30. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Formal semantics for

an abstract agent programming language. In M. P. Singh, A. Rao, and M. J. Wooldridge,
editors, Intelligent Agents IV (LNAI Volume 1365), pages 215–230. Springer-Verlag: Berlin,
Germany, 1998.

31. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Control structures of
rule-based agent languages. In J. P. Müller, M. P. Singh, and A. S. Rao, editors, Intelligent
Agents V (LNAI Volume 1555). Springer-Verlag: Berlin, Germany, 1999.

32. C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–583, 1969.

33. C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21:666–
677, 1978.

34. M. Huhns and M. P. Singh, editors. Readings in Agents. Morgan Kaufmann Publishers: San
Mateo, CA, 1998.

35. C. A. Iglesias, M. Garijo, and J. C. Gonzalez. A survey of agent-oriented methodologies. In
J. P. Müller, M. P. Singh, and A. S. Rao, editors, Intelligent Agents V (LNAI Volume 1555).
Springer-Verlag: Berlin, Germany, 1999.

36. Carlos Iglesias, Mercedes Garijo, José C. González, and Juan R. Velasco. Analysis and
design of multiagent systems using MAS-CommonKADS. In M. P. Singh, A. Rao, and M. J.
Wooldridge, editors, Intelligent Agents IV (LNAI Volume 1365), pages 313–326. Springer-
Verlag: Berlin, Germany, 1998.

37. NeXT Computer Inc. Object-Oriented Programming and the Objective C Language.
Addison-Wesley: Reading, MA, 1993.

38. The Robot World Cup Initiative. See http://www.RoboCup.org/.
39. N. R. Jennings. Agent-based computing: Promise and perils. In Proceedings of the Six-

teenth International Joint Conference on Artificial Intelligence (IJCAI-99), pages 1429–
1436, Stockholm, Sweden, 1999.

40. N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and develop-
ment. Autonomous Agents and Multi-Agent Systems, 1(1):7–38, 1998.

41. N. R. Jennings and M. Wooldridge, editors. Agent Technology: Foundations, Applications
and Markets. Springer-Verlag: Berlin, Germany, 1998.

42. C. B. Jones. Systematic Software Development using VDM (second edition). Prentice Hall,
1990.

43. L. P. Kaelbling. Learning in Embedded Systems. The MIT Press: Cambridge, MA, 1993.
44. Elizabeth A. Kendall. Agent software engineering with role modelling. In P. Ciancarini and

M. Wooldridge, editors, Agent-Oriented Software Engineering — Proceedings of the First
International Workshop (AOSE-2000). Springer-Verlag: Berlin, Germany, 2000.

45. D. Kinny, M. Georgeff, and A. Rao. A methodology and modelling technique for systems of
BDI agents. In W. Van de Velde and J. W. Perram, editors, Agents Breaking Away: Proceed-
ings of the Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, (LNAI Volume 1038), pages 56–71. Springer-Verlag: Berlin, Germany, 1996.

46. Y. Lésperance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B. Scherl. Foundations
of a logical approach to agent programming. In M. Wooldridge, J. P. Müller, and M. Tambe,
editors, Intelligent Agents II (LNAI Volume 1037), pages 331–346. Springer-Verlag: Berlin,
Germany, 1996.

47. H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. Golog: A logic programming
language for dynamic domains. Journal of Logic Programming, 31:59–84, 1996.

48. M. Luck and M. d’Inverno. A formal framework for agency and autonomy. In Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS-95), pages 254–260,
San Francisco, CA, June 1995.

49. M. Luck, N. Griffiths, and M. d’Inverno. From agent theory to agent construction: A case
study. In J. P. Müller, M. Wooldridge, and N. R. Jennings, editors, Intelligent Agents III
(LNAI Volume 1193), pages 49–64. Springer-Verlag: Berlin, Germany, 1997.

50. P. Maes. Agents that reduce work and information overload. Communications of the ACM,
37(7):31–40, July 1994.

51. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems — Safety. Springer-
Verlag: Berlin, Germany, 1995.

52. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic speci-
fications. ACM Transactions on Programming Languages and Systems, 6(1):68–93, January
1984.

53. C. Morgan. Programming from Specifications (second edition). Prentice Hall International:
Hemel Hempstead, England, 1994.

54. James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Representing agent interaction
protocols in UML. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software
Engineering — Proceedings of the First International Workshop (AOSE-2000). Springer-
Verlag: Berlin, Germany, 2000.

55. The Object Management Group (OMG). See http://www.omg.org/.
56. Andrea Omicini. Soda: Societies and infrastructures in the analysis and design of agent-

based systems. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software Engi-
neering — Proceedings of the First International Workshop (AOSE-2000). Springer-Verlag:
Berlin, Germany, 2000.

57. A. Pnueli. Specification and development of reactive systems. In Information Processing 86.
Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1986.

58. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the
Sixteenth ACM Symposium on the Principles of Programming Languages (POPL), pages
179–190, January 1989.

59. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
W. Van de Velde and J. W. Perram, editors, Agents Breaking Away: Proceedings of the Sev-
enth European Workshop on Modelling Autonomous Agents in a Multi-Agent World, (LNAI
Volume 1038), pages 42–55. Springer-Verlag: Berlin, Germany, 1996.

60. A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proceedings of the
First International Conference on Multi-Agent Systems (ICMAS-95), pages 312–319, San
Francisco, CA, June 1995.

61. A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of situated rea-
soning systems. In Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence (IJCAI-93), pages 318–324, Chambéry, France, 1993.

62. A. S. Rao and M. P. Georgeff. Formal models and decision procedures for multi-agent sys-
tems. Technical Note 61, Australian AI Institute, Level 6, 171 La Trobe Street, Melbourne,
Australia, June 1995.

63. S. J. Rosenschein and L. P. Kaelbling. A situated view of representation and control. In P. E.
Agre and S. J. Rosenschein, editors, Computational Theories of Interaction and Agency,
pages 515–540. The MIT Press: Cambridge, MA, 1996.

64. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Model-
ing and Design. Prentice Hall, Englewood Cliifs, NJ, 1991.

65. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.
66. R. G. Smith. A Framework for Distributed Problem Solving. UMI Research Press, 1980.
67. R. M. Smullyan. First-Order Logic. Springer-Verlag: Berlin, Germany, 1968.
68. M. Spivey. The Z Notation (second edition). Prentice Hall International: Hemel Hempstead,

England, 1992.
69. G. Weiß, editor. Multi-Agent Systems. The MIT Press: Cambridge, MA, 1999.
70. Mark Wood and Scott A. DeLoach. An overview of the multiagent systems engineering

methodology. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software Engi-
neering — Proceedings of the First International Workshop (AOSE-2000). Springer-Verlag:
Berlin, Germany, 2000.

71. M. Wooldridge. The Logical Modelling of Computational Multi-Agent Systems. PhD thesis,
Department of Computation, UMIST, Manchester, UK, October 1992.

72. M. Wooldridge. This is MYWORLD: The logic of an agent-oriented testbed for DAI. In
M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Architectures, and
Languages (LNAI Volume 890), pages 160–178. Springer-Verlag: Berlin, Germany, January
1995.

73. M. Wooldridge. Agent-based software engineering. IEE Proceedings on Software Engineer-
ing, 144(1):26–37, February 1997.

74. M. Wooldridge. Reasoning about Rational Agents. The MIT Press: Cambridge, MA, 2000.
75. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The Knowledge

Engineering Review, 10(2):115–152, 1995.
76. M. Wooldridge and N. R. Jennings. Pitfalls of agent-oriented development. In Proceedings

of the Second International Conference on Autonomous Agents (Agents 98), pages 385–391,
Minneapolis/St Paul, MN, May 1998.

77. M. Wooldridge, N. R. Jennings, and D. Kinny. A methodology for agent-oriented analysis
and design. In Proceedings of the Third International Conference on Autonomous Agents
(Agents 99), pages 69–76, Seattle, WA, May 1999.

