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5 AGENTS WITH KNOWLEDGE: Outline

♦ Knowledge agents

♦ Logic

♦ Propositional logic

♦ First-order logic

♦ Situation calculus

♦ Logical Agent

♦ Knowledge

♦ Ontology

♦ Action and change

♦ Mental states
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♦ Belief

♦ Belief-desire-intension

♦ Frame, semantic network and inheritance

♦ Agents with Commonsense
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Knowledge agents

Inference engine

Knowledge base domain−specific content

domain−independent algorithms

Knowledge base (KB) = set of sentences in a formal language

Declarative approach to building an agent (or other system):
Tell it what it needs to know

Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them
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A simple knowledge-based agent

function KB-Agent( percept) returns an action

static: KB, a knowledge base
t, a counter, initially 0, indicating time

Tell(KB,Make-Percept-Sentence( percept, t))
action←Ask(KB,Make-Action-Query(t))

Tell(KB,Make-Action-Sentence(action, t))
t← t + 1

return action

The agent must be able to:
Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world
Deduce appropriate actions
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Logic

Logics are formal languages for representing information
such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the “meaning” of sentences;
i.e., define truth of a sentence in a world

E.g., the language of arithmetic

x + 2 ≥ y is a sentence; x2 + y > is not a sentence

x + 2 ≥ y is true iff the number x + 2 is no less than the number y

x + 2 ≥ y is true in a world where x= 7, y= 1
x + 2 ≥ y is false in a world where x= 0, y= 6
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Types of logic

Logics are characterized by what they commit to as “primitives”

Ontological commitment: what exists—facts? objects? time? beliefs?

Epistemological commitment: what states of knowledge?

Language Ontological Commitment Epistemological Commitment

Propositional logic facts true/false/unknown

First-order logic facts, objects, relations true/false/unknown

Temporal logic facts, objects, relations, times true/false/unknown

Probability theory facts degree of belief 0. . . 1

Fuzzy logic degree of truth degree of belief 0. . . 1
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Entailment

Entailment means one thing follows from another

KB |= α

Knowledge base KB entails sentence α
if and only if

α is true in all worlds where KB is true

E.g., the KB containing “the Giants won” and “the Reds won”
entails “Either the Giants won or the Reds won”

Entailment is a relationship between sentences (i.e., syntax) that is based
on semantics

AI Slides c©Lin Zuoquan, 2003 8



Models

Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence α if α is true in m

M(α) is the set of all models of α

Then KB |= α if and only if M(KB) ⊆M(α)

E.g. KB = Giants won and Reds won
α = Giants won M(    )
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Inference

KB `i α = sentence α can be derived from KB by procedure i

Soundness: i is sound if
whenever KB `i α, it is also true that KB |= α

Completeness: i is complete if
whenever KB |= α, it is also true that KB `i α

Preview: we will define a logic (first-order logic) which is expressive enough
to say almost anything of interest, and for which there exists a sound and
complete inference procedure.

That is, the procedure will answer any question whose answer follows from
what is known by the KB.

AI Slides c©Lin Zuoquan, 2003 10



Propositional logic: Syntax

Propositional logic (PL) is the simplest logic—illustrates basic ideas

The proposition symbols P1, P2 etc are sentences

If S is a sentence, ¬S is a sentence

If S1 and S2 is a sentence, S1 ∧ S2 is a sentence

If S1 and S2 is a sentence, S1 ∨ S2 is a sentence

If S1 and S2 is a sentence, S1 ⇒ S2 is a sentence

If S1 and S2 is a sentence, S1 ⇔ S2 is a sentence
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Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. A B C
True True False

Rules for evaluating truth with respect to a model m:

¬S is true iff S is false
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true

S1 ⇒ S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false

S1 ⇔ S2 is true iff S1 ⇒ S2 is true and S2 ⇒ S1 is true
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Propositional inference: Enumeration method

Let α = A ∨B and KB = (A ∨ C) ∧ (B ∨ ¬C)

Is it the case that KB |= α?
Check all possible models—α must be true wherever KB is true

A B C A ∨ C B ∨ ¬C KB α
False False False
False False True
False True False
False True True
True False False
True False True
True True False
True True True

Truth tables for connectives??
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Propositional inference: Solution

A B C A ∨ C B ∨ ¬C KB α
False False False False True False False
False False True True False False False
False True False False True False True
False True True True True True True
True False False True True True True
True False True True False False True
True True False True True True True
True True True True True True True
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Inference by enumeration

Truth table enumeration algorithm??

Depth-first enumeration of all models is sound and complete

O(2n) for n symbols, problem is co-NP-complete
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Equivalence

Two sentences are logically equivalent iff true in the same models:
α ≡ β iff α |= β and β |= α

12 usual equivalent rules for the connectives

α ∧ β ≡ β ∧ α (commutativity of ∧) etc.
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Validity and Satisfiability

A sentence is valid if it is true in all models
e.g., A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the Deduction Theorem:
KB |= α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A ∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A ∧ ¬A

Satisfiability is connected to inference via the following:
KB |= α if and only if (KB ∧ ¬α) is unsatisfiable

i.e., prove α by reductio ad absurdum
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Theorem proving

Proof methods divided (roughly) into two kinds:

Application of inference rules

1. Generation of new sentences from old

2. Proof=a sequence of inference rule application
Can use inference rules as operators in a standard search algorithm

3. Typically require translation of sentences into normal form

Model checking

1. Truth tables enumerations (always exponential in n)

2. Improved backtracking, e.g., Putnam-Davis

3. Heuristic search in model space (sound but incomplete)
e.g., the GSAT algorithm
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Why FOL: pros and cons of PL

PL is declarative: pieces of syntax correspond to facts

PL allows partial/disjuctive/negated informations
(unlike most data structures and databases)

PL is compositional:
meaning of B12 ∧ P21 is derived from meaning of B12 and P21

Meaning in PL is context independent:
(unlike natural language, where meaning depends on context)

But, PL has very limited expressive power
(unlike natural language)
E.g., cannot say ”pits cause breeze in the adjacent squares”
excepts one sentence for each square
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First order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) makes world conceptualization by

1. objects

2. relations (predicate)

3. functions
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Syntax of FOL

Let L be a first-order language

Vocabulary:

Constants KingJohn, 2, UCB, . . .
Predicates Brother, >, . . .
Functions Sqrt, LeftLegOf, . . .
Variables x, y, a, b, . . .
Connectives ∧ ∨ ¬ ⇒ ⇔
Equality =
Quantifiers ∀ ∃
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Atomic sentences

Atomic sentence = predicate(term1, . . . , termn)
or term1 = term2

Term = function(term1, . . . , termn)
or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart)
> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))
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Complex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)
>(1, 2) ∨ ≤(1, 2)
>(1, 2) ∧ ¬>(1, 2)
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Universal quantification

∀ 〈variables〉 〈sentence〉

Everyone at Berkeley is smart:
∀x At(x,Berkeley) ⇒ Smart(x)

∀x P is equivalent to the conjunction of instantiations of P

At(KingJohn,Berkeley) ⇒ Smart(KingJohn)
∧ At(Richard,Berkeley) ⇒ Smart(Richard)
∧ At(Berkeley,Berkeley) ⇒ Smart(Berkeley)
∧ . . .

Typically, ⇒ is the main connective with ∀.
Common mistake: using ∧ as the main connective with ∀:

∀x At(x,Berkeley) ∧ Smart(x)

means “Everyone is at Berkeley and everyone is smart”
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Existential quantification

∃ 〈variables〉 〈sentence〉

Someone at Stanford is smart:
∃x At(x, Stanford) ∧ Smart(x)

∃x P is equivalent to the disjunction of instantiations of P

At(KingJohn, Stanford) ∧ Smart(KingJohn)
∨ At(Richard, Stanford) ∧ Smart(Richard)
∨ At(Stanford, Stanford) ∧ Smart(Stanford)
∨ . . .

Typically, ∧ is the main connective with ∃.
Common mistake: using ⇒ as the main connective with ∃:

∃x At(x, Stanford) ⇒ Smart(x)

is true if there is anyone who is not at Stanford!
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Properties of quantifiers

∀x ∀ y is the same as ∀ y ∀ x (why??)

∃x ∃ y is the same as ∃ y ∃ x (why??)

∃x ∀ y is not the same as ∀ y ∃x

∃x ∀ y Loves(x, y)
“There is a person who loves everyone in the world”

∀ y ∃ x Loves(x, y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream) ¬∃x ¬Likes(x, IceCream)

∃x Likes(x,Broccoli) ¬∀ x ¬Likes(x,Broccoli)
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Semantics of FOL

Sentences are true with respect to a model and an interpretation

Model contains objects and relations among them

Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

An atomic sentence predicate(term1, . . . , termn) is true
iff the objects referred to by term1, . . . , termn

are in the relation referred to by predicate
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Models for FOL

Interpretation I :
the domain |I|

1. If σ is an object constant,
then σI ∈ |I|

2. If π is an n-ary function constant,
then πI : |I|n → |I|

3. If ρ is an n-ary relation constant,
then ρI ⊆ |I|n

AI Slides c©Lin Zuoquan, 2003 28



Models for FOL

Variable assignment U :
a function from the variables of L to objects of |I|

Term assignment TIU :
given I and U

1. If τ is an object constant,
then TIU(τ ) = I(τ )

2. If τ is a variable,
then TIU(τ ) = U (τ )

3. If τ is a term of the form π(τ1, · · · , τ ) and I(π) = g and TIU(τi) = xi,
then TIU(τ ) = g(x1, · · · , xn)
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Models for FOL

Satisfaction |=I φ[U ] (simply |=):
a sentence φ is satisfied by an interpretation I and a variable assignment

U

1. |= (σ = τ ) iff TIU(σ) = TIU(τ )

2. |= ρ(τ1, · · · , τn) iff < TIU(τ1), · · · , TIU(τn) >∈ I(ρ)

3. |= ¬φ iff 6|= φ

4. |= φ ∧ ψ iff |= φ and |= ψ

5. |= φ ∨
psi iff |= φ or |= ψ

6. |= φ→ ψ iff 6|= φ or |= ψ

7. |= ∀xφ(x) iff for all d ∈ |I| it is the case that |= φ[V ], where V (x) = d
and V (y) = U (y) for x 6= y

8. |= ∃xφ(x) iff for some d ∈ |I| it is the case that |= φ[V ], where V (x) = d
and V (y) = U (y) for x 6= y
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Models for FOL

Model I :
If an interpretation I satisfies a sentence φ for all variable assignments,

then I is said to be a model of φ, written |=I φ or I |= φ

Similarly (in PL), a sentence is valid if it is true in all models
e.g., A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

A sentence is unsatisfiable if it is true in no models
e.g., A ∧ ¬A

Entailment |=:
Let Σ be a set of sentences and φ a sentence,
Σ |= φ iff φ is true in all models of Σ
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Situation Calculus

Facts hold in situations, rather than eternally
E.g., Holding(Gold,Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold,Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a is s

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0

Forward

S1
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Actions

“Effect” axiom—describe changes due to action
∀ s AtGold(s) ⇒ Holding(Gold,Result(Grab, s))

“Frame” axiom—describe non-changes due to action
∀ s HaveArrow(s) ⇒ HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, . . .
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Actions

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):

P true afterwards ⇔ [an action made P true

∨ P true already and no action made P false]

For holding the gold:
∀ a, s Holding(Gold,Result(a, s)) ⇔

[(a=Grab ∧ AtGold(s))
∨ (Holding(Gold, s) ∧ a 6= Release)]
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Making plans

Initial condition in KB:
At(Agent, [1, 1], S0)
At(Gold, [1, 2], S0)

Query: Ask(KB, ∃ s Holding(Gold, s))
i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab, Result(Forward, S0))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and that S0

is the only situation described in the KB
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Making plans: A better way

Represent plans as action sequences [a1, a2, . . . , an]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB, ∃ p Holding(Gold, P lanResult(p, S0)))
has the solution {p/[Forward,Grab]}

Definition of PlanResult in terms of Result:
∀ s P lanResult([], s) = s
∀ a, p, s P lanResult([a|p], s) = PlanResult(p, Result(a, s))

Planning systems are special-purpose reasoners designed to do this type of
inference more efficiently than a general-purpose reasoner
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Planning in situation calculus

PlanResult(p, s) is the situation resulting from executing p in s
P lanResult([], s) = s
P lanResult([a|p], s) = PlanResult(p,Result(a, s))

Initial state At(Home, S0) ∧ ¬Have(Milk, S0) ∧ . . .

Actions as Successor State axioms
Have(Milk,Result(a, s)) ⇔
[(a = Buy(Milk) ∧ At(Supermarket, s)) ∨ (Have(Milk, s) ∧ a 6= . . .)]

Query

s = PlanResult(p, S0) ∧ At(Home, s) ∧Have(Milk, s) ∧ . . .

Solution

p = [Go(Supermarket), Buy(Milk), Buy(Bananas),Go(HWS), . . .]

Principal difficulty: unconstrained branching, hard to apply heuristics
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Logic Agent

Wumpus agent
- The wumpus world Knowledge Base
- Finding pits and wumpus using logical inference
-Translating knowledge into action

Circuit-based agent

situation calculus based agent
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Knowledge

Knowledge:
-Language, e.g., FOL
-Representation, e.g., declarative knowledge
-Reasoning, e.g., proofs and model checking

The separation between the knowledge base and reasoning procedure should
be maintained

Knowledge base (KB): a good KB should be expressive, concise, unambigu-
ous, context-insensitive, effective, clear and correct

Knowledge engineering (expert systems, knowledge-based systems): the pro-
cess of building a knowledge base
The knowledge engineer or agent usually interview the real experts or en-
vironments to become educated about the domain and to elicit required
knowledge in a process called knowledge acquisition
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Knowledge engineering vs. programming

Knowledge engineering Programming
1. Choosing a logic Choosing a programming language
2. Building a knowledge base Writing a program
3. Implementing the proof theory Choosing or writing a compiler
4. Inferring new facts Running a program

Should be less work
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Ontology

Ontology: a vocabulary for the domain knowledge

Ontological engineering: representing various ontology

The five-step methodology

1. Decide what to talk about

2. Decide on a vocabulary of predicates, functions and constants

3. Encode general knowledge about the domain

4. Encode a description of the specific problem instance

5. Pose queries to the inference procedure and get answers
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General ontology

A general-purpose ontology has advantages over special-purpose one

♦ Categories

♦ Measures

♦ Composite objects

♦ Time, Space, and Change

♦ Events and Processes

♦ Physical objects

♦ Substances

♦ Mental objects and belief
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The world ontology

Anything

AbstractObjects Events

Sets Numbers RepresentationalObjects Intervals Places ProcessesPhysicalObjects

Humans

Categories Sentences Measurements Moments Things Stuff

Times Weights Animals Agents Solid Liquid Gas
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Categories

Category: include as members all objects having certain properties
E.g., An object (penguin) is a member of a category (birds)
Penguin ∈ Birds

Subclass relations organize categories into a taxonomy (hierachy)
E.g., a category is a subclass of another category
Tomatoes ∈ Fruit

Inheritance: the individual inherits the property of the category from their
membership
E.g., Child(x, y) ∧ Familyname(John, y)→ Familyname(John, x)

The problem: natural kind or inheritance with exception
E.g., ∀x.x ∈ Typical(Bird)⇒ Flies(x)
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Description logic for categories

Description logic: focus on categories and their definitions
- Subsumption: checking if one category is a subset of another based

on their definitions
- Classification: checking if an object belongs to a category
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Action and change

Time:
E.g., At(Evening, Sleep)

Event:
E.g., WorldWarII, SubEvent(BattleOfBritain,WorldWarII)
An event that includes as subevents all events occuring in a given time

period is called interval

Space:
E.g., In(Beijing,China)
∀xl.Location(x) = l⇔

At(x, l) ∧ ∀l1At(x, l1)⇒ In(l, l1)

Process: liquid event
E.g., T (Working(Teacher), T odayLessonHours)
T (c, i) means that some event of type c occured over exactly the interval

i
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Action and change contd.

Time interval:
E.g., ∀ij.Meet(i, j)⇔ Time(End(i)) = Time(Start(j))

Meet(i,j)

Before(i,j)
After(j,i)

During(i,j)

Overlap(i,j)
Overlap(j,i)

i

j

i
j

i

j

i

j
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Action and change contd.

Action:
E.g., ∀xyi0.T (Engaged(x, y), i0)⇒

∃i1(Meet(i0, i1) ∨ After(i1, i0)) ∧
T (Marry(x, y) ∨ BreakEngagement(x, y), i1)

Fluent: something that changes across situations
E.g., President(USA)
T (Democrat(President(USA)), AD2003)

Context:
E.g., President(USA,AD2003) = GeorgeWBush
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Mental states

Propositional attitudes (modalities): e.g., know, believe, want, expect, etc.

Multi-agents: e.g., an agent reasons about the mental processes of the other
agents

Formalizing reasoning about mental states:
-syntactic theory
-possible worlds (modal logic)

Modal operators: B, K

B(a, ψ) or Ba(ψ): agent a believes that sentence ψ is true

K(a, ψ) or Ka(ψ): agent a knows that sentence ψ is true

B(A,ψ), A = {a1, · · · , an}: every agent of A believes that sentence ψ is
true
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Belief: A formal theory

Extending first-order language L:

Belief formulas: Believes(Agent, fluent)

Strings: Flies(Clark) represented as [F, l, i, e, s, (, C, l, a, r, k, ), ]
-referential opaque: an equal term cannot be substituted for the one

(mental object) in the scope of belief, e.g., ”Clark” 6= ”Superman”

Den function: mapping a string to the object that it denotes

Name function: mapping an object to a string that is the name of a constant
that denotes the object

E.g.,

Den(”Clark”) = ManOfSteel ∧Den(”Superman”) = ManOfSteel

Name(ManOfSteel) = K11
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Belief contd.

Inference rules,e.g., Modus Ponens
∀apq.LogicalAgent(a)∧Believes(a, p)∧Believes(a,Concat(p, ”⇒

”, q)⇒ Believes(a, q)
where Concat is a function on strings that concatenates their elements

together, abbreviate Concat(p, ”⇒ ”, q) as ”p⇒q”

E.g., belief rules, -if a logical agent believes something, then it believes that
it believes it

∀ap.LogicalAgent(a)∧Believes(a, p)⇒ Believes(a, ”Believes(Name(a),p)”)

AI Slides c©Lin Zuoquan, 2003 51



Belief contd.

Logical omniscience:

Believes(a, φ), Believes(a, φ⇒ ψ) |= Believes(a, ψ)

-So we need limited rational agent

Belief and knowledge: knowledge is justified true belief

∀ap.Knows(a, p) ⇔ Believes(a, p) ∧ T (Den(p) ∧ T (Den(KB(a)) ⇒
Den(p))

Belief and Time: Believes(agent, string, interval)

Knowledge and action: knowledge producing actions
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Belief-desire-intension

The Belief-Desire-Intention (BDI) model of agent targets to discloses the
internal structure of an intelligent agent further. It explains the process of
agent’s decision-making.

Belief: agent’s mental reflection of outside world and its physical state.

Desire: the goals the agent desire to achieve.

Intention: the actions that the agent intends to perform to satisfy its desires.

Example:

I believe that if I work hard I will pass this course.

I desire to pass this course.

I intend to work hard.
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Frame, semantic network and inheritance

(b) Translation into first−order logic

S
ub

se
t

S
ub

se
t Subset

Sub
se

t

Name(Opus,"Opus")
Name(Bill,"Bill")
Friend(Opus,Bill)
Friend(Bill,Opus)

Animals

Birds Mammals

Penguins Cats Bats

Rel(Alive,Animals,T)

Rel(Flies,Birds,T)
Rel(Legs,Birds,2)
Rel(Legs,Mammals,4)

Rel(Flies,Penguins,F)
Rel(Legs,Bats,2)
Rel(Flies,Bats,T)

Rel(Flies,Animals,F)

M
em

be
r

M
em

be
r

M
em

be
r

Opus     Penguins
Bill     Cats
Pat     Bats

Name(Pat,"Pat")

Flies:    F

Legs:    2

Flies:    T
Legs:    4

Flies:    F Legs:    2

Flies:    T

Opus Bill

Friend: Friend:

Pat

Name:    PatName:    BillName:    Opus

Alive:    T

Subset

(a) A frame−based knowledge base

Birds       Animals
Mammals       Animals

Penguins       Birds
Cats       Mammals
Bats       Mammals
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Frame contd.

Link Type Semantics Example

A Subset� � B A � B Cats � Mammals
A Member� � B A � B Bill � Cats
A R� � B R(A, B) Bill Age� � 12

A R� � B � x x � A � R(x, B) Birds Legs� � 2

A R� � B � x� y x � A � y � B � R(x, y) Birds Parent� � Birds
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Inheritance

Inheritance with exceptions

∀rxb.Holds(r, x, b)⇔
V al(r, x, b) ∨ (∃px ∈ p ∧Rel(r, p, b) ∧ ¬InterveningRel(x, p, r))

∀xpr.InterveningRel(x, p, r)⇔
∃iIntervening(x, i, p) ∧ ∃b′Rel(r, i, b′)

∀aip.Intervening(x, i, p)⇔ (x ∈ i) ∧ (i ⊂ p)

Multiple inheritance
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Commonsense reasoning

The example

KB:

∀xBird(x)⇒ Flies(x)
Bird(Tweety)

KB ` Flies(Tweety)??

With exceptions:

∀xBird(x) ∧ x 6= Penguin ∧ · · · ⇒ Flies(x)

∀xBird(x) ∧ ¬Abnormal(x)⇒ Flies(x)
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Commonsense contd.

The problem

Monotonicity of FOL:

if KB ` P then (KB ∧ S) ` P
i.e., if P follows from KB, then it still follows when KB is augmented by

TELL(KB,S)

Nonmonotonicity: KB ⊂ KB′,∃P,KB ` P but KB′ 6` P
Nonmonotonic logic is the formalization of reasoning with incomplete

knowledge
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Agent with incomplete knowledge

Closed World Assumption (CWA)

Let KB be a (finite) set of sentence (belief set), T (KB) theory of KB
(T (KB) = {φ|KB |= φ})

The CWA of KB, written as CWA(KB) = KB ∪ KBasm, defined as
follows:

1. φ ∈ T (KB) iff KB |= φ, φ is a sentence

2. ¬p ∈ KBasm iff p /∈ T (KB), p is a ground atom

3. φ ∈ CWA(KB) iff {KB ∪KBasm} |= φ
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Agent with incomplete knowledge contd.

CWA

KB = {p(A), p(A)⇒ q(A), p(B)}

T (KB) 6|= q(B), T (KB) 6|= ¬q(B)

CWA(KB) |= ¬q(B)

The problem

KB = {p(A) ∨ p(B)}

CWA(KB) |= ¬p(A) ∧ ¬p(B)
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Web shopping agent
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