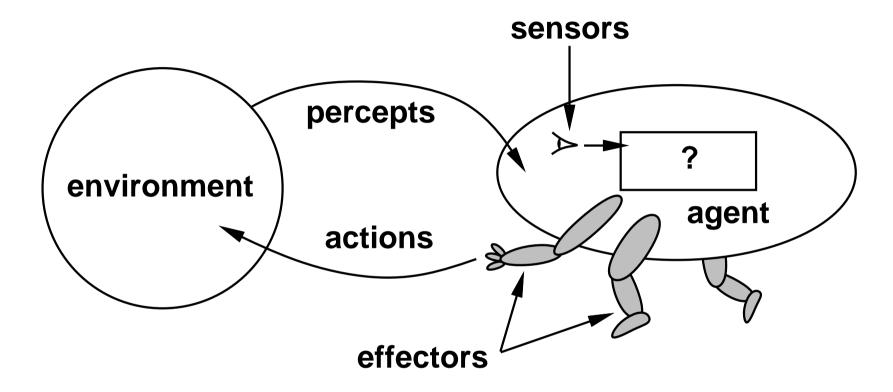
Intelligent Agent

2 INTELLIGENT AGENT: Outline

- \Diamond Agent
- ♦ PAGE (Percepts, Actions, Goals, Environment)
- ♦ Environment types
- \Diamond Agent functions and programs
- ♦ Agent types


Agent

An <u>agent</u> is anything that can be viewed as <u>perceiving</u> its environment through <u>sensors</u> and acting upon that environment through <u>effectors</u>.

- an animal agent
- a human agent
- a robotic agent
- a software agent:

internet agent - crawler, softbot, webbot, search agent, email agent, schedule agent, etc.

Agent

PAGE

Must first specify the setting for intelligent agent design

Consider, e.g., the task of designing an automated taxi:

Percepts??

Actions??

Goals??

Environment??

PAGE

E.g., the task of designing an automated taxi:

<u>Percepts</u>?? video, accelerometers, gauges, engine sensors, keyboard, GPS, ...

Actions?? steer, accelerate, brake, horn, speak/display, . . .

<u>Goals</u>?? safety, reach destination, maximize profits, obey laws, passenger comfort, . . .

<u>Environment</u>?? urban streets, freeways, traffic, pedestrians, weather, customers, . . .

Web shopping agent

Percepts??

Actions??

Goals??

Environment??

Rational agents

A rational agent is one that does right thing.

Without loss of generality, "goals" specifiable by <u>performance measure</u> defining a numerical value for any environment history

Rational action: whichever action maximizes the expected value of the performance measure given the percept sequence to date

 $Rational \neq omniscient$

Rational \neq clairvoyant

Rational \neq successful

Environment Types

	Solitaire	Backgammon	Internet shopping	Taxi
Accessible??				
<u>Deterministic</u> ??				
Episodic??				
Static??				
Discrete??				

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Accessible??	Yes	Yes	No	No
<u>Deterministic</u> ??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
<u>Discrete</u> ??	Yes	Yes	Yes	No

The environment type largely determines the agent design

The real world is (of course) inaccessible, stochastic, sequential, dynamic, continuous

Agent Functions and Programs

An agent is completely specified by the <u>agent function</u> mapping percept sequences to actions

(In principle, one can supply each possible sequence to see what it does. Obviously, a lookup table would usually be immense.)

One agent function (or a small equivalence class) is <u>rational</u>

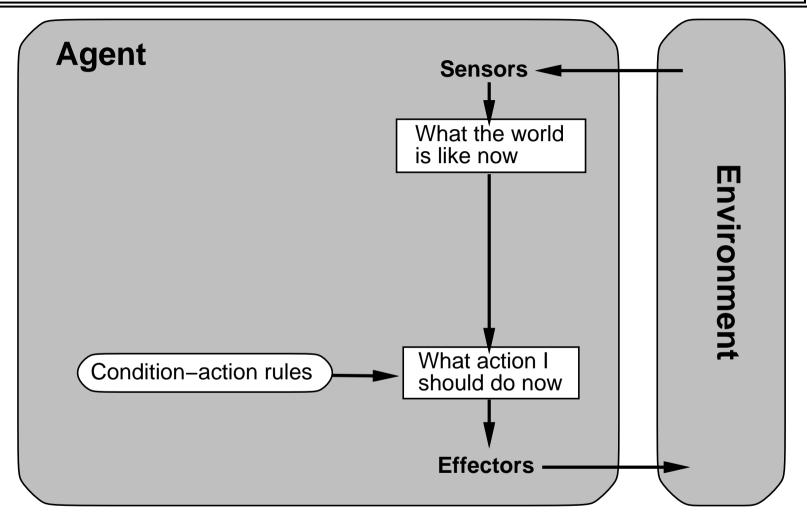
Aim: find a way to implement the rational agent function concisely

An agent program takes a single percept as input, keeps internal state:

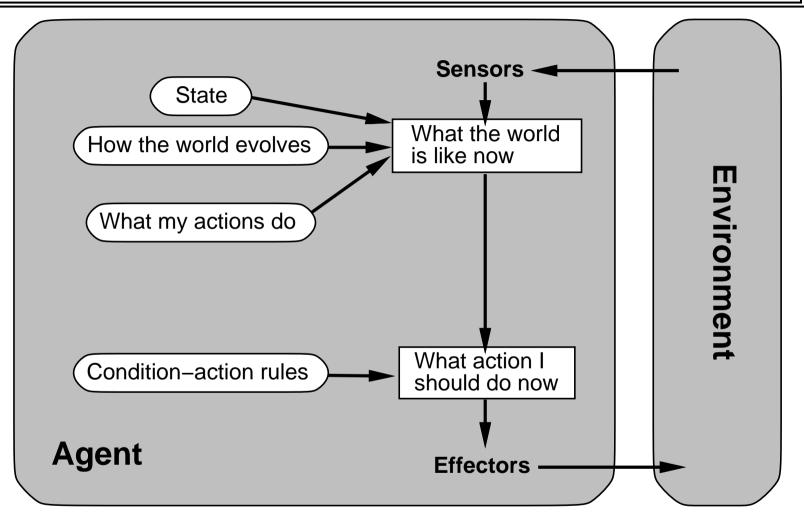
```
function Skeleton-Agent (percept) returns action static: memory, the agent's memory of the world memory \leftarrow \text{Update-Memory}(memory, percept) \\ action \leftarrow \text{Choose-Best-Action}(memory) \\ memory \leftarrow \text{Update-Memory}(memory, action) \\ return action
```

The code

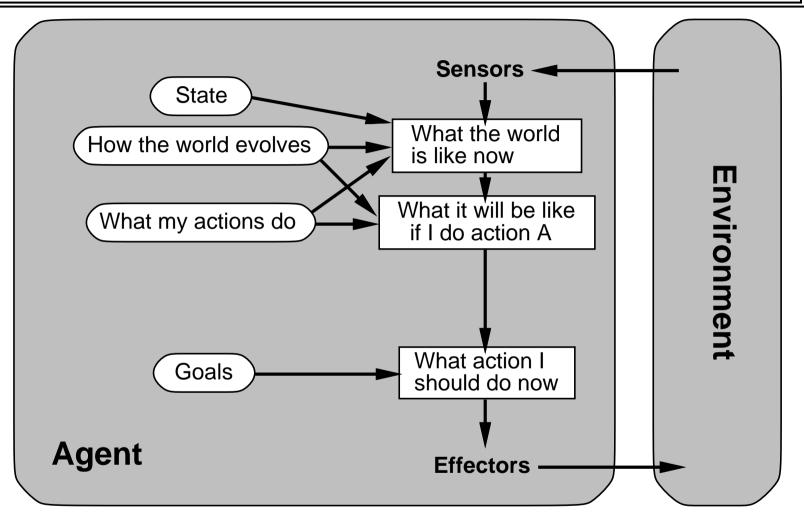
The code is divided into four directories:

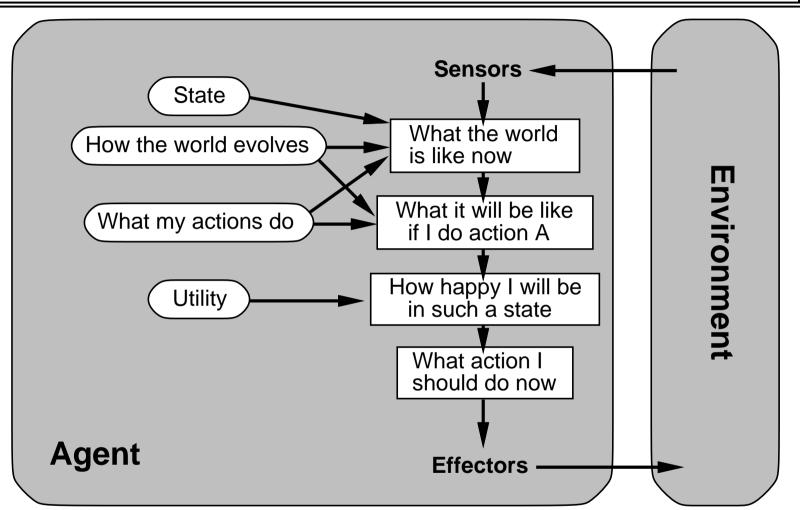

- agents: code defining agent types and programs
- algorithms: code for the methods used by the agent programs
- environments: code defining environment types, simulations
- domains: problem types and instances for input to algorithms
 (Often run algorithms on domains rather than agents in environments.)

Agent Types


Four basic types in order of increasing generality:

- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents


Simple reflex agents


Reflex agents with state

Goal-based agents

Utility-based agents

AI Slides (CLin Zuoquan, 2003)

The Vacuum World

code/agents/environments/vacuum.lisp

Percepts (<bump> <dirt> <home>)

18

Actions shutoff forward suck (turn left) (turn right)

Goals (performance measure on environment history)

- -+100 for each piece of dirt cleaned up
- -1 for each action
- -1000 for shutting off away from home

Environment

- grid, walls/obstacles, dirt distribution and creation, agent body
- movement actions work unless bump into wall
- suck actions put dirt into agent body (or not)

Accessible? Deterministic? Episodic? Static? Discrete?

Readings