

Description Logic

Lin Zuoquan

Information Science Department

Peking University

Iz@is.pku.edu.cn/ http://www.is.pku.edu.cn/~Iz/teaching/stm/saswws.html

Outline

- Introduction
- Description Logic
- Algorithm
- Complexity
- Implementation
- Application
- Logical Foundations of Semantic Web

Introduction

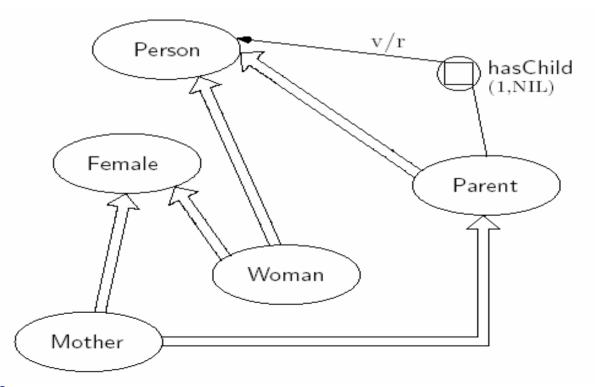
Description Logics

DL: Logics for the representation of and reasoning about

- terminological knowledge
- ontologies
- database schemata
 - schema design, evolution, and query optimization
 - source integration in heterogeneous databases/data warehouses
 - conceptual modelling of multidimensional aggregation
- • •
- Historically, descendants of semantics networks, framebased systems, and KL-ONE
- A.k.a., terminological logics, terminological KR systems, concept languages, attributive languages, etc.

Network \rightarrow DL

- Network-based representation, referred as terminology,
 - the generality/specificity of the concepts, in particular, IS-A relationship
- "Parent" can be read as
 - "A parent is a person having at least one child, and all of his/her children are persons."



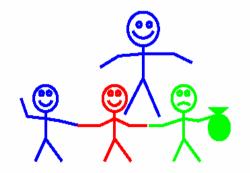
Network \rightarrow DL (contd.)

- Nodes: concepts, i.e., sets or classes of individual objects
 - concepts can have properties (attributes)
- Links: relationships among concepts.
 - Beyond IS-A, and more complex relationships are themselves represented as nodes
- Roles: by a link from the concept to a node for the role, e.g., hasChild
 - value restriction (v/r): a limitation on the range of types of objects that can fill that role
 - number restriction: e.g., (1,NIL)

Network \rightarrow DL (contd.)

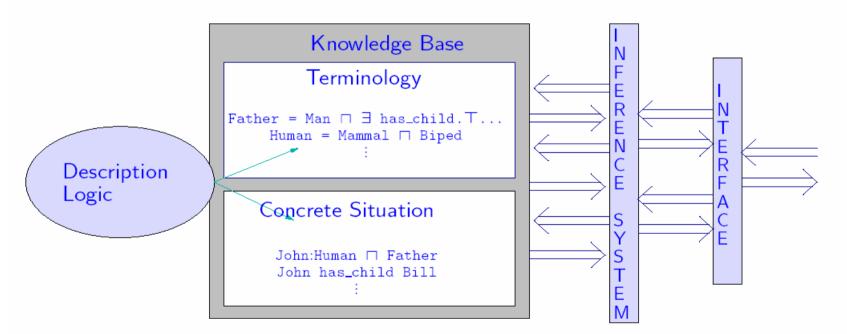
- A Description Logic mainly characterized by a set of constructors that allow to build complex concepts and roles from atomic ones
 - concepts correspond to classes / are interpreted as sets of objects
 - roles correspond to relations / are interpreted as binary relations on objects

Example: Happy Father in the DL \mathcal{ALC}



Man □ (∃has-child.Blue) □ (∃has-child.Green) □ (∀has-child.Happy ⊔ Rich)

Basic Architecture



Architecture of a knowledge representation system based on Description Logic.

Description Logic

Description Languages

- The family of AL-languages (AL=attributive language)
 - A,B stand for atomic concepts
 - R stand for atomic roles
 - C,D stand for concept descriptions
- Constuctors
 - Operations for defining complex concepts

Carlos Carlos

C,D :: = A (atomic concept) (universal concept) (bottom concept) ٦A (atomic negation) $C \cap D$ (intersection) ∀R.C (value restriction) ∃R. — (limited existential quantification)

Syntax: AL

FL

FL⁻

A $|-\!\!\!-\!\!\!| -\!\!\!| -\!\!\!| -\!\!\!| C \cap D | \forall R.C | \exists R. -\!\!\!-$

- the sublanguage of *AL* obtained by disallowing atomic negation

■ FL∘

- the sublanguage of *FL* obtained by disallowing limited existential quantification

Example

person ∩ ∀hasChild. ⊥
"those persons without a child"
person ∩ ∃hasChild. ⊤
"those persons who have a child"

Semantics

An interpretations / consisting of

- a non-empty domain
- an function which assigns to every atomic concept a set of the domain and to every atomic role R a binary relation over domains

Semantics: AL

 $A^{I} \subset \Delta^{I}, R^{I} \subset \Delta^{I} \times \Delta^{I}$ $T^{I} = \Delta^{I}, \perp^{I} = \emptyset$ $(\neg A)^{I} = \Delta^{I} \setminus A^{I}$ $(C \cap D)^{I} = C^{I} \cap D^{I}$ $(\forall R.C)^{I} = \{a \in \Delta^{I} \mid \forall b.(a,b) \in R^{I} \rightarrow b \in C^{I}\}$ $(\exists R.T)^{I} = \{a \in \Delta^{I} \mid \exists b.(a,b) \in R^{I}\}$

Semantics: Additional Constructor

- \mathcal{U} :union of concepts
- ε: full existent
- \mathcal{N} :number restrictions

 $(C \cup D)^I = C^I \cup D^I$ $(\exists R.C)^{I} = \{a \in \Delta^{I} \mid \exists b.(a,b) \in R^{I} \land b \in C^{I}\}$ $(\geq nR)^{I} = \{a \in \Delta^{I} \mid \left| \{b \mid (a,b) \in R^{I}\} \right| \geq n\}$ $(\leq nR)^{I} = \{a \in \Delta^{I} \mid |\{b \mid (a,b) \in R^{I}\}| \leq n\}$ $(-C)^{I} = \Delta^{I} \setminus C^{I}$

C :negation of arbitrary concepts

Example

Person $\sqcap (\leq 1 \text{ hasChild} \sqcup (\geq 3 \text{ hasChild} \sqcap \exists \text{hasChild.Female}))$

- "those persons that have either not more than one child or at least three children, one of which is female."

AL Family

AL[U][ε][N][C]

Extending *AL* by any subset of the additional constructors yields a particular *AL*-language.

- Union and full existential quantification can be expressed using negation (and vice versa)
 - ALC instead of AL Uε
 - ALCN instead of $ALU \epsilon N$

$$C \cup D \equiv \neg (\neg C \cap \neg D)$$
$$\exists R.C \equiv \neg \forall R.\neg C$$

Syntax and Semantics of ALC

Semantics given by means of an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$:

Constructor	Syntax	Example	Semantics		
atomic concept	A	Human	$A^\mathcal{I} \subseteq \Delta^\mathcal{I}$		
atomic role	R	likes	$R^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$		
For C, D concepts and R a role name					
conjunction	$C \sqcap D$	Human ⊓ Male	$C^\mathcal{I}\cap D^\mathcal{I}$		
disjunction	$C \sqcup D$	Nice ⊔ Rich	$C^\mathcal{I} \cup D^\mathcal{I}$		
negation	$\neg C$	¬ Meat	$\Delta^\mathcal{I} \setminus C^\mathcal{I}$		
exists restrict.	$\exists R.C$	∃has-child.Human	$\{x \mid \exists y. \langle x, y angle \in R^\mathcal{I} \land y \in C^\mathcal{I}\}$		
value restrict.	$\forall R.C$	∀has-child.Blond	$\{x \mid orall y. \langle x, y angle \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$		

Other Constructors

Many other DL constructors have been introduced.

Constructor	Syntax	Example	Semantics
number restriction	$(\geq n R)$	$(\geq 7$ has-child)	$\{x \mid \{y.\langle x,y angle \in R^\mathcal{I}\} \geq n\}$
$(\rightsquigarrow \mathcal{ALCN})$	$(\leq n \; R)$	$(\leq 1$ has-mother)	$\{x \mid \{y.\langle x,y angle \in R^\mathcal{I}\} \leq n\}$
inverse role	R^-	has-child	$\{\langle x,y angle \mid \langle y,x angle \in R^{\mathcal{I}}\}$
trans. role	R^*	has-child*	$(oldsymbol{R}^\mathcal{I})^*$
concrete domain	$u_1,\ldots,u_n.P$	h-father \cdot age, age. $>$	$\{x \mid \langle u_1^\mathcal{I}(x), \dots, u_n^\mathcal{I}(x) angle \in P\}$
etc.			

TBox

For terminological knowledge:	TBox contains			
Father Human	$\stackrel{:}{=} C (A \text{ a concept name, } C \text{ a complex concept})$ $\stackrel{:}{=} Man \sqcap \exists \text{has-child.Human}$ $\stackrel{:}{=} Mammal \sqcap \forall \text{has-child}^\text{Human}$ oduce macros/names for concepts, can be (a)cyclic			
∃favourite.Brewery	$\sqsubseteq C_2$ (C_i complex concepts) $\sqsubseteq \exists drinks.Beer$ crict your models			
An interpretation ${\mathcal I}$ satisfies				
a concept definition $A\doteq C$ iff $A^{\mathcal{I}}=C^{\mathcal{I}}$				
an axiom $C_1 \sqsubseteq$	$C_2 \hspace{0.1in} ext{iff} \hspace{0.1in} C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$			

a **TBox** \mathcal{T} iff \mathcal{I} satisfies all definitions and axioms in \mathcal{T} $\rightsquigarrow \mathcal{I}$ is a model of \mathcal{T}

ABox

For assertional knowledge: ABox contains

Concept assertionsa : C (a an individual name, C a complex concept)John : Man $\sqcap \forall$ has-child.(Male \sqcap Happy)Role assertions $\langle a_1, a_2 \rangle : R$ (a_i individual names, R a role) \langle John, Bill \rangle : has-child

An interpretation \mathcal{I} satisfies

a concept assertiona: C iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$ a role assertion $\langle a_1, a_2 \rangle : R$ iff $\langle a_1^{\mathcal{I}}, a_2^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$ an ABox \mathcal{A} iff \mathcal{I} satisfies all assertions in \mathcal{A} $\sim \mathcal{I}$ is a model of \mathcal{A}

Basic Inference Problems

Is $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I} ? Subsumption: $C \sqsubset D$ Is $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{T} ? w.r.t. TBox \mathcal{T} : $C \sqsubseteq_{\mathcal{T}} D$ \rightsquigarrow structure your knowledge, compute taxonomy **Consistency:** Is C consistent w.r.t. \mathcal{T} ? Is there a model \mathcal{I} of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$? of ABox \mathcal{A} : Is \mathcal{A} consistent? Is there a model of \mathcal{A} ?

of KB $(\mathcal{T}, \mathcal{A})$: Is $(\mathcal{T}, \mathcal{A})$ consistent? Is there a model of both \mathcal{T} and \mathcal{A} ?

Inference Problems are closely related:

 $C \sqsubset_{\mathcal{T}} D$ iff $C \sqcap \neg D$ is inconsistent w.r.t. \mathcal{T} , (no model of \mathcal{I} has an instance of $C \sqcap \neg D$) C is consistent w.r.t. \mathcal{T} iff not $C \sqsubseteq_{\mathcal{T}} A \sqcap \neg A$

 \rightarrow Decision Procdures for consistency (w.r.t. TBoxes) suffice

1 /0000

Inference Problems

- For most DLs, the basic inference problems are decidable, with complexities between P and ExpTime.
- Why is decidability important? Why does semi-decidability not sufice?
 - If subsumption (and hence consistency) is undecidable, and
 - subsumption is semi-decidable, then consistency is not semidecidable
 - consistency is semi-decidable, then subsumption is not semidecidable
 - Quest for a highly expressive DL with decidable\practicable inference problems
 - expressiveness depends on the application
 - practicability changed over the time

DLs as Decidable Fragments of FOL

a unary predicate ϕ_A for a concept name Aa binary relation ρ_R for a role name R

Translate complex concepts C, D as follows:

$$egin{aligned} t_x(A) &= \phi_A(x), & t_y(A) &= \phi_A(y), \ t_x(C &\sqcap D) &= t_x(C) \wedge t_x(D), & t_y(C &\sqcap D) &= t_y(C) \wedge t_y(D), \ t_x(C &\sqcup D) &= t_x(C) \lor t_x(D), & t_y(C &\sqcup D) &= t_y(C) \lor t_y(D), \ t_x(\exists R.C) &= \exists y.
ho_R(x,y) \wedge t_y(C), & t_y(\exists R.C) &= \exists x.
ho_R(y,x) \wedge t_x(C), \ t_x(orall R.C) &= orall y.
ho_R(x,y) \Rightarrow t_y(C), & t_y(\forall R.C) &= \forall x.
ho_R(y,x) \Rightarrow t_x(C). \end{aligned}$$

A TBox $\mathcal{T} = \{C_i \sqsubseteq D_i\}$ is translated as

$$\Phi_{\mathcal{T}} = orall x. \bigwedge_{1 \leq i \leq n} t_x(C_i) \Rightarrow t_x(D_i)$$

As Fragments of FOL

C is consistent iff its translation $t_x(C)$ is satisfiable, C is consistent w.r.t. \mathcal{T} iff its translation $t_x(C) \wedge \Phi_{\mathcal{T}}$ is satisfiable, $C \sqsubseteq D$ iff $t_x(C) \Rightarrow t_x(D)$ is valid $C \sqsubseteq_{\mathcal{T}} D$ iff $\Phi_t \Rightarrow \forall x.(t_x(C) \Rightarrow t_x(D))$ is valid.

 $\rightsquigarrow \mathcal{ALC}$ is a fragment of FOL with 2 variables (L2), known to be decidable

- → further adding number restrictions yields a fragment of C2 (L2 with "counting quantifiers"), known to be decidable
 - in contrast to most DLs, adding transitive roles/transitive closure operator to L2 leads to undecidability
 - many DLs (like many modal logics) are fragments of the Guarded Fragment
 - most DLs are less complex than L2:
 - L2 is NExpTime-complete, most DLs are in ExpTime

DLs as Modal Logics

DLs and Modal Logics are closely related:

 $egin{aligned} \mathcal{ALC} &\rightleftharpoons ext{ multi-modal K:} \ C &\sqcap D &\rightleftharpoons C \wedge D, & C \sqcup D &\rightleftharpoons C \lor D \
ext{-} &
ext{-} &$

transitive roles \rightleftharpoons transitive frames (e.g., in K4) regular expressions on roles \rightleftharpoons regular expressions on programs (e.g., in PDL) inverse roles \rightleftharpoons converse programs (e.g., in C-PDL) number restrictions \rightleftharpoons deterministic programs (e.g., in D-PDL) \rightleftharpoons no TBoxes available in modal logics \sim "internalise" axioms using a universal role $u: C \doteq D \rightleftharpoons [u](C \Leftrightarrow D)$

 \checkmark no ABox available in modal logics \rightsquigarrow use nominals

Algorithm

Tableaux

- Resoning procedure: tableau algorithm
 - works on a tree (semantics through viewing tree as an ABox): nodes represent elements of $\Delta^{\mathcal{I}}$, labelled with sub-concepts of C_0 edges represent role-successorships between elements of $\Delta^{\mathcal{I}}$
 - works on concepts in negation normal form: push negation inside using de Morgan' laws and

$$\begin{array}{ll} \neg(\exists R.C) \rightsquigarrow \forall R.\neg C & \neg(\forall R.C) \rightsquigarrow \exists R.\neg C \\ \neg(\leq n \ R) \rightsquigarrow (\geq (n+1)R) & \neg(\geq n \ R) \rightsquigarrow (\leq (n-1)R) & (n \geq 0) \\ \neg(\geq 0 \ R) \rightsquigarrow A \sqcap \neg A \end{array}$$

• is initialised with a tree consisting of a single (root) node x_0 with $\mathcal{L}(x_0) = \{C_0\}$:

 $x_0 \bullet \{C_0\}$

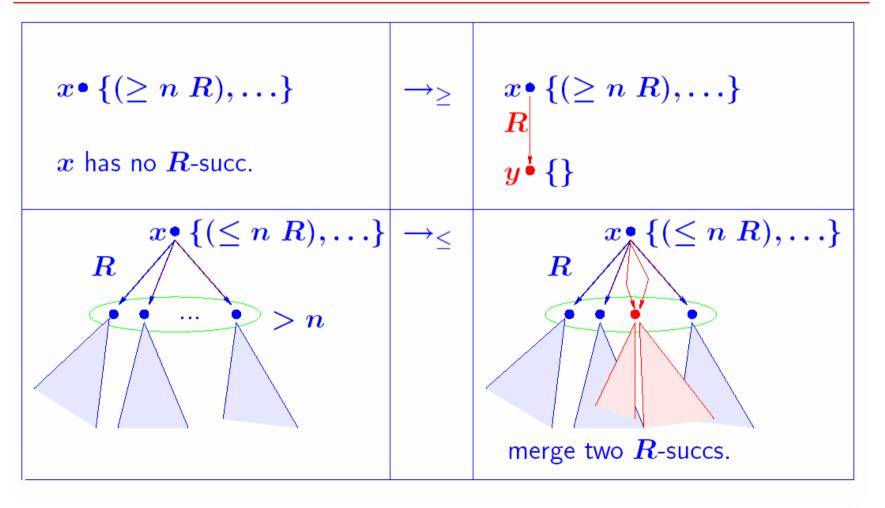
ullet a tree ${f T}$ contains a clash if, for a node x in ${f T}$,

$$\{A,
eg A\} \ \subseteq \ \mathcal{L}(x)$$
 or $\{(\geq m \ R), (\leq n \ R)\} \ \subseteq \ \mathcal{L}(x)$ for $n < m$

ALC Tableau Rules

$xullet \{C_1 \sqcap C_2, \ldots\} ig ightarrow \sqcap$	$xullet \{oldsymbol{C}_1 \sqcap oldsymbol{C}_2, oldsymbol{C}_1, oldsymbol{C}_2, \ldots\}$
$xullet \{C_1\sqcup C_2,\ldots\} ightarrow oxed $	$xullet \{C_1 \sqcap C_2, oldsymbol{C}, \ldots\}$ for $C \in \{C_1, C_2\}$
$x \bullet \{ \exists R.C, \ldots \} \longrightarrow_{\exists}$	$ \begin{array}{c} x \bullet \{ \exists R.C, \ldots \} \\ R \\ y \bullet \{ C \} \end{array} $
$ \begin{array}{c c} x \bullet \{\forall R.C, \ldots\} \\ R \\ y \bullet \{\ldots\} \end{array} \rightarrow \forall $	$\begin{array}{c} x \bullet \{\forall R.C, \ldots\} \\ R \\ y \bullet \{C, \ldots\} \end{array}$

N Tableau Rules



Soundeness and Completeness

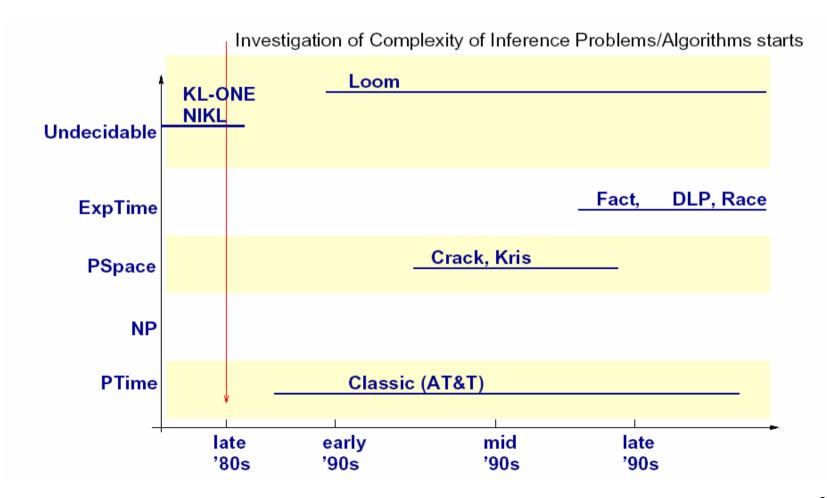
Lemma

- Let C0 be an ALCN concept and T obtained by applying the tableau rules to C0. Then
 - 1. the rule application terminates,
 - 2. if T is consistent and ! is applicable to T, then ! can be applied such that it yields consistent T0,
 - 3. if T contains a clash, then T has no model, and
 - 4. if no more rules apply to T, then T denes (canonical) model for C0.

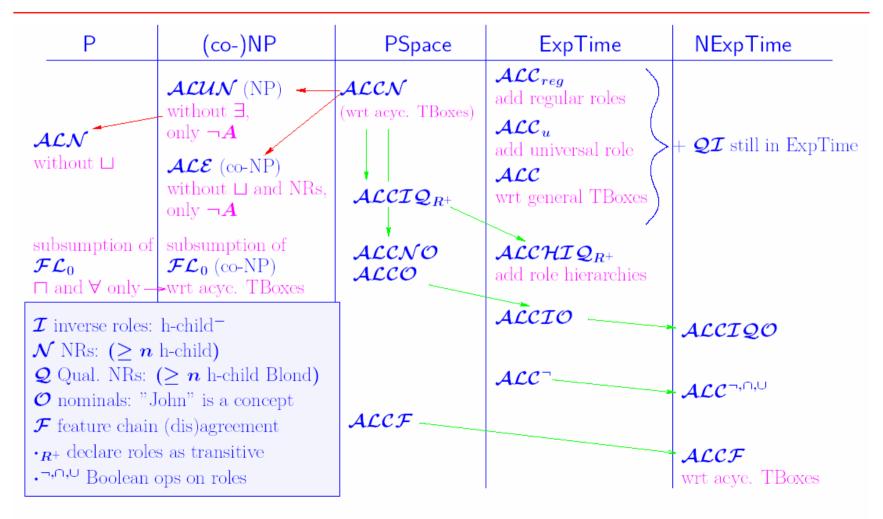
Corollary

(1) The tableau algorithm is a PSpace decision procedure for consistency (and subsumption) of ALCN concepts(2) ALCN has the tree model property

Complexity



Complexity of Concept Consistency



Implementation

In the last 5 years, DL-based systems were built that

- can handle DLs far more expressive than ALC (close relatives of converse-DPDL)
 - Number restrictions: "people having at most 2 children"
 - Complex roles: inverse ("has-child" "child-of") transitive closure ("ospring" – "has-child") role inclusion ("has-daughter" – "has-child"), etc.
- implement provably sound and complete inference algorithms (for ExpTime-complete problems)
- can handle large knowledge bases
 - (e.g., Galen medical terminology ontology: 2,740 concepts, 413 roles, 1,214 axioms)
- are highly optimised versions of tableau-based algorithms
- perform (surprisingly well) on benchmarks for modal logic reasoners

Application



Application Areas

- Terminological KR and Ontologies
 - DLs initially designed for terminological KR (and reasoning)
 - Natural to use DLs to build and maintain ontologies
- Semantic Web
- Configuration
- Software information systems
- Database applications

Semantic Web

- Semantic markup will be added to web resources
- Markup will use Ontologies to provide common terms of reference with clear semantics
- Requirement for web based ontology language
 - Well defined semantics
 - Builds on existing Web standards (XML, RDF, RDFS)
- Resulting language (DAML+OIL) is based on a DL (SHIQ)
- DL reasoning can be used to, e.g.,
 - Support ontology design and maintenance
 - Classify resources w.r.t. ontologies

Logical Foundations of Semantic Web

