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ABSTRACT

While there are numerous interesting and important problems in the synchro-

nization theory of networks, we select two from the large problem set, namely, the

connection between the diameter and synchronizability of networks, and finding

optimal three-oscillator networks, to present in this thesis.

The first part of this thesis aims to connect the diameter of a network with

synchronizability. We first derive analytic estimates on the Laplacian eigenvalues

that characterizes synchronizability in terms of the diameter. Then we construct two

classes of networks preserving the diameter, either of which represents an extreme

case of synchronizability. Motivated by these results and related research on the

degree sequence, we give the definition of a weak indicator of synchronizability,

and conclude that the diameter and degree sequence are both weak indicators of

synchronizability.

Finding the networks maximizing synchronizability is of great practical concern.

However, finding optimal networks in the general case is really hard and only a

narrow class of solutions has been found. In the second part of this thesis, we focus

on finding optimal networks in a lower-dimensional case, namely, three-oscillator

networks. This case is analytically accessible and we are able to describe all the

solutions and design algorithms to produce many of them.
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CHAPTER 1

INTRODUCTION

1.1 Graph Theory and the Study of Networks

The concept “network” has more than a few meanings in different contexts. In

mathematics, it is a term in graph theory, which is closely related to the concept

“network flow”. In this context, a network refers to a directed graph with weighted

edges. Usually, the graph is assumed to be simple (no loops or multiple edges) and

connected, and the weights are assumed to be nonnegative integers. By defining

the sources (vertices with indegree 0) and sinks (vertices with outdegree 0), this

kind of graphs is especially useful for analyzing transportation networks by which

commodities are shipped from their production centers to their markets [Bondy &

Murty, 1976; Ahuja et al., 1993].

However, in a general context, “network” is more often used as a synonym of

“graph”, emphasizing its applied aspects. Correspondingly, the terms “vertex” and

“edge” are replaced by “node” and “link” (or “connection”), respectively. Thus,

network theory is the counterpart of graph theory in applied areas, such as physics,

biology, engineering, and sociology. The scope of network theory has been expanding

very fast in recent years and more and more fields are involved in it. Thanks to

various concerns and goals in real-world applications, network theory has many

characteristics that distinguishes itself from classical graph theory. To start with,

let us discuss these characteristics briefly.

Graph theory has a long history and one of the earliest results in graph theory

1



Chapter 1. Introduction 2

appeared in Euler’s celebrated paper on Seven Bridges of Königsberg, published in

1736. Since then, the subject has mostly been concerned with combinatorial and

topological properties of graphs and has very little connection with probability, sto-

chastic processes, dynamical systems, and other branches of modern mathematics.

No changes to this situation occurred until Erdős and Rényi [1959, 1960] introduced

the concept and method of random graphs into the subject. Also, starting from the

1980’s, a significant effort has been devoted to relating properties of graphs to ran-

dom walks and other diffusion processes [Lovász, 1996]. The efforts attempting to

bridge graph theory and other branches of mathematics are also reflected in the

study of networks. Two of the characteristics of network theory which are relevant

to this thesis are:

(1) Networks are usually associated with information or energy transmissions

and the states of nodes evolve over time. Typical examples in real-world networks

include the Internet, World Wide Web, electric power grids, neural networks, food

webs, and many others. Thus, dynamics on networks is essential to the study of

networks. The synchronization theory of networks is based on assigning identical or

nearly identical dynamical systems to individual nodes, which are coupled through

links. How the topology of a network affects synchronization in it is an intriguing

topic and has attracted much attention.

(2) Networks may consist of a huge number of nodes and links so that they are

almost impossible to be studied by enumeration or other deterministic methods. In

this case, probabilistic methods, especially the theory of random graphs founded by

Erdős and Rényi, become an essential and powerful tool. In this thesis, we shall use

random graphs to construct examples of networks with good synchronizability and

preserving the diameter.

Although network theory already exists for a long time, it was the recent in-

troduction of small-world networks and scale-free networks that greatly encouraged

related research and brought it into a rapidly developing area [Watts & Strogatz,

1998; Barabási & Albert, 1999]. The emerging theory of complex networks concerns
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itself with the networks lying between order and randomness, including most net-

works in the real world; for surveys, see [Strogatz, 2001; Newman, 2003; Boccaletti

et al., 2006].

The model of small-world networks proposed by Watts and Strogatz was formed

by rewiring a small fraction of links in a regular lattice. By adding such short

cuts, the average distance in the network is remarkably reduced as in a random

network, but the nodes are still locally clustered as in a regular lattice. A scale-free

network is a network in which the node degree distribution satisfies a power law.

This property is different from random networks, in which the degrees of nodes

have a Poisson distribution, but is consistent with most of real-world networks such

as the World Wide Web, in which some nodes are highly connected whereas most

nodes have only a few links. The Barabási–Albert model achieves this property by

growing a network with preferential attachments, namely, highly connected nodes

receive more priority when connecting a new node to an existing one. These two

types of complex networks have properties which do not appear in classical models

in graph theory, and hence challenged the study of networks.

1.2 Synchronization in Networks

The concept of synchronization, like networks, also has many stories that can

be told in various contexts. In particular, it is widely used in physics, engineering

and biological sciences [Pikovsky et al., 2001]. Without formulae, synchronization

can be understood as the adjustment of states of oscillating objects toward consis-

tency. One can cite examples of oscillating objects either in man-made systems,

from pendulum clocks to musical instruments, electronic generators, and lasers, or

in natural systems, from fireflies emitting light pulses to chirping crickets, birds flap-

ping their wings, and beating human hearts. A general class of such phenomena can

be modeled by a network of identical or nearly identical dynamical systems, which

are coupled according to a particular topology; synchronization can then be defined
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to be that the difference between states of any two individual systems approaches

zero as time goes to infinity.

Within this framework, many different models can be chosen for describing syn-

chronization in networks, which differ from each other in the type of individual

dynamical systems and/or the type of coupling. Specifically, the dynamical sys-

tems can be continuous, discrete, or impulsive, and the coupling can be linear or

nonlinear. A widely studied model with continuous dynamical systems and linear

coupling is described by the differential equations

dxi(t)

dt
= f(xi(t)) + σB

n∑
j=1

aij

[
xj(t)− xi(t)

]
, i = 1, 2, . . . , n, (1.1)

where xi(t) = (xi
1(t), x

i
2(t), . . . , x

i
m(t))T ∈ Rm is the state of the ith system, σ > 0 is

the coupling strength, B ∈ Rm×m is the configuration matrix, depending on which

a subset of components is coupled, and aij are the entries of the adjacency matrix

A, defined by

aij =

{
1, if i 6= j and nodes i and j are connected,

0, otherwise.

The initial conditions are xi(0) = xi
0 ∈ Rm for i = 1, 2, . . . , n.

Note that (1.1) can be rewritten in the form

dxi(t)

dt
= f(xi(t))− σB

[(
n∑

j=1, j 6=i

aij

)
xi(t)−

n∑
j=1, j 6=i

aijx
j(t)

]
, i = 1, 2, . . . , n.

(1.2)

Let di =
∑n

j=1, j 6=i aij be the degree of node i, ∆ = diag(d1, d2, . . . , dn), and lij be

the entries of the Laplacian matrix L = ∆− A, i.e.

lij =


di, if i = j,

−1, if nodes i and j are connected,

0, otherwise.

Then (1.2) becomes

dxi(t)

dt
= f(xi(t))− σB

n∑
j=1

lijx
j(t), i = 1, 2, . . . , n, (1.3)
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and we have the following definition.

Definition 1.1. System (1.3) is said to synchronize if, starting from an open set

of initial conditions, limt→∞ ‖xi(t)− xj(t)‖ = 0 for all i 6= j.

The Laplacian matrix of a graph also arises in many other applications [Chung,

1997], one of which that has received much attention is finding the fastest mixing

Markov process on a graph [Boyd et al., 2004; Sun et al., 2006]. In most cases, the

eigenvalues of the Laplacian matrix turn out to be essential. Thus, it is not too

surprising to see that the synchronization of system (1.3) depends on the eigenvalues

of L.

Analysis of system (1.3) is based on the decomposition of each state into a

component on the synchronization manifold and a component in the transverse

subspace, namely, xi(t) = s(t) + zi(t), where s(t) is assumed to be on the synchro-

nization manifold [Pecora & Carroll, 1998; Lu & Chen, 2006; Stilwell et al., 2006].

Linearizing (1.3) about s(t) gives

dzi(t)

dt
= F (t)zi(t)− σB

n∑
j=1

lijz
j(t), i = 1, 2, . . . , n, (1.4)

where F (t) = Df(s(t)) is the Jacobian of f at s(t).

To keep the notation concise, we turn to the Kronecker product. Let z(t) =

[z1(t)T, z2(t)T, . . . , zn(t)T]T. Then (1.4) can be rewritten as

dz(t)

dt
= (In ⊗ F (t)− σL⊗B) z(t), (1.5)

where ⊗ is the Kronecker product. Also, it is helpful to recall the following prop-

erties of the Kronecker product:

(1) For conformable matrices A, B, C, and D, (A⊗B)(C ⊗D) = AC ⊗BD.

(2) For invertible matrices A and B, (A⊗B)−1 = A−1 ⊗B−1.

Now let L = PJP−1 be the Jordan decomposition of L (an alternate method

is to use the Schur factorization L = QTQT, where Q is unitary and T is upper-
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triangular). Substituting ξ(t) = (P ⊗ Im)−1z(t) in (1.5) yields

dξ(t)

dt
= (P ⊗ Im)−1 (In ⊗ F (t)− σL⊗B) (P ⊗ Im) ξ(t)

=
(
In ⊗ F (t)− σP−1LP ⊗B

)
ξ(t)

= (In ⊗ F (t)− σJ ⊗B) ξ(t).

(1.6)

Noticing the special structure of J , it is easily seen that the stability of system (1.6)

is equivalent to the stability of the uncoupled subsystems

dξi(t)

dt
= (F (t)− σλiB) ξi(t), i = 1, 2, . . . , n, (1.7)

where λ1, λ2, . . . , λn are the eigenvalues of L.

Since all the row sums of L are zero, L has an eigenvalue 0 and corresponding

eigenvector
[

1√
n
, 1√

n
, . . . , 1√

n

]T
. Since L is symmetric, all its eigenvalues are real.

Moreover, by Gerschgorin’s theorem, all the eigenvalues are nonnegative. Without

loss of generality, we order them as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Then the first

subsystem in (1.7)
dξ1(t)

dt
= F (t)ξ1(t)

evolves along the synchronization manifold, while the other n−1 subsystems evolve

in the transverse subspace. By computing the Lyapunov exponents, the stability

conditions of the n − 1 subsystems can be given by 0 < α1 < σλi < α2, i =

2, 3, . . . , n, or α1/λ2 < σ < α2/λn, where α1 and α2 are given by the master

stability function. To guarantee the existence of such σ, we need α1/λ2 < α2/λn,

or λ2/λn > α1/α2. It follows that the synchronizability of system (1.3) can be

characterized by the ratio λ2/λn, since a larger λ2/λn enables more systems to

synchronize.

Two remarks are in order:

(1) Most part of the analysis above can be generalized to the case of directed

weighted networks. Let wij ≥ 0 be the weight of the link from node i to j, and

di =
∑n

j=1, j 6=i wij be the indegree of node i. Then the Laplacian matrix L can be
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defined by

lij =


di, if i = j,

−wij, if node i is connected to node j,

0, otherwise.

Note that since the row sums of L are still zero, L also has eigenvalue 0, but the

other eigenvalues need not be real. In this case, we can order the eigenvalues such

that 0 = λ1 ≤ Re λ2 ≤ · · · ≤ Re λn. By the same arguments, the synchronization of

system (1.3) is also equivalent to the stability of the last n− 1 subsystems in (1.7).

(2) It is possible that λ2 instead of λ2/λn affects the synchronization when a

specific model is analyzed. It is coincident that λ2 also plays a critical role in

finding the fastest mixing Markov process on a graph. In the literature, λ2 is often

called the algebraic connectivity of a graph, or the spectral gap of a graph.

1.3 Outline of the Thesis

Although there are numerous interesting and important problems in the syn-

chronization theory of networks, we only select two from the large problem set,

namely, the connection between the diameter and synchronizability of networks,

and finding optimal three-oscillator networks, to present in this thesis.

From the previous section, we have already known that the synchronizability

of networks can be characterized by the ratio λ2/λn. However, it is not always

easy to compute the value of this ratio, especially for large networks. Moreover,

the eigenvalues of the Laplacian matrix do not provide explicit information on

the network topology. On the other hand, many other graph invariants, such as

the degree sequence, average distance, and diameter, often arise in constraints of

network topology. Hence, it is important and useful to explore the connection

between such graph invariants and the synchronizability of networks. This can be

done by relating the graph invariants with λ2/λn.

The first part of this thesis will be devoted to connecting the diameter of a

network with synchronizability. We first derive analytic estimates on λ2 and λ2/λn
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in terms of the diameter, and then construct two classes of networks preserving the

diameter, either of which represents an extreme case of synchronizability. Motivated

by these results and related research on the degree sequence, we give the definition

of a weak indicator of synchronizability, and conclude that the diameter and degree

sequence are both weak indicators of synchronizability. This leads to the question:

Is there a graph invariant which is not a weak indicator of synchronizability? The

answer is probably yes, but it will be very hard to find a simple one.

Finding the networks maximizing synchronizability is of great practical concern.

For directed weighted networks, it has been proved that the synchronizability is

maximized if all eigenvalues are real and 0 = λ1 < λ2 = · · · = λn, provided that

the master stability function has a convex stability region [Nishikawa & Motter,

2006]. Note that finding optimal networks in the general case is really hard and

only a narrow class of solutions has been found. In the second part of this thesis, we

shall focus on finding optimal networks in a lower-dimensional case, namely, three-

oscillator networks. This case is analytically accessible and we are able to describe

all the solutions and design algorithms to produce many of them. At the time of

writing this thesis, I am referred to a series of papers [Boyd et al., 2004; Sun et al.,

2006; Boyd, 2006], which developed a convex optimization method for maximizing

or minimizing some function of the Laplacian eigenvalues of an undirected weighted

graph, subject to some constraints on the weights. Hence, the problem of finding

optimal networks can be effectively solved numerically.



CHAPTER 2

DIAMETER AND SYNCHRONIZABILITY

OF NETWORKS

2.1 Analytic Estimation of Synchronizability

The diameter, defined as the maximum distance between two nodes, is one of

the most important graph invariants. A small diameter is one of the characteristics

of random graphs and small-world networks. The question we are concerned with

here is: How good and how bad can the synchronizability be for a network with

specified diameter? To answer this question, the first step could be to derive ana-

lytic estimates on λ2 and λ2/λn in terms of diameter, i.e., give a possible range of

synchronizability for such networks.

The estimates are based on several inequalities established in spectral graph

theory. The first lemma gives a lower bound on the diameter in terms of λ2 [Mohar,

1991, Theorem 4.2].

Lemma 2.1. For a graph of order n, λ2 imposes a lower bound on the diameter D,

D ≥ 4

nλ2

. (2.1)

An upper bound on λ2/λn is provided by the following lemma.

Lemma 2.2. For a graph of order n, the diameter D imposes an upper bound on

9
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λ2/λn,

λ2

λn

≤
cosh

(
cosh−1(n−1)

D−1

)
− 1

cosh
(

cosh−1(n−1)
D−1

)
+ 1

. (2.2)

Proof. Chung et al. [1994] proved an upper bound on the diameter D in terms of

λ2 and λn,

D ≤

 cosh−1(n− 1)

cosh−1
(

λn+λ2

λn−λ2

)
+ 1, (2.3)

which implies that

D − 1 ≤ cosh−1(n− 1)

cosh−1
(

1+λ2/λn

1−λ2/λn

) ,

or

cosh−1

(
1 + λ2/λn

1− λ2/λn

)
≤ cosh−1(n− 1)

D − 1
.

Noticing that the hyperbolic cosine function is increasing on [0,∞), we have

1 + λ2/λn

1− λ2/λn

≤ cosh

(
cosh−1(n− 1)

D − 1

)
.

Solving this inequality for λ2/λn yields the desired bound.

Remark. By (2.3), if
cosh−1(n− 1)

cosh−1
(

1+λ2/λn

1−λ2/λn

) < 1, (2.4)

then D = 1, i.e., the graph is a complete graph. Note that (2.4) is equivalent to

that
1 + λ2/λn

1− λ2/λn

> n− 1,

or
λ2

λn

>
n− 2

n
.

In particular, a graph with the best possible synchronizability, namely, a graph with

0 = λ1 < λ2 = · · · = λn (2.5)

must be a complete graph. However, in the next chapter, we shall see that a directed

weighted network satisfying (2.5) need not be complete.
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The following lemma gives a simple upper bound on λn [Kel’mans, 1967].

Lemma 2.3. If G is a simple graph, then

λn ≤ n, (2.6)

with equality if and only if the complement of G is not connected.

Combining the above lemmas, we obtain the following result.

Theorem 2.4. The diameter D imposes lower and upper bounds on λ2 and λ2/λn,

4

nD
≤ λ2 ≤ n

cosh
(

cosh−1(n−1)
D−1

)
− 1

cosh
(

cosh−1(n−1)
D−1

)
+ 1

,

4

n2D
≤ λ2

λn

≤
cosh

(
cosh−1(n−1)

D−1

)
− 1

cosh
(

cosh−1(n−1)
D−1

)
+ 1

.

Proof. Lemma 2.1 and Lemma 2.2 give the lower bound on λ2 and the upper bound

on λ2/λn, respectively. The upper bound on λ2 follows from (2.2) and (2.6), and

the lower bound on λ2/λn follows from (2.1) and (2.6).

To make the upper bound on λ2/λn more readable, it is easily calculated that

1 + λ2/λn

1− λ2/λn

≤ cosh

(
cosh−1(n− 1)

D − 1

)
= cosh

(
ln(n− 1 +

√
n2 − 2n)

D − 1

)
=

(n− 1 +
√

n2 − 2n)
1

D−1 + (n− 1−
√

n2 − 2n)
1

D−1

2

∼ (2n)
1

D−1

2
.

(2.7)

It is clear that the estimate on λ2/λn is trivial when n is large, since the lower

and upper bounds tend to 0 and 1, respectively, as n → ∞. Also, the lower

and upper bounds on λ2 tend to 0 and ∞, respectively. However, in the next
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section, we shall show that these bounds are, in some sense, best possible. Hence,

the synchronizability is really unpredictable when the network is large, if only the

diameter is known.

On the other hand, when D increases, all the bounds in Theorem 2.4 decrease.

This observation is consistent with the intuition that the diameter has a negative

effect on synchronizability, if the other factors are comparable.

2.2 Construction of Two Classes of Networks

To show that the estimates obtained in previous section are, in some sense, best

possible, we now construct two classes of networks, either of which represents an

extreme case of synchronizability.

First, let us consider how bad the synchronizability of a network can be with a

specified diameter. Our construction is based on the idea of dividing the nodes into

two major groups, maximizing intra-group connections, and minimizing inter-group

connections. As a standard notation, a complete graph of order n is denoted by

Kn. The construction is as follows.

Construction 2.5 (Polarized Networks). Assume that the number of nodes n

and the diameter D have been given. A polarized network P (n,D) is formed by

joining two complete graphs Kbn−D+3
2 c and Kdn−D+3

2 e by a path of length D− 2. It

is clearly seen that P (n,D) has n nodes and diameter D. An example P (26, 5) is

shown in Fig. 2.1.

To derive estimates on λ2 and λ2/λn for the polarized network P (n,D), we

need the following lemmas, proved by Alon and Milman [1985] and Fiedler [1973],

respectively.

Lemma 2.6. Let A and B be two sets of vertices at distance ρ (the minimum

distance between a vertex in A and a vertex in B), and F the set of edges with at
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1

Figure 2.1. An example of polarized networks, P (26, 5).

least one vertex not in A or B. The following inequality holds:

|F | ≥ ρ2λ2
|A||B|
|A|+ |B|

,

where | · | denotes the number of vertices or edges in the set.

Lemma 2.7. Let dmax be the maximum degree of vertices in a graph. dmax imposes

a lower bound on λn,

λn ≥
n

n− 1
dmax.

We have the following results regarding λ2 and λ2/λn of P (n,D).

Theorem 2.8. λ2 and λ2/λn for the polarized network P (n, D) in Construction 2.5

satisfy

λ2 ≤
4

(D − 2)(n−D + 3)
, (2.8)

λ2

λn

≤ 8(n− 1)

n(D − 2)(n−D + 3)2
. (2.9)

Proof. Let A and B be the vertex sets of the two complete graphs Kbn−D+3
2 c and

Kdn−D+3
2 e in Construction 2.5. Then we have |A| =

⌊
n−D+3

2

⌋
, |B| =

⌈
n−D+3

2

⌉
, and
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|F | = ρ = D − 2. It follows from Lemma 2.6 that

λ2 ≤
|F |(|A|+ |B|)

ρ2|A||B|
=

n−D + 3

(D − 2)
⌊

n−D+3
2

⌋ ⌈
n−D+3

2

⌉
=


4(n−D + 3)

(D − 2)(n−D + 2)(n−D + 4)
, if n−D even,

4

(D − 2)(n−D + 3)
, if n−D odd

≤ 4

(D − 2)(n−D + 3)
.

(2.10)

Also, note that the maximum degree dmax =
⌈

n−D+3
2

⌉
. By Lemma 2.7, we have

λn ≥
n

n− 1

⌈
n−D + 3

2

⌉
≥ n(n−D + 3)

2(n− 1)
. (2.11)

Combining (2.10) and (2.11) yields

λ2

λn

≤ 8(n− 1)

n(D − 2)(n−D + 3)2
.

Remark. Note that when n →∞, D →∞, and D � n, the upper bound on λ2 in

(2.8) is in the order of 4/(nD), the same as the lower bound on λ2 in Theorem 2.4;

also, the upper bound on λ2/λn in (2.9) is in the order of 8/(n2D), different from

the lower bound on λ2/λn in Theorem 2.4 only by a factor 2. Hence, Construction

2.5 shows that the lower bound estimates in Theorem 2.4 is, in some sense, best

possible.

We now turn to our second construction, a class of networks that has the same

diameter as the polarized networks in Construction 2.5 but has good synchronizabil-

ity. Instead of constructing a determinate network explicitly, we adopt the random

graph method and construct a class of random networks that preserves the diameter

and demonstrates good synchronizability almost surely.

An Erdős–Rényi random graph G(n, p) has n vertices and its edges are chosen

independently with probability p. We have the following construction.
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Construction 2.9 (Diameter-Preserved Random Networks). A diameter--

preserved random network H(n, D) is formed from a random graph G(n, p) by

letting

p = αn
1

D−ε
−1(ln n)β, (2.12)

where D ≥ 2, 0 < ε < 1, α > 0, and β ≥ 1− 1
D−ε

are constants.

Remark. Note that since 1
D−ε

− 1 < 0, p → 0 as n → ∞. However, we have

np = αn
1

D−ε (ln n)β →∞ as n →∞.

To show that H(n, D) really preserves the diameter and estimate its λ2 and

λ2/λn, we need several lemmas regarding the properties of a random graph G(n, p).

The following lemma [Bollabás, 2001, Corollary 10.12] provides a general approach

to construct random graphs with specified diameter. Here, “almost surely” means

that the probability that a random graph has the given property tends to 1 as

n →∞.

Lemma 2.10. Assume that functions D = D(n) ≥ 3 and 0 < p = p(n) < 1 satisfy

ln n

D
− 3 ln ln n →∞, (2.13)

pDnD−1 − 2 ln n →∞, (2.14)

pD−1nD−2 − 2 ln n → −∞. (2.15)

Then G(n, p) has diameter D almost surely.

The following lemma shows that G(n, p) has a very narrow degree distribution

[Krivelevich & Sudakov, 2005].

Lemma 2.11. Assume that the function p = p(n) satisfies

pn

ln n
→∞, (2.16)

(1− p)n ln n →∞. (2.17)

Then all the degrees of G(n, p) are equal to (1 + o(1))np almost surely.
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It is well known that the eigenvalues of the adjacency matrix A of G(n, p) follow

a semicircle law [Wigner, 1955, 1958]. Let λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄n be the eigenvalues

of A. By Lemma 2.11, it is easily seen that λ̄1 lies around np almost surely. The

following lemma shows that all the other eigenvalues of A stay far from λ̄1 [Füredi

& Komlós, 1981; Krivelevich & Sudakov, 2005].

Lemma 2.12. Assume that the function p = p(n) is greater than or equal to a

polynomial of ln n/n. Then

max
2≤i≤n

|λ̄i| = O(
√

np).

Now we are ready to establish the following result regarding properties of H(n,D)

in Construction 2.9.

Theorem 2.13. A diameter-preserved random network H(n, D) in Construction

2.9 almost surely has diameter D, and has λ2 and λ2/λn with λ2 →∞ and λ2/λn →
1 as n →∞.

Proof. One can verify (2.14) and (2.15) by substituting (2.12) for p,

pDnD−1 − 2 ln n =
(pn)D

n
− 2 ln n =

[
αn

1
D−ε (ln n)β

]D
n

− 2 ln n

= αDn
ε

D−ε (ln n)βD − 2 ln n →∞,

pD−1nD−2 − 2 ln n =
(pn)D−1

n
− 2 ln n =

[
αn

1
D−ε (ln n)β

]D−1

n
− 2 ln n

= αD−1n
ε−1
D−ε (ln n)β(D−1) − 2 ln n → −∞.

Also, (2.13) is satisfied since D is a constant. Thus, by Lemma 2.10, H(n,D) has

diameter D almost surely.

Now check (2.16) and (2.17),

pn

ln n
=

αn
1

D−ε (ln n)β

ln n
= αn

1
D−ε (ln n)β−1 →∞,

(1− p)n ln n ∼ n ln n →∞.
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By Lemma 2.11, all the degrees of H(n, D) are equal to (1 + o(1))np almost surely.

Noticing the relationship between the Laplacian matrix L and the adjacency matrix

A, L = ∆− A, where ∆ is the diagonal matrix whose diagonal entries are degrees,

we see that λi = (1 + o(1))np− λ̄i for all i almost surely.

Next, we note that

p = αn
1

D−ε
−1(ln n)β = α

(
ln n

n

)1− 1
D−ε

(ln n)β−(1− 1
D−ε)

≥ α

(
ln n

n

)1− 1
D−ε

≥ α

(
ln n

n

)
.

Applying Lemma 2.12 yields max2≤i≤n |λ̄i| = O(
√

np). Thus, we obtain

λ2 = (1 + o(1))np−O(
√

np) ∼ np = αn
1

D−ε (ln n)β →∞, (2.18)

λ2

λn

=
(1 + o(1))np−O(

√
np)

(1 + o(1))np + O(
√

np)
→ 1.

Remark. We can compare the growth rate of λ2/λn of H(n, D) with the upper

bound on λ2/λn given in Theorem 2.4. Since both of them tend to 1 as n →∞, it

makes more sense to compare (1 + λ2/λn)/(1− λ2/λn) with the upper bound given

in (2.7). For H(n, D), we have

1 + λ2/λn

1− λ2/λn

=
λn + λ2

λn − λ2

∼ 2np

2O(
√

np)
≥ np

c
√

np
=

√
np

c

=
1

c
α

1
2 n

1
2(D−ε) (ln n)

β
2 ,

(2.19)

where c > 0 is a constant. Therefore, the growth-rate ratio

lim
n→∞

ln
[

1
c
α

1
2 n

1
2(D−ε) (ln n)

β
2

]
ln (2n)

1
D−1

2

=

1
2(D−ε)

1
D−1

=
D − 1

2(D − ε)
,

which is close to 1/2.
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Figure 2.2. The effects of the network size n on λ2 and λ2/λn in the polarized

network P (n,D). The diameter D is fixed at 5.

2.3 Numerical Results

In this section, we design and carry out numerical experiments to verify the

properties of the two classes of networks we have constructed.

Since Construction 2.5 is an explicit construction, the topology of a polarized

network is determinate for each pair of values (n,D). To examine the effects of the

two parameters on λ2 and λ2/λn, we fix one parameter and vary the other. The

numerical results are shown in Figures 2.2 and 2.3. In the former, the diameter is

fixed at 5, and it is seen that λ2 and λ2/λn are in inverse proportion to n and n2,

respectively. In the latter, the network size n is fixed at 200, and it is seen that λ2

and λ2/λn are both in inverse proportion to the diameter D. These results are in

agreement with the upper bounds given in Theorem 2.8.

Next we turn to the diameter-preserved random networks in Construction 2.9.

Since H(n, D) is a random network with a distribution depending on the set of

values (n, D, ε, α, β), we generate a sample of H(n, D) and compute the sample

means of λ2 and λ2/λn. Note that the values of ε, α, and β do not affect the
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Figure 2.3. The effects of the diameter D on λ2 and λ2/λn in the polarized network

P (n,D). The network size n is fixed at 200.

convergence of the diameter to the specified value D, provided that they satisfy the

assumptions in Construction 2.9. However, they do affect the convergence rate. To

accelerate the convergence so that we can achieve the diameter D for smaller n’s, it

is important to choose the values of ε, α, and β appropriately. In our experiments,

we fix ε = 0.5 and α = 0.8, and let β = 1− 1
D−ε

.

The numerical results for D = 4 are shown in Figure 2.4. For each value of n,

we generate 10 random networks and compute the sample means of λ2 and λ2/λn,

which are shown in the top two panels; the number of networks achieving the spec-

ified diameter D in each sample is shown in the bottom panel. It is clearly seen

that the diameter converges quickly to D, and λ2 and λ2/λn grow slowly. These

tendencies are in agreement with Theorem 2.13, although, due to high computa-

tional complexity, it is difficult to verify that λ2 and λ2/λn really tend to ∞ and 1,

respectively.

To explore the effects of the diameter D on λ2 and λ2/λn in H(n, D), we fix n at

several values respectively, and vary D. For each pair of values (n,D), we generate
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Figure 2.4. The effects of the network size n on λ2 and λ2/λn in the diameter-

preserved random network H(n,D). Here, D = 4, ε = 0.5, α = 0.8, β = 1− 1/(4−
0.5). For each n, 10 random networks are generated and the sample means of λ2

and λ2/λn are shown in the top two panels; the number of networks achieving the

diameter D, denoted by N , is shown in the bottom panel.
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Figure 2.5. The effects of the diameter D on λ2 and λ2/λn in the diameter-preserved

random network H(n, D). Here, ε = 0.5, α = 0.8, β = 1 − 1/(D − 0.5). For each

(n,D), 50 random networks are generated and sample means of λ2 and λ2/λn are

computed.

50 random networks and compute the sample means of λ2 and λ2/λn. The results

are shown in Figure 2.5. It is clearly seen that λ2 and λ2/λn both decrease as D

increases, which is consistent with the asymptotic estimates in (2.18) and (2.19).

Also, by comparing the lines for different n’s in Figure 2.5, we note that the effects

of D on λ2 and λ2/λn weaken with increasing n.

2.4 Weak Indicators of Synchronizability

In the previous sections, we have seen that the synchronizability of networks with

a specified diameter may be very different. However, under certain assumptions, a

small diameter could still be considered favorable. For instance, in Construction 2.9,



Chapter 2. Diameter and Synchronizability of Networks 22

it is seen from (2.18) and (2.19) that the growth rates of λ2 and λ2/λn depend on

1/(D − ε). Thus, a small diameter D has a positive effect on the synchronizability

of H(n, D), which is also confirmed by numerical results.

There are some other graph invariants with connection to the synchronizability

of networks, such as the degree sequence, mean distance, girth, betweenness, etc.

Many of these graph invariants have been found to have a similar property to the

diameter; they have effects on synchronizability under certain assumptions, but in

general, they are not a good indicator of synchronizability. As an example, it has

been shown that the synchronizability of networks with a prescribed degree sequence

may be quite different [Atay et al., 2006; Wu, 2005]. In fact, the following result

has been proved.

Theorem 2.14. Given a graphical degree sequence 0 < d1 ≤ d2 ≤ · · · ≤ dn (subject

to certain conditions; see [Atay et al., 2006; Wu, 2005]), there exist two realizations

of the degree sequence, of which one has λ2 and λ2/λn tending to 0, and the other

has λ2 and λ2/λn bounded away from 0, as n →∞.

Motivated by our results and related research on the connection between some

graph invariants and synchronizability, we propose the following definition.

Definition 2.15. A graph invariant I is called a weak indicator of synchronizability

if there exist two sequences of networks {Gn} and {Hn} with the same value of I,

which satisfy that λ2(Gn) and λ2

λn
(Gn) tend to 0, and λ2(Hn) and λ2

λn
(Hn) are bounded

away from 0, as n →∞.

Hence, by Theorems 2.8, 2.13, and 2.14, we have the following result.

Theorem 2.16. The diameter and degree sequence are both weak indicators of

synchronizability.

Note that Theorems 2.8 and 2.13 actually show that there exist two sequences of

networks {Gn} and {Hn} with the same diameter D, which satisfy that λ2(Gn) → 0,
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λ2

λn
(Gn) → 0, λ2(Hn) → ∞, and λ2

λn
(Hn) → 1, as n → ∞, which is stronger than

Definition 2.15.

Theorem 2.16 naturally leads to the question: Is there a graph invariant, ex-

cept λ2, λ2/λn and their simple transformations, which is not a weak indicator of

synchronizability? We guess there may exist one, but it is unlikely to be simple or

common. This is an unanswered question in this thesis.



CHAPTER 3

OPTIMAL NETWORKS

3.1 Problem Formulation

In the previous chapter, we have already seen a network optimization problem,

that is, to find the networks maximizing or minimizing synchronizability with the

specified diameter. Now we switch to a more general optimization problem, that

is, to find the networks maximizing synchronizability without restriction on the

diameter. Also, we extend the type of networks in question to directed weighted

networks, i.e., the connection weights wij can be any real nonnegative numbers, and

it is not necessary to have that wij = wji. By defining measures of synchronizability

and synchronization cost appropriately, Nishikawa and Motter [2006] proved the

following result.

Theorem 3.1. The following statements are equivalent:

(i) A network has the maximum synchronizability.

(ii) A network has the minimum synchronization cost.

(iii) The Laplacian eigenvalues of a network satisfy 0 = λ1 < λ2 = · · · = λn.

Thus, the problem of maximizing synchronizability can be formulated into a

matrix optimization problem by specifying the properties of the Laplacian matrices.

Problem 3.2. Characterize and find any matrix L = (lij) ∈ Rn×n satisfying all of

the following:

(i) lij ≤ 0 for all i 6= j.

24
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(ii)
∑n

j=1 lij = 0 for all i.

(iii) The eigenvalues of L satisfy 0 = λ1 < λ2 = · · · = λn.

Remark. Conditions (i) and (ii) guarantee that L is a Laplacian matrix of a directed

weighted network.

Definition 3.3. A matrix is optimal if it satisfies all the conditions in Problem 3.2.

A network is optimal if its Laplacian matrix is optimal.

Although Problem 3.2 is formulated in a simple form, its general case is not easy

to answer. A class of triangular matrices has been found to be optimal [Nishikawa

& Motter, 2006]; however, they are only a narrow class of possible solutions. On

the other hand, the low-dimensional cases may be analytically accessible, which are

of our interest. The case n = 2 is trivial, since condition (iii) becomes 0 = λ1 <

λ2, which is satisfied if and only if the network is connected. Hence, the lowest

dimension of interest is three, which will be discussed in the next section.

3.2 Three-Oscillator Networks

We now discuss the three-dimensional case of Problem 3.2. A 3 × 3 matrix

satisfying conditions (i) and (ii) is of the form

L =


a + b −a −b

−d c + d −c

−e −f e + f

 , (3.1)

where a, b, c, d, e, f ≥ 0. We have the following result.

Theorem 3.4. The matrix L in (3.1) is optimal if and only if all of the following

are satisfied:

(i) b− c, d− e, f − a ≥ 0, or b− c, d− e, f − a ≤ 0.

(ii) a + b + c + d + e + f > 0.
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(iii)
√
|f − a| =

√
|b− c| ±

√
|d− e|.

The eigenvalues of such an optimal matrix are 0 = λ1 < λ2 = λ3 = 1
2
(a + b + c +

d + e + f).

Proof. The characteristic polynomial of L is

det(λI − L) =

∣∣∣∣∣∣∣∣
λ− a− b a b

d λ− c− d c

e f λ− e− f

∣∣∣∣∣∣∣∣
= λ

[
λ2 − (a + b + c + d + e + f)λ + ac + ae + af

+ bc + bd + bf + ce + de + df
]
.

To satisfy condition (iii), the quadratic equation

λ2− (a + b + c + d + e + f)λ + ac + ae + af + bc + bd + bf + ce + de + df = 0 (3.2)

must have equal roots. Hence, we have

(a + b + c + d + e + f)2 − 4(ac + ae + af + bc + bd + bf + ce + de + df) = 0,

or equivalently,

(f − a− b + c− d + e)2 = 4(b− c)(d− e).

Taking square roots, we get

f − a− b + c− d + e = ±2
√

(b− c)(d− e).

Then,

f − a = b− c + d− e± 2
√

(b− c)(d− e)

=

{
(
√
|b− c| ±

√
|d− e|)2, if b− c, d− e ≥ 0,

−(
√
|b− c| ±

√
|d− e|)2, if b− c, d− e ≤ 0.

Therefore, b− c, d− e, f − a ≥ 0, or b− c, d− e, f − a ≤ 0, and√
|f − a| =

√
|b− c| ±

√
|d− e|.
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Under these conditions, solving equation (3.2) yields λ = 1
2
(a + b + c + d + e + f).

The conclusion thus follows.

For the symmetric case, we have the following corollary.

Corollary 3.5. A symmetric matrix L in (3.1) is optimal if and only if a = b = c >

0. In other words, the optimal symmetric three-oscillator networks are the networks

with all connection weights positive and equal. The eigenvalues of such an optimal

matrix are 0 = λ1 < λ2 = λ3 = 3a.

Proof. When a = d, b = e, c = f , the condition b− c, d− e, f −a ≥ 0 becomes that

b− c, a− b, c− a ≥ 0, namely, a ≥ b ≥ c ≥ a, resulting in a = b = c. The condition

b−c, d−e, f−a ≤ 0 also implies that a = b = c. Now condition (ii) in Theorem 3.4

becomes a > 0, and condition (iii) is clearly satisfied. Therefore, by Theorem 3.4,

a symmetric matrix L in (3.1) is optimal if and only if a = b = c > 0.

According to Theorem 3.4, we can design an algorithm to generate optimal

three-oscillator networks.

Algorithm 3.6 (Generating Optimal Three-Oscillator Networks).

Step 1: Select b, c, d, e ≥ 0 such that b− c, d− e ≥ 0, or b− c, d− e ≤ 0.

Step 2: If b− c, d− e ≥ 0, select a ≥ 0 and f = a+(
√

b− c±
√

d− e)2; otherwise,

select f ≥ 0 and a = f + (
√

c− b±
√

e− d)2.

As an interesting example, which shows that an optimal matrix may be neither

diagonalizable nor triangular, we apply Theorem 3.4 to find all optimal networks

which are directed cycles of length three.

Example 3.7 (Optimal Directed Cycles of Length Three). Letting a = c =

e = 0 in (3.1), the Laplacian matrix of an optimal network which is a directed cycle

of length three has the form

L =


b 0 −b

−d d 0

0 −f f

 ,
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where b, d, f ≥ 0. Then condition (i) in Theorem 3.4 is satisfied, and conditions

(ii) and (iii) become b + d + f > 0 and√
f =

√
b±

√
d.

These conditions characterize all such optimal networks. The equal eigenvalues are

λ2 = λ3 =
1

2
(b + d + f) =

1

2

[
b + d +

(√
b±

√
d
)2]

= b + d±
√

bd.

When b, d, f > 0, L is nontriangular, and the eigenspace corresponding to eigenvalue

b + d±
√

bd has dimension 1, with eigenvector[
∓ b

(
√

b±
√

d)
√

d
,±

√
bd

(
√

b±
√

d)2
, 1

]T

,

whence L is nondiagonalizable.

3.3 Final Remarks

First note that Corollary 3.5 can be generalized to all dimensions. In fact, we

have the following result.

Theorem 3.8. A symmetric n-oscillator network is optimal if and only if all its

connection weights are positive and equal. Denote this value by a, and the Laplacian

eigenvalues of such an optimal network are 0 = λ1 < λ2 = · · · = λn = na.

Proof. If λ > 0 is an eigenvalue of the Laplacian matrix L with multiplicity n− 1,

then 0 is an eigenvalue of the matrix λI − L with multiplicity n − 1. Also, if L

is symmetric, the corresponding eigenspace has dimension n − 1. Hence, the row

space (as well as the column space) of λI − L has dimension 1. But λI − L has

equal nonzero row sums λ, so all the rows must be the same. From the symmetry,

it follows that all entries of λI − L are the same, denoted by a. Then L has the
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form

L =


λ− a −a · · · −a

−a λ− a · · · −a
...

...
...

−a −a · · · λ− a

 .

From zero row sums of L, we get λ = na. Since λ > 0, a > 0. The above argument

can be reversed, and the conclusion follows.

We conclude this thesis with several remarks:

(1) Nondiagonalizable vs. nontriangular. Nishikawa and Motter [2006] proved

that all optimal matrices which are diagonalizable are of the form

L =


λ− b1 −b2 · · · −bn

−b1 λ− b2 · · · −bn

...
...

...

−b1 −b2 · · · λ− bn

 ,

where bi ≥ 0 and λ =
∑n

i=1 bi > 0. They further constructed a class of optimal

networks whose Laplacian matrices are nondiagonalizable and concluded that most

optimal matrices are nondiagonalizable. However, in their constructions, all the

Laplacian matrices are triangular. In such an optimal matrix, the eigenvalues are

exactly the diagonal elements which are all equal except the first one equal to zero.

Note that the diagonal elements of the Laplacian matrix are the in-degrees of nodes.

Thus, the triangular structure, which implies that no bi-direction connections exist

and all nodes have equal in-degrees except one, is a rather restrictive condition.

In fact, our study on three-dimensional case, especially Theorem 3.4, suggests that

“most optimal matrices are nontriangular”. Specifically, Example 3.7 shows a class

of optimal matrices which is neither diagonalizable nor triangular. We guess this

is true for all dimensions: Most optimal matrices are neither diagonalizable nor

triangular.

(2) Symmetric vs. nonsymmetric. From Theorem 3.8, we see that the class

of optimal symmetric matrices is so small that it has very little practical value.
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However, undirected connections are very common in applications. Thus, it will

be useful to find a larger class of networks which is close to optimal. In other

words, for undirected networks, the optimization problem is meaningful only when

specific connection constraints are taken into account and the goal is to maximize

synchronizability under such constraints.

(3) Weighted vs. unweighted. Either from the remark following Lemma 2.2

or from Theorem 3.8, it is seen that the optimal undirected unweighted networks

are the complete graphs. Therefore, like the symmetric vs. nonsymmetric case,

a realistic optimization problem for undirected unweighted networks should be to

maximize synchronizability under some connection constraints.
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