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Web Appendix A. Proof of Proposition 1

By direct calculation, the Hessian of log g(y|x;θ) is ∇2 log g(y|x;θ) = diag(H1, . . . ,Hn)

with H i = −miAi −Σ−1, where Ai = diag(π̃i)− π̃iπ̃Ti and π̃i = (πi1, . . . , πi,p−1)
T . For any

v = (v1, . . . , vp−1)
T 6= 0, noting that πij > 0, j = 1, . . . , p− 1, and

∑p−1
j=1 πij < 1, we have

vTAiv =

p−1∑
j=1

πijv
2
j −

p−1∑
j=1

p−1∑
k=1

πijπikvjvk

>

(
p−1∑
j=1

πijv
2
j

)(
p−1∑
k=1

πik

)
−

p−1∑
j=1

p−1∑
k=1

πijπikvjvk

=
1

2

p−1∑
j=1

p−1∑
k=1

πijπik(v
2
j + v2k − 2vjvk)

=
1

2

p−1∑
j=1

p−1∑
k=1

πijπik(vj − vk)2 > 0.

Thus, Ai are positive definite and ∇2 log g(y|x;θ) is negative definite, verifying the log-

concavity.

Web Appendix B. Split HMC for the LNM Model

Following Shahbaba et al. (2014), we may speed up the HMC algorithm by splitting the

Hamiltonian and exploiting partial analytic solutions. To this end, we write U(y) = U0(y) +

U1(y), where

U0(y) =
1

2
(y − µ)TΣ−1(y − µ),

U1(y) = −
p−1∑
j=1

xjyj +m log

(
1 +

p−1∑
k=1

eyk

)
,

and decompose the Hamiltonian into three parts,

H(y,p) =
1

2
U1(y) + {U0(y) +K(p)}+

1

2
U1(y),
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where K(p) = pTΣp/2. The first and third parts yield updates similar to those in (8) and

(10), while the second part gives the Hamiltonian equations

dy

dt
= Σp,

dp

dt
= −Σ−1(y − µ),

which admit an analytic solution

y(t) = Σp(0) sin t+ {y(0)− µ} cos t+ µ,

p(t) = p(0) cos t−Σ−1{y(0)− µ} sin t.

Combining these pieces leads to the modified leapfrog updates

p← p− ε

2
∇U1(y),

y ← Σp sin ε+ (y − µ) cos ε+ µ,

p← p cos ε−Σ−1(y − µ) sin ε,

p← p− ε

2
∇U1(y).

It is important to emphasize that our decomposition of the Hamiltonian comes directly from

the specific form of the likelihood, rather than from a normal approximation around the

posterior mode as suggested by Shahbaba et al. (2014); thus, computation of the posterior

mode is not required.

Web Appendix C. Proof of Proposition 2

By Property 5.3 of Aitchison (2003), the generalized eigenproblems (Σρ − λH)vρ = 0 and

(Σ−λH)v = 0 have identical sets of eigenvalues with corresponding eigenvectors related by

vρ = Qρv for some suitably defined matrix Qρ. Since H = K2, the ordinary eigenproblems

(K−1ΣρK
−1−λIp−1)ṽρ = 0 and (K−1ΣK−1−λIp−1)ṽ = 0 have the same set of eigenvalues

with corresponding eigenvectors ṽρ = Kvρ and ṽ = Kv. The equality of condition numbers

then follows.
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Web Appendix D. Algorithm for Finding τ ∗

Following the idea of Won et al. (2013), define

τab =

∑b
j=1 λj/κ+

∑p−1
j=a λj

b+ p− a

and consider the rectangles Rab = {(τ, u) : λa < τ 6 λa−1, λb+1 6 u < λb}, a = 2, . . . , p− 1,

b = 1, . . . , p − 2, in the (τ, u)-plane. Algorithm 1 keeps track of the rectangles Rab that

intersect the line u = κτ , and check if the point (τab, κτab) lies in the current rectangle. If

so, τab is the desired τ ∗; otherwise, by determining the position of the top-right vertex of the

current rectangle relative to the line u = κτ , the algorithm decides which of the two next

rectangles to follow.

Algorithm 1 Algorithm for finding τ ∗

a← p− 1; find b such that λb+1 6 κλp−1 < λb.

while a > 2 and b > 1 do

if λa < τab 6 λa−1 and λb+1 6 κτab < λb then

return τab

else if λb > κλa−1 then

a← a− 1

else

b← b− 1

end if

end while

Web Appendix E. Data-Driven Choice of κ

The tuning parameter κ can be chosen adaptively by K-fold cross-validation. The approach

divides the data x into K groups of approximately equal sample size, and treats in turn

K−1 groups as the training set and the remaining group as the test set. Let η̂(−k)(κ) denote
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the estimate obtained with tuning parameter κ while leaving out the kth group, and ˜̀(k)(η)

the log-likelihood evaluated on the kth group. The optimal κ is then chosen as the smallest

value that maximizes the average predictive log-likelihood

CV(κ) =
1

K

K∑
k=1

˜̀(k)(η̂(−k)(κ)).

A Monte Carlo approximation is used to evaluate the predictive log-likelihood.

Web Appendix F. Simulations with Varying Zero Proportions

We further investigate the performance of different methods with varying zero proportions,

in particular, when the count data are dense or extremely sparse. For the dense settings, we

sampled ξ uniformly from the intervals [0, 4.5] and [0, 6], resulting in proportions of zeros

10.5% and 20.1%, respectively. To generate extremely sparse data, we sampled the first 95

components of ξ from [0, 4] and the rest from [10, 12], resulting in a zero proportion of 80.9%.

The simulation results are summarized in Web Table 1. We see that the LNM and LNM+

methods still consistently outperform the other methods. The performance gaps tend to

shrink as the data become denser, and tend to grow as the data become sparser. We also

observe that the performance of the LN2 method does not improve substantially in the dense

settings, since it adds 1 to all counts even when only a small proportion of them are zeros.

[Table 1 about here.]

Web Appendix G. Comparison of Microbiome Compositions

We applied the two-sample test of Cao, Lin, and Li (2018) to the compositions obtained

by using different estimation methods. Since the test requires strictly positive proportions,

the multinomial method is not applicable. The p-values for the DM, LN1, LN2, LNM, and

LNM+ methods are 0.0009, 0.0010, 0.0012, 0.0004, and 0.0001, respectively, with LNM+

giving the strongest evidence for composition changes in the gut microbiome. To assess
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the stability of the tests, we maintained a proportion varying from 0.1 to 0.9 of subjects

within each group, and randomly assigned the remaining subjects to either group in order

to retain the sample sizes. We repeated the resampling procedure 100 times and for each

method recorded the empirical power as the proportion of rejections at the 0.05 level. We

also obtained the empirical size as the proportion of rejections under completely random

assignment. The results are presented in Web Figure 1. We see that using the LNM and

LNM+ methods for estimation can substantially boost the statistical powers of the tests,

while the sizes of the tests are still controlled at the nominal level.

[Figure 1 about here.]
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Web Figure 1. Empirical power curves of the two-sample tests after estimation using
different methods for the gut microbiome data.
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