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Summary: Clustered multinomial data are prevalent in a variety of applications such as microbiome studies, where

metagenomic sequencing data are summarized as multinomial counts for a large number of bacterial taxa per subject.

Count normalization with ad hoc zero adjustment tends to result in poor estimates of abundances for taxa with zero

or small counts. To account for heterogeneity and overdispersion in such data, we suggest using the logistic normal

multinomial (LNM) model with an arbitrary correlation structure to simultaneously estimate the taxa compositions by

borrowing information across subjects. We overcome the computational difficulties in high dimensions by developing

a stochastic approximation EM algorithm with Hamiltonian Monte Carlo sampling for scalable parameter estimation

in the LNM model. The ill-conditioning problem due to unstructured covariance is further mitigated by a covariance-

regularized estimator with a condition number constraint. The advantages of the proposed methods are illustrated

through simulations and an application to human gut microbiome data.

Key words: Compositional data; Condition number; Hamiltonian Monte Carlo; Logistic normal multinomial;

Microbiome; Stochastic approximation EM.

This paper has been submitted for consideration for publication in Biometrics



Logistic Normal Multinomial Model 1

1. Introduction

Clustered multinomial data are commonly encountered in a variety of modern applications

such as longitudinal studies, social surveys, and text analysis. In particular, in microbiome

studies that motivate this work, metagenomic sequencing experiments yield read counts of

hundreds of bacterial taxa for each subject; the multinomial data are clustered in that reads

from the same subject tend to be sampled from the same microbiome composition and hence

more alike than those from different subjects (Agresti, 2013, Chapter 13). The quantities of

interest are the underlying microbiome compositions for individual subjects, which can be

linked to clinical responses or nutrient intakes using statistical methods recently developed

for compositional data (Li, 2015). It is common practice to normalize the bacterial counts

into proportions, which tends to give poor estimates of abundances for taxa with zero or small

counts. Moreover, since the proportions usually contain a lot of zeros while many statistical

methods for compositional data require strictly positive proportions, ad hoc zero adjustment

procedures are often applied, whose influence on subsequent data analysis remains obscure

and unexplored.

To account for heterogeneity and overdispersion as is typical of multinomial data in micro-

biome studies, a principled approach is to treat the taxa composition as unobserved random

variables, which leads to several useful models. In particular, the Dirichlet-multinomial model

(Mosimann, 1962; Chen and Li, 2013), which imposes a Dirichlet distribution on the taxa

composition, is computationally simple but entails correlation structures among the taxa that

are too restrictive to be satisfied in practice. By contrast, the logistic normal multinomial

(LNM) model assumes logistic normal compositions and is preferable for its flexibility to allow

for a general correlation structure among the taxa. The LNM model has been considered and

applied to the analysis of ecological and metagenomic data by Billheimer, Guttorp, and Fagan

(2001) and Xia et al. (2013). However, their works focused on associating taxa compositions
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with environmental disturbances or nutrient intakes, and were confined to only a few taxa

owing to the computationally expensive MCMC implementations of their methods.

In this article, we treat the zero counts in the multinomial data as sampling zeros. We

suggest using the LNM model with an arbitrary correlation structure to simultaneously

estimate the taxa compositions by borrowing information across subjects. To make this

approach feasible, a computationally efficient algorithm for fitting the LNM model, which can

scale up to hundreds of taxa, is required. Parameter estimation in the LNM model is notori-

ously difficult due to its intractable likelihood. Existing methods for fitting the LNM model

are mainly adapted from those developed for generalized linear mixed models (GLMMs);

see, for example, Hartzel, Agresti, and Caffo (2001) and Hedeker (2003). GLMM fitting

techniques such as Gauss–Hermite quadrature or Monte Carlo EM (MCEM) algorithms

are computationally intensive and scale up to only a few taxa. Methods based on analytic

likelihood approximation such as the Laplace approximation are faster but generally biased.

Variational methods have also been applied to closely related models (Blei and Lafferty,

2007; Braun and McAuliffe, 2010), trading off accuracy for speed.

Our work is complementary to those of Billheimer et al. (2001) and Xia et al. (2013),

and extends their work to the high-dimensional setting where the number of taxa is large.

Our contributions are twofold. First, we develop a fast, scalable algorithm for maximum

likelihood estimation in the LNM model. In view of the computational bottleneck in the

simulation step of the MCEM algorithm, we propose an accelerated algorithm by combining

the stochastic approximation EM (SAEM) algorithm (Delyon, Lavielle, and Moulines, 1999)

with Hamiltonian Monte Carlo (HMC) sampling (Duane et al., 1987; Neal, 2011). The SAEM

algorithm makes a more efficient use of past samples and requires fewer simulations than

MCEM to converge, while HMC leverages gradient information to provide faster mixing rates

than standard MCMC methods such as the random walk Metropolis. The combined speedup
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is remarkable and allows our algorithm to scale up to hundreds of taxa. Second, to mitigate

the ill-conditioning problem due to a large number of covariance parameters, we introduce a

regularization method for the LNM model by imposing a condition number constraint on the

covariance. The resulting procedure is still computationally highly efficient, while preserving

permutation invariance and relying on no sparsity assumptions.

The rest of the article is structured as follows. Section 2 introduces the LNM model.

Section 3 presents the SAEM algorithm with HMC sampling. The regularized estimator and

algorithm are described in Section 4. Simulation studies and an application to human gut

microbiome data are presented in Sections 5 and 6, respectively. We conclude with some

discussion in Section 7.

2. Logistic Normal Multinomial Model

Suppose we observe independent count vectors xi = (xi1, . . . , xip)
T , i = 1, . . . , n, for p taxa on

n subjects. We assume that xi are multinomial with total counts mi and taxa compositions

πi = (πi1, . . . , πip)
T , where mi =

∑p
j=1 xij, πij > 0, and

∑p
j=1 πij = 1. Throughout we

condition on mi, but treat πi as random to account for extra-multinomial variability. Using

the pth taxon as the reference taxon, define the additive log-ratio transformation φ that

maps πi to yi (Aitchison, 2003, Section 6.2) by

yij = log(πij/πip), j = 1, . . . , p− 1,

and yi = (yi1, . . . , yi,p−1)
T . The logistic normal multinomial (LNM) model (Billheimer et al.,

2001; Xia et al., 2013) assumes that yi are independent and identically distributed as

Np−1(µ,Σ) with mean vector µ and covariance matrix Σ, that is,

yi = µ+αi, (1)

where µ ∈ Rp−1 and αi ∼ Np−1(0,Σ). Note that this may be viewed as a random effects

model, where αi are unobserved, subject-specific random effects. When additional covariates
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are available, model (1) can easily be extended to incorporate fixed or random covariate

effects, which we do not pursue in this article.

The inverse of φ, the additive logistic transformation ψ, maps yi back to πi by

πij =
eyij

1 +
∑p−1

k=1 e
yik
, j = 1, . . . , p− 1, (2)

and

πip =
1

1 +
∑p−1

k=1 e
yik
. (3)

Denote x = (xT1 , . . . ,x
T
n )T and y = (yT1 , . . . ,y

T
n )T . The joint density of the complete data

(x,y) is given by

f(x,y;θ) = (2π)−n(p−1)/2 det(Σ)−n/2

×
n∏
i=1

(
mi

xi

)
exp
(∑p−1

j=1 xijyij
)(

1 +
∑p−1

j=1 e
yij
)mi

exp

{
−1

2
(yi − µ)TΣ−1(yi − µ)

}
,

(4)

where θ = (µ,Σ). Integrating out the unobserved data yi and taking the logarithm gives

the log-likelihood function for model (1),

`(θ) = −n(p− 1)

2
log(2π)− n

2
log det(Σ)

+
n∑
i=1

log

∫ (
mi

xi

)
exp
(∑p−1

j=1 xijyij
)(

1 +
∑p−1

j=1 e
yij
)mi

exp

{
−1

2
(yi − µ)TΣ−1(yi − µ)

}
dyi.

(5)

Note that inference procedures based on (5) are generally invariant under any permutation ρ

of the p taxa. Denote by P ρ the p×p permutation matrix and by yiρ the permuted log-ratio

vector. Let F = (Ip−1,−1p−1) andH = Ip−1+1p−11
T
p−1, where Ik is the k×k identity matrix

and 1k is the k-vector of ones. By the permutation properties of the log-ratio transformation

(Aitchison, 2003, Property 5.2), we have yiρ = Qρyi, where Qρ = FP ρF
TH−1. It follows

that the parameters θρ = (µρ,Σρ) under ρ are given by µρ = Qρµ and

Σρ = QρΣQ
T
ρ . (6)

With a fully unspecified covariance Σ, the LNM model (1) allows greater flexibility than

the Dirichlet-multinomial model in accounting for the dependence among the taxa. The log-
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likelihood (5), however, involves a high-dimensional integral that does not have an analytic

form, posing major challenges to likelihood-based inferences.

3. SAEM Algorithm for the LNM Model

In this section we develop a stochastic approximation EM (SAEM) algorithm for maximum

likelihood estimation in the LNM model, where the Hamiltonian Monte Carlo (HMC) method

is used to speed up the simulation step in high dimensions. In the EM framework, y is treated

as missing data. The posterior density of y given the observed data x is

g(y|x;θ) ∝
n∏
i=1

exp
(∑p−1

j=1 xijyij
)(

1 +
∑p−1

j=1 e
yij
)mi

exp

{
−1

2
(yi − µ)TΣ−1(yi − µ)

}
. (7)

The E-step of the EM algorithm requires the calculation of the conditional expectation of the

complete data log-likelihood, given the observed data x and the current parameter estimate

θ(k−1),

Q(θ;θ(k−1)) = Eθ(k−1){log f(x,y;θ)|x} =

∫
log f(x,y;θ)g(y|x;θ(k−1)) dy,

which is approximated by a Monte Carlo integration in the MCEM algorithm and, more

efficiently, by a stochastic averaging procedure in the SAEM algorithm (Delyon et al., 1999).

Our SAEM algorithm for estimating θ in model (1), at the kth iteration, consists of the

following steps.

(1) Simulation: use the HMC method to sample y
(k)
j , j = 1, . . . , N , from the posterior

density g(y|x;θ(k−1)).

(2) Stochastic approximation: update Q(k)(θ) by

Q(k)(θ) = Q(k−1)(θ) + γk

{
1

N

N∑
j=1

log f(x,y
(k)
j ;θ)−Q(k−1)(θ)

}
,

where {γk} is a sequence of step sizes.

(3) Maximization: find θ(k) = (µ(k),Σ(k)) that maximizes Q(k)(θ).

In contrast to MCEM, the SAEM algorithm reuses simulated samples from the previous
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iterations and, therefore, converges faster than MCEM for the same number of simulations.

This improvement is critical for scaling up our procedure, since the simulation step tends to

dominate the computational cost in high dimensions. The speedup within a simulation and

the implementation of the maximization step will be discussed in the following subsections.

3.1 HMC Sampling

MCMC methods are known to be inefficient and converge slowly when the target distribution

has isolated modes (Neal, 1996). In our problem, we show that the multimodality issue does

not occur. The following proposition can be derived from preservation results for log-concave

functions, but we give a direct proof in Web Appendix A.

Proposition 1: The posterior density g(y|x;θ) in (7) is log-concave.

The time complexity of standard random walk MCMC algorithms is O(p2) after the burn-in

period (Belloni and Chernozhukov, 2009), which tends to be prohibitive when p is large. The

HMC method explores high-dimensional state spaces more efficiently by using Hamiltonian

dynamics to generate gradient-informed proposals of new states, which brings the complexity

down to O(p5/4) (Neal, 2011). One can develop intuition about Hamiltonian dynamics by

imagining a satellite that orbits a planet under a gravitational field. To prevent the satellite

from crashing into the planet or escaping its gravitational pull, one must endow the satellite

with a certain momentum to counteract the gravitational attraction. As the satellite moves

toward or away from the planet, its potential energy and kinetic energy change in opposite

directions, while the total energy remains conserved. We refer the reader to Betancourt

(2017) for an accessible introduction to HMC.

Since yi can be independently generated, in what follows we assume n = 1 and omit

the subscript i. The physical intuition is connected to our sampling problem by setting the

potential energy U(y) = − log g(y|x;θ). To generate trajectories that explore a region of
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the state space neither too near nor too far away from the mode, we artificially introduce a

momentum vector p ∈ Rp−1 and hence the kinetic energy K(p) = pTM−1p/2, where M is

a mass matrix to be discussed later. The Hamiltonian is then defined as the total energy

H(y,p) = U(y) +K(p).

Since the total energy is conserved over time t, the partial derivatives lead to the Hamiltonian

equations

dy

dt
=
∂H

∂p
= M−1p,

dp

dt
= −∂H

∂y
= −∇U(y).

These differential equations have no analytic solutions and, thus, have to be discretized and

solved numerically. In particular, with a chosen step size ε, the leapfrog method updates the

state and momentum vectors by

p← p− ε

2
∇U(y), (8)

y ← y + εM−1p, (9)

p← p− ε

2
∇U(y). (10)

Note that, in practice, (10) and (8) from two consecutive iterations can be combined into a

single update p← p− ε∇U(y). Finally, owing to the approximation error, an accept–reject

step is required after T steps of the leapfrog updates to retain the target distribution as the

stationary distribution.

Each iteration of the HMC algorithm for sampling from g(y|x;θ) is then summarized as

follows:

(1) Draw the momentum vector p from Np−1(0,M).

(2) Simulate the Hamiltonian dynamics for T steps using the leapfrog updates (8)–(10).

(3) Accept the proposed state (y∗,p∗) with probability min[1, exp{−H(y∗,p∗) +H(y,p)}].

To further improve the performance of HMC sampling, several considerations are in order.
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First, if the covariance matrix Σ∗ of y under the posterior were known, one could linearly

transform y to have an identity covariance matrix, which is equivalent to choosing M =

(Σ∗)−1 in the above HMC algorithm (Neal, 2011). In practice, Σ∗ is unknown and can be

substituted by an estimate of the prior covariance matrix Σ, so that M = (Σ(k−1))−1 at the

kth iteration of the SAEM algorithm. Second, following Shahbaba et al. (2014), we may speed

up the HMC algorithm by splitting the Hamiltonian and exploiting partial analytic solutions,

as discussed in detail in Web Appendix B. Finally, we randomly choose the leapfrog step size

ε and the number of steps T from some relatively small intervals, for example, [0.055, 0.065]

and 6, . . . , 15, to ensure the ergodicity of HMC (Neal, 2011).

3.2 Implementation and Convergence of SAEM

The maximization step of the SAEM algorithm can easily be implemented through a closed-

form expression. In fact, since the joint density (4) belongs to an exponential family with

natural parameter and sufficient statistic the same as those for Np−1(µ,Σ), the stochastic

approximation step of the SAEM algorithm boils down to the updates

T
(k)
1 = (1− γk)T (k−1)

1 + γk
1

N

N∑
j=1

y
(k)
j , (11)

T
(k)
2 = (1− γk)T (k−1)

2 + γk
1

N

N∑
j=1

y
(k)
j (y

(k)
j )T . (12)

The maximization of Q(k)(θ) can then be carried out explicitly as

µ(k) = T
(k)
1 ,

Σ(k) = T
(k)
2 − T

(k)
1 (T

(k)
1 )T .

With the explicit updates derived above, it is now easy to verify the assumptions for the

convergence of the SAEM algorithm in Delyon et al. (1999). We summarize the convergence

result in the following theorem.

Theorem 1: Assume that the step sizes γk satisfy 0 6 γk 6 1 for all k,
∑∞

k=1 γk =∞,
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and
∑∞

k=1 γ
2
k < ∞, and that T

(k)
1 and T

(k)
2 are almost surely uniformly bounded. Then any

sequence {θ(k)} generated by the SAEM algorithm converges almost surely to a stationary

point of `(θ) in (5).

The simulation sample size N and step sizes γk are tuning parameters that need to be

carefully chosen to ensure fast convergence of the SAEM algorithm. As suggested by Delyon

et al. (1999), since the maximization step is straightforward and computationally much

cheaper than the simulation step, we set N to a small number, for example, N = 5. The

choice of γk is more subtle. Although the convergence of the SAEM algorithm is guaranteed

for a wide range of step sizes, it has been argued that the optimal choice of γk should depend

on the rate of convergence of the underlying EM algorithm (Jank, 2006). In practice, one

can assess the rate of convergence of EM by

r = 1− lim
k→∞

‖θ(k+1) − θ(k)‖
‖θ(k) − θ(k−1)‖

.

Let γk = k−α for 1/2 < α 6 1. A numerical relationship between the optimal choice of α

and the rate of convergence of EM was given by Jank (2006). For simplicity, we fix α = 0.65,

which roughly corresponds to a typical rate of r = 0.2.

Owing to its stochastic approximation nature, the SAEM algorithm is not sensitive to the

initial values, provided that Σ(0) is well conditioned. In our implementation, we set θ(0) =

(µ(0),Σ(0)) as follows: replace all zeros by 0.05, obtain log-ratios y
(0)
i , and set µ(0) = µ̂(0)

and Σ(0) = Σ̂
(0)

+ 5Ip−1, where µ̂(0) and Σ̂
(0)

are the sample mean vector and covariance

matrix of y
(0)
i , respectively. Similarly, set T

(0)
1 = µ(0) and T

(0)
2 = Σ(0) + µ(0)(µ(0))T .

4. Condition Number Regularization

Under the LNM model with parameter θ, one can estimate the taxa compositions by the

posterior means

Eθ(πi|xi) =

∫
ψ(yi)g(yi|xi;θ) dyi.
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Substituting the maximum likelihood estimate θ̂ from the SAEM algorithm for θ leads to

the estimates

π̂i = Eθ̂(πi|xi) =

∫
ψ(yi)g(yi|xi; θ̂) dyi.

To evaluate the above integral, a Monte Carlo approximation using HMC sampling as in

the SAEM algorithm is required. Since the HMC algorithm involves the inversion of Σ, an

ill-conditioned estimate of Σ may result in inferior approximations of π̂i. Similarly, the ill-

conditioning problem can cause numerical instability in the iterates of the SAEM algorithm,

thus affecting the estimation of θ.

Inspired by Won et al. (2013), we propose to regularize the covariance structure by directly

imposing a condition number constraint. For a symmetric and positive definite matrix A,

the L2-norm condition number of A is defined by

cond(A) = ‖A‖2‖A−1‖2 = λmax(A)/λmin(A),

where λmax(A) and λmin(A) are the largest and smallest eigenvalues of A, respectively.

Special care is needed to maintain the permutation invariance of the regularized estimation

procedure. With a fully unspecified covariance Σ, our estimation procedure is permutation

invariant owing to the invariance property of det(Σ) and (yi − µ)TΣ−1(yi − µ) (Aitchison,

2003, Property 5.3). Regularizing the condition number of Σ, however, does not preserve this

property. Consider, for example, the case of Σ = I2 with cond(Σ) = 1, and the permutation

ρ(x1, x2, x3) = (x2, x3, x1). From (6) we have

Σρ = QρI2Q
T
ρ =

(
2 1

1 1

)

with cond(Σρ) = (7 + 3
√

5)/2 6= 1. To find a permutation invariant condition number, we

note the following fact. The proof is provided in Web Appendix C.

Proposition 2: For any square root K of the matrix H and any permutation ρ of the
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p taxa,

cond(K−1ΣρK
−1) = cond(K−1ΣK−1).

Besides its permutation invariance, the relevance of the condition number mentioned in

Proposition 2 to our estimation problem can be appreciated by finding a reparametrization

that involves the matrix K−1ΣK−1. Denote by

K = H1/2 = Ip−1 +

√
p− 1

p− 1
1p−11

T
p−1

the principal square root of H . Write η = (ν,D) and z = (zT1 , . . . ,z
T
n )T with ν = H−1/2µ,

D = H−1/2ΣH−1/2, and zi = H−1/2yi. Then the log-likelihood (5) becomes

˜̀(η) = −n(p− 1)

2
log(2π)− n

2
log det(D) +

n∑
i=1

log

∫ (
mi

xi

)

×
exp
(∑p−1

j=1 xijzij + (
√
p− 1)(mi − xip)zi

)(
1 +

∑p−1
j=1 e

zij+(
√
p−1)zi

)mi
exp

{
−1

2
(zi − ν)TD−1(zi − ν)

}
dzi,

where zi =
∑p−1

j=1 zij/(p − 1). The reparametrized joint density f̃(x, z;η) and posterior

density g̃(z|x;η) can similarly be derived. Therefore, regularizing the condition number of

D is indeed relevant. We then consider the condition number regularized problem

minimize ˜̀(η)

subject to cond(D) 6 κ,

(13)

where κ > 0 is a tuning parameter. We describe an efficient algorithm for solving problem (13)

in the following subsection, and discuss a data-driven choice of κ by K-fold cross-validation

in Web Appendix E.

4.1 Regularized SAEM Algorithm

The SAEM algorithm described in Section 3 can be extended to solve problem (13) by adding

the condition number constraint to the maximization step. Let T̃
(k)

1 and T̃
(k)

2 be the sufficient

statistics obtained from updates similar to (11) and (12) with y
(k)
j replaced by z

(k)
j , and let

Σ̃(k) = T̃
(k)

2 − T̃
(k)

1 (T̃
(k)

1 )T .
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In view of the discussion in Section 3.2, the regularized maximization step reduces to the

optimization problem

minimize log det(D) + tr(D−1Σ̃(k))

subject to cond(D) 6 κ.

(14)

Denote by λ1 > · · · > λp−1 > 0 the eigenvalues of Σ̃(k), and Σ̃(k) = QΛQT the spectral

decomposition of Σ̃(k), where Λ = diag(λ1, . . . , λp−1) and Q is an orthogonal matrix. As

shown by Lemma 1 and Theorem 1 of Won et al. (2013), the solution to the optimization

problem (14) is given by D(k) = QSQT if κ 6 cond(Σ̃(k)) and D(k) = Σ̃(k) otherwise, where

S = diag(s1, . . . , sp−1) with sj = min{max(λj, τ
∗), κτ ∗}; τ ∗ is the unique solution to

τ =

∑b(τ)
j=1 λj/κ+

∑p−1
j=a(τ) λj

b(τ) + p− a(τ)
,

where a(τ) = min{1 6 j 6 p − 1 : λj < τ} and b(τ) = max{1 6 j 6 p − 1 : λj > κτ}. An

algorithm of time complexity O(p) for finding 1/(κτ ∗) was outlined in Won et al. (2013); we

present a slight variant of the algorithm for finding τ ∗ directly in Web Appendix D.

5. Simulation Studies

In this section we present simulation studies to examine the finite sample performance of

the proposed SAEM and regularized SAEM algorithms for the LNM model, referred to as

the LNM and LNM+ methods respectively. We compare our methods with the following

commonly used procedures:

• Mult: the multinomial model with subject-specific parameters πi;

• DM: the Dirichlet-multinomial model, where π̂i are obtained as the posterior means;

• LN1: the logistic normal model with π̂i obtained from replacing all zeros by 0.5 and

normalization;

• LN2: the logistic normal model with π̂i obtained from adding a pseudocount of 1 to all

counts and normalization;
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• MCEM: the MCEM algorithm of Xia et al. (2013) for the LNM model.

The zero replacement procedure in LN1 is similar to those suggested by Aitchison (2003,

Section 11.5) and has been adopted by, for example, Lin et al. (2014) and Cao, Lin, and Li

(2018). The pseudocount approach in LN2, also known as add-one or Laplace smoothing, is

in widespread use in text analysis and metagenomics; see, for example, Manning, Raghavan,

and Schütze (2008) and Friedman and Alm (2012).

The simulated data were generated as follows. We first generated wi = (wi1, . . . , wip)
T

from the multivariate normal distribution Np(ξ,Ω) and obtained the taxa compositions πi

through the transformation

πij =
ewij∑p
k=1 e

wik
, j = 1, . . . , p.

Consequently, yi = φ(πi) follows the multivariate normal distribution Np−1(µ,Σ), where

µ = Fξ and Σ = FΩF T (Aitchison, 2003, Property 6.1). Here ξ was sampled uniformly from

the interval [0, 10] and Ω = (0.5|i−j|). We then generated the count data from the multinomial

distribution Mult(mi,πi), where mi were sampled uniformly from 20p, . . . , 20p + 1000. We

considered the dimensions p = 15, 50, 100, and 200 and sample size n = 100. These settings

were intended to mimic the high-dimensional and heterogeneous nature of microbiome data,

and resulted in proportions of zeros 33.1%, 40.0%, 42.9%, and 43.9% for p = 15, 50, 100, and

200, respectively. Since the MCEM algorithm would take a prohibitive amount of time to

converge even for moderately high-dimensional settings, it was included in our comparisons

only for p = 15.

In the SAEM algorithm, we set the simulation sample size N = 5 and step sizes γk =

k−α with α = 0.65. In HMC sampling, we randomly chose the leapfrog step size ε from

[0.055, 0.065] and the number of steps T from 6, . . . , 15. The regularization parameter κ was

selected by fivefold cross-validation. We repeated the simulation 100 times for each setting.

In addition to the estimates of µ and Σ, we obtained the estimates of taxa compositions
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π̂ = (π̂T1 , . . . , π̂
T
n )T based on a Monte Carlo sample of size 1000. In the MCEM algorithm,

we used 1000 Metropolis–Hastings samples in the E-step after a burn-in period of 1000.

The simulation results are summarized in Table 1, which reports the relative estimation

errors of µ̂, Σ̂, and π̂ under various norms. Here, for any vector v and matrix A, ‖v‖1 and

‖v‖2 denote the L1- and L2-norms of v, and ‖A‖2 and ‖A‖F the spectral and Frobenius

norms of A, respectively. Despite using an ad hoc procedure to eliminate zeros, the LN1

and LN2 methods are closely related to the LNM method in that they aim to estimate the

logistic normal parameters µ and Σ. From Table 1 we see that the LNM method performs

much better than the LN1 and LN2 methods in terms of estimating µ, while having a

close performance to LN1 and LN2 in terms of estimating Σ due to the unconstrained

condition number. Figure 1 indicates that the condition number in the LNM method grows

exponentially as the dimensionality increases. Owing to the condition number constraint,

the LNM+ method further improves on the performance of LNM for estimating µ, while

reducing the estimation error for Σ substantially.

[Table 1 about here.]

[Figure 1 about here.]

Since the multinomial and DM methods do not model the logistic normal covariance

structure, performance comparisons can only be based on the estimation accuracy of π. From

Table 1 we note first that the LN2 method has the worst performance among all methods

except MCEM, because the Dirichlet prior imposed by add-one smoothing is incompatible

with the logistic normal model. The DM method performs better than the two ad hoc

procedures LN1 and LN2, and slightly improves on the multinomial method in terms of

the L1-norm. The LNM and LNM+ methods further improve on the DM estimation as a

result of the more flexible correlation structure, and the LNM+ method achieves a greater

performance boost in higher dimensions.
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Although both MCEM and the proposed LNM method conduct maximum likelihood

estimation, the numerical performance of LNM is substantially superior to that of MCEM

even in the low-dimensional setting of p = 15. While MCEM still greatly outperforms the

LN1 and LN2 methods in terms of estimating µ, it has the worst performance in estimating

Σ and π among all methods. This is largely due to the inefficiency of the random walk

Metropolis algorithm in exploring the state space. To examine the computational efficiency

of MCEM and our algorithms, we report the average numbers of iterations and run times for

each setting in Table 2. All timings were carried out on an Intel Xeon 2.6 GHz processor. We

see that the LNM and LNM+ methods are about two orders of magnitude faster than MCEM.

The condition number constraint incurs only a small extra cost per iteration, although it may

require more iterations to converge in high dimensions. In the most challenging setting, the

computation can be done in about one hour, indicating that our algorithms scale reasonably

well to hundreds of taxa.

[Table 2 about here.]

We further investigate the performance of different methods with varying zero proportions.

The simulation results are presented in Web Appendix F.

6. Application to Microbiome Data

We now illustrate the proposed methods by application to a human gut microbiome dataset

from Wu et al. (2011). DNA from stool samples of 98 healthy subjects were analyzed by

454/Roche pyrosequencing of 16S rRNA gene segments. Demographic data on the subjects,

including body mass index (BMI), were also collected. Taxonomic assignment gave rise to

read counts for 3068 operational taxonomic units, which were combined into 87 genera that

appeared in at least one sample. The total read counts vary widely across samples, ranging

from 1242 to 14,616, resulting in highly sparse data with a zero proportion of 72.2%. Previous
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studies normalized the data into proportions after zero counts were replaced by 0.5 (e.g., Lin

et al., 2014; Cao et al., 2018). In view of the heterogeneity and sparsity of the data, we are

interested in whether the composition estimates can be further improved by our methods.

We applied the proposed and competing methods to estimate the microbiome compositions

at the genus level. Heatmaps of the estimated compositions are displayed in Figure 2. We

observe clear patterns of light vertical stripes in the heatmaps obtained by the LN1, LN2,

and DM methods. This is because, in both LN1 and LN2 methods, the estimated proportions

corresponding to the zero counts depend only on the total read counts, and all unobserved

genera on the same subject are treated equally. The DM method distinguishes the zero

counts from each other only slightly better. By contrast, in the heatmaps generated by the

LNM and LNM+ methods, the stripe patterns are not obvious and the zeros tend to shrink

toward the population means. This shrinkage effect indicates that our methods are more able

to detect fine differences among the rare genera.

[Figure 2 about here.]

Previous studies have revealed that obesity is associated with reduced bacterial diversity

and composition changes in the gut microbiome (Turnbaugh et al., 2009). Intuitively, it is

expected that more accurate recovery of information for the rare genera is likely to strengthen

the contrast between lean and obese individuals. To verify this assumption, we divided the

subjects into a lean group of 63 subjects with BMI < 25 and an obese group of 35 subjects

with BMI > 25. For each group, we obtained the estimated compositions using different

methods, and calculated the following diversity measures:

• Shannon’s index H(πi) = −
∑p

j=1 πij log πij, and

• Simpson’s index D(πi) =
∑p

j=1 π
2
ij.

A larger Shannon’s index or a smaller Simpson’s index indicates a more diverse ecological

community (Morris et al., 2014). Boxplots of the estimated diversity indices for the lean
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and obese groups are shown in Figure 3. While the differences in bacterial diversity between

groups are apparent for all methods, the LNM+ method helps to uncover a stronger contrast

between groups and an increased skewness within each group. Also, we carried out formal

statistical tests to show that a stronger evidence for composition changes can be gained; see

Web Appendix G. These results are consistent with previous findings and suggest that our

methods can yield more accurate estimation by borrowing strength across subjects.

[Figure 3 about here.]

7. Discussion

Adjusting for zero observations in multinomial data has been a long-standing problem in

metagenomic data analysis. The approach presented here can be viewed as an empirical Bayes

method using a logistic normal prior, which has been advocated as much more flexible than

the Dirichlet prior in a wide range of applications. To address the computational challenge

in high dimensions, we have developed a fast SAEM algorithm with HMC sampling, which

scales up to at least hundreds of taxa, for the LNM model. This will allow the LNM model to

be more widely adopted as a useful alternative to the DM model in order to take advantage of

its general correlation structure. Moreover, condition number regularization helps to alleviate

the impact of dimensionality and is particularly useful when no structural assumptions on

the covariance matrix are desired.

It would be possible to extend our methods to multinomial data with higher dimensionality

and increased sparsity as arising in shotgun metagenomics. Although increased sparsity does

not seem to be a major issue, higher dimensionality places a greater demand on computing

resources, and further speedup by GPU computing or data subsampling is recommended.

Also, if the sample size is orders of magnitude smaller than the dimensionality, it would

constitute a major statistical challenge. In this case, condition number regularization alone
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may not be sufficient, and it would be desirable to exploit the sparsity structure in the

covariance or precision matrix by incorporating an L1 penalty (Guo and Zhang, 2017). We

leave these important directions for future research.
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Figure 1. Density plots of condition numbers for the LNM method based on 100 simula-
tions. This figure appears in color in the electronic version of this article.
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Figure 2. Heatmaps of estimated compositions for the gut microbiome data. Values for
all methods except the multinomial method have been log-transformed. This figure appears
in color in the electronic version of this article.
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Table 2
Average numbers of iterations and run times (in seconds) for three methods with n = 100 and varying dimensions

based on 100 simulations

p Method Iterations Total time Time per iter.

15 MCEM 104 2924.1 28.222
LNM 1104 39.6 0.036
LNM+ 1017 53.1 0.052

50 LNM 1462 151.8 0.106
LNM+ 1778 249.3 0.141

100 LNM 1416 399.9 0.289
LNM+ 2298 795.3 0.349

200 LNM 1019 993.2 0.996
LNM+ 3188 4013.7 1.269


