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25 S1. Descriptions and Configurations of NAQPMS

26 The CTM adopted in this study is the Nested Air Quality Prediction Modeling System 

27 (NAQPMS)1 developed by the Institute of Atmospheric Physics, Chinese Academy of Sciences, 

28 which has been successfully applied to operational air quality forecasting, data assimilation,2,3 

29 emission inversion,4 and the study of extreme pollution events.5,6 The NAQPMS uses a terrain-

30 following coordinate system. The advection and diffusion processes are solved through a mass 

31 conservative, peak-preserving, mixing ratio bounded advection scheme developed by Walcek and 

32 Aleksic7 and a diffusion scheme by Byun and Dennis,8 respectively. The reaction process consists 

33 of four modules. The first module is the Carbon Bond Mechanism Z (CBM-Z),9 which calculates 

34 133 reactions for 53 gas-phase species. The second module is an aerosol thermodynamic model 

35 (ISORROPIA v1.7)10 that simulates inorganic aerosols using an ammonia–sulfate–nitrate–

36 chloride–sodium–water system. The third module simulates secondary organic aerosols from 

37 anthropogenic11 and biogenic12 precursors. The fourth module simulates 28 heterogeneous 

38 reactions for 14 species, including dust, sea salt, sulfate, and black carbon.13 The deposition 

39 process includes dry deposition and wet deposition; the former is implemented through the scheme 

40 provided by Wesely,14 while the latter is calculated by the Regional Acid Deposition Model 

41 (RADM).15 The emission inventory consists of multiple sources. The dust and sea salt emissions 

42 were calculated by schemes developed by Luo and Wang16 and Athanasopoulou et al.17 Biogenic 

43 and biomass burning emissions were estimated from work by Guenther et al.18 and Cao et al.19 

44 Anthropogenic emissions were obtained from the MIX inventory20 for the year 2010.
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45 In this study, meteorological fields for NAQPMS were provided by the Weather Research and 

46 Forecasting (WRF) model,21 with initial and boundary conditions from the National Centers for 

47 Environmental Prediction’s Global Forecast System (GFS).

48 Domain configurations for WRF and NAQPMS are shown in Figure 1a. The outer domain (D1) 

49 covers East Asia at a 45 km horizontal resolution, and the inner domain (D2) covers central and 

50 eastern China at a 15 km horizontal resolution. The vertical space is divided into 20 layers with 8 

51 layers below 2 km.

52

53 S2. Descriptions and Configurations of Optimal Interpolation

54 We applied optimal interpolation (OI)22 as the data assimilation method to provide the 

55 assimilated ICs for our forecasts. Because of its ease of implementation and computational 

56 efficiency, OI has been widely used in air quality data analysis.3,23,24 The method calculates the 

57 best linear unbiased estimate of the state vector by

58 𝒙a = 𝒙b + 𝑩𝑯T(𝑯𝑩𝑯T + 𝑹) ―1(𝒚 ― 𝑯𝒙b)

59 where  and  are the analysis and background (forecast) fields, respectively,  is the vector 𝒙a 𝒙b 𝒚

60 of observations,  is the observation operator, and  and  are the background and 𝑯 𝑩 𝑹

61 observation error covariance matrices, respectively.

62 In this study, the observations are assumed to be independent, so that the observation error 

63 covariance matrix  is diagonal, with the error variances set to 10% of the observed values. The 𝑹

64 background error covariance matrix  is assumed to be in the Balgovind form,25 with the 𝑩

65 covariance between grid points  and  defined by𝑖 𝑗
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66 𝑏𝑖𝑗 = (1 +
𝑑𝑖𝑗

𝐿 )𝑒 ― 𝑑𝑖𝑗/𝐿𝜎𝑖𝑗

67 where  is the distance between grid points  and ,  is the characteristic length, and  is 𝑑𝑖𝑗 𝑖 𝑗 𝐿 𝜎𝑖𝑗

68 the a priori covariance. In accordance with the horizontal resolution of domain (D2) and the 

69 distribution of assimilation sites shown in Figure 1, the characteristic length  is set to 80 km. 𝐿

70 The a prior variance  is the product of the a prior errors at grid points  and , where the a 𝜎𝑖𝑗 𝑖 𝑗

71 prior error at each grid point is estimated as 30% of the forecast value at the grid point plus 10% 

72 of the average forecast value over the assimilation domain.

73

74 S3. Numerical Implementation of Horizontal Advection

75 By introducing the mixing ratio , the advection equation for the forecast error  can 𝑄 = 𝑒/𝜌 𝑒

76 be written as

77 ∂(𝜌𝑄)
∂𝑡 = ― ∇ ⋅ (𝒗𝜌𝑄)

78 where  is the fluid density and  is the wind vector. We solved this equation by using a mass 𝜌 𝒗

79 conservative, peak-preserving, mixing ratio bounded advection scheme,7 which has been widely 

80 adopted for simulating advections in CTMs.1,26,27 For multi-dimensional flows, the method 

81 performs advection calculations by sequentially updating the mixing ratios over all flow 

82 dimensions. Applying this method to simulating horizontal advection in our study, the mixing ratio 

83 in grid cell  is approximated by(𝑖, 𝑗)

84 Q𝑡 + ∆𝑡
𝑖 = (𝑄𝑡

𝑖𝐷0 ―
𝐹𝑖 + 1/2

∆𝑥𝑖
+

𝐹𝑖 ― 1/2
∆𝑥𝑖 ) 𝐷1

85 𝑄𝑡 + ∆𝑡
𝑗 = (𝑄𝑡

𝑗𝐷1 ―
𝐹𝑗 + 1/2

∆𝑦𝑗
+

𝐹𝑗 ― 1/2
∆𝑦𝑗 ) 𝐷2
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86 where  and  are the grid sizes along the - and -directions, respectively,  is the time ∆𝑥𝑖 ∆𝑦𝑗 𝑥 𝑦 ∆𝑡

87 step size, , , are dimensionally dependent fluid densities, and  and  𝐷𝑘 𝑘 = 0, 1, 2 𝐹𝑖 ± 1/2 𝐹𝑗 ± 1/2

88 are the tracer fluxes across the cell faces.

89 To ensure mass conservation during horizontal advection, the dimensionally dependent fluid 

90 densities are specified by

91 𝐷0 = 𝜌0𝑖

92 𝐷1 = 𝐷0 ―[(𝜌0𝑣1)𝑖 + 1/2 ― (𝜌0𝑣1)𝑖 ― 1/2]∆𝑡/∆𝑥𝑖

93 𝐷2 = 𝐷1 ―[(𝜌0𝑣2)𝑗 + 1/2 ― (𝜌0𝑣2)𝑗 ― 1/2]∆𝑡/∆𝑦𝑗

94 where  are the initial fluid densities, and  and  are the fluid fluxes 𝜌0𝑖 (𝜌0𝑣1)𝑖 ± 1/2 (𝜌0𝑣2)𝑗 ± 1/2

95 across the cell faces. Moreover, the tracer fluxes across the cell faces are defined by

96 𝐹𝑖 + 1/2 = (𝜌0𝑣1)𝑖 + 1/2∆𝑡𝑄f
𝑖

97 𝐹𝑗 + 1/2 = (𝜌0𝑣2)𝑗 + 1/2∆𝑡𝑄f
𝑗

98 where  and  are the outflowing mixing ratios. For details on the calculations of these 𝑄f
𝑖 𝑄f

𝑗

99 quantities as well as bounding procedures applied to the mixing ratios, refer to Walcek and 

100 Aleksic.7

101

102 S4. Validation of Assimilated PM2.5

103 We assimilated hourly PM2.5 observations into 1-day forecasts for 1003 sites in central and 

104 eastern China during January 2018, while reserving observations from the other 323 sites for 

105 validation. Spatial distributions of average PM2.5 concentrations at the assimilation sites before 

106 and after assimilation are shown in SI Figure S2a,b. Before assimilation, PM2.5 concentrations over 

107 200 μg m-3 are found in the Sichuan Basin, the North China Plain, and the Hubei-Hunan Plain, 
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108 while concentrations under 25 μg m-3 are found in western and northern China. Compared with 

109 observations from the validation sites (circles in SI Figure S2a), significant overestimates are noted 

110 in polluted areas, especially in the Sichuan Basin and the Hubei-Hunan Plain. After assimilation, 

111 PM2.5 concentrations are substantially reduced. Specifically, the average RMSE over all validation 

112 sites is reduced by 82%, from 98.9 to 17.5 μg m-3. Accordingly, the bias is reduced from 64.0 to -

113 0.3 μg m-3 and the correlation coefficient increases from 0.43 to 0.88.

114 Comparisons of PM2.5 time series at three validation sites in Beijing, Shanghai, and Guangzhou 

115 are shown in SI Figure S2c–e. At the Aoti Beijing site, pollution episodes are captured by the 

116 forecasts before assimilation. However, the forecasts are significantly higher than the observations, 

117 especially during the heavily polluted periods. After assimilation, the RMSE of PM2.5 in Beijing 

118 is reduced by 93%, from 145.9 to 10.2 μg m-3. Meanwhile, the bias is reduced from 91.8 to 2.8 μg 

119 m-3 and the correlation coefficient increases from 0.61 to 0.97. Similar improvements by data 

120 assimilation are noted at the Jingan Shanghai and Business School Guangzhou sites, with RMSEs 

121 reduced by 88% and 82%, biases reduced by 90.0% and 93%, and correlation coefficients 

122 increased to 0.98 and 0.96, respectively.
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123

124 Figure S1. Time series of the transported and other PM2.5 and forecast errors, averaged over the 

125 assimilation domain. The transported error refers to the part that is transported from an hour ago; 

126 the transported PM2.5 is similarly defined. Averages during the period are shown to the right of the 

127 legend.
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128

129 Figure S2. Validation of assimilated PM2.5. (a,b) Average concentrations of the unassimilated (a) 

130 and assimilated (b) PM2.5 over January 2018. Colors of circles indicate average PM2.5 observations 

131 at individual validation sites. The mean bias (MB), root-mean-square error (RMSE), and 

132 correlation coefficient over all validation sites are shown in the upper-left corner of each panel. 

133 (c–e) Time series of the unassimilated, assimilated, and observed PM2.5 at the Aoti Beijing (c), 

134 Jingan Shanghai (d), and Business School Guangzhou (e) sites. The MBs, RMSEs, and correlation 

135 coefficients before and after assimilation are shown in the upper-right corner of each panel.
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136

137 Figure S3. Time series of the CTMf, CTMa, and IETM forecasts at the Beijing (a), Anqing (b), 

138 and Dongguan (c) sites, which are located in the Beijing-Tianjin-Hebei (BTH), Yangtze River 

139 Delta (YRD), and Pearl River Delta (PRD) regions, respectively. The CTMf and CTMa methods 

140 refer to CTM forecasting with unassimilated and assimilated ICs, respectively, and IETM refers 

141 to CTMf corrected by the IETM output. 
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142

143 Figure S4. Maps of RMSE at validation sites for 1-day forecasts during July 2017. The RMSEs 

144 of the CTMf, CTMa, and IETM methods are shown in (a)–(c), respectively, and differences 

145 between the RMSEs of IETM and CTMa are shown in (d).
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146

147 Figure S5. Reduced RMSEs over all validation sites as functions of lead time for PM2.5 forecasts 

148 during July 2017 and January 2018.
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