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20 ABSTRACT

21 The efforts of using data assimilation to improve PM2.5 forecasts have been hindered by the limited 

22 number of species and incomplete vertical coverage in the observations. The common practice of 

23 initializing a chemical transport model (CTM) with assimilated initial conditions (ICs) may lead 

24 to model imbalances, which could confine the impacts of assimilated ICs within a day. To address 

25 this challenge, we introduce an Initial Error Transport Model (IETM) approach to improving PM2.5 

26 forecasts. The model describes the transport of initial errors by advection, diffusion, and decay 

27 processes, and calculates the impacts of assimilated ICs separately from the CTM. The CTM 

28 forecasts with unassimilated ICs are then corrected by the IETM output. We implement our method 

29 to improve PM2.5 forecasts over central and eastern China. The reduced root-mean-square errors 

30 for 1- to 4-day forecasts during January 2018 are 51.2, 27.0, 16.4, and 9.4 μg m-3, respectively, 

31 which are 3.2, 6.9, 8.6, and 10.4 times those by the CTM forecasts with assimilated ICs. More 

32 pronounced improvements are found for highly reactive PM2.5 components. These and similar 

33 results for July 2017 suggest that our method can enhance and extend the impacts of the assimilated 

34 data without being affected by the imbalance issue.
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35 INTRODUCTION

36 Air quality forecasting is essential for developing short-term air pollution control strategies and 

37 mitigating health risks from air pollution.1 Substantial forecast errors, however, may be induced 

38 by uncertainties in the initial concentrations, emissions, and physical and chemical processes, 

39 possibly leading to false alarms or missed episodes of pollution events.2 Owing to the fast 

40 economic growth and implementation of increasingly stringent emission control policies in China, 

41 the rapid changes in emissions are usually not captured by the slowly updated emission inventories, 

42 posing further challenges to air quality forecasting in China.3

43 Various data assimilation techniques, including optimal interpolation (OI),4 four-dimensional 

44 variational assimilation (4D-Var),5 and ensemble Kalman filter (EnKF),6 have been adopted to 

45 improve air quality forecasts. It is standard practice to supply initial conditions (ICs) directly to a 

46 chemical transport model (CTM) with the assimilated data.7 This assimilated model initialization 

47 approach has proved effective in improving air quality forecasts by assimilating diverse types of 

48 observations such as in situ, remote sensing, and satellite data.8-10 Despite these considerable 

49 successes, the benefits of data assimilation may not be fully exploited. Ma et al.11 assimilated 

50 surface in situ PM2.5 observations to improve 3-day PM2.5 forecasts and found that most 

51 improvements by the assimilated ICs were limited to within the first day of the forecast; similar 

52 conclusions were drawn from other studies when only surface PM2.5 observations are 

53 assimilated.12,13 By contrast, it is estimated that the global average residence time of accumulation-

54 mode aerosols (0.1-2 μm diameter) emitted near the surface falls in the range of three to seven 
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55 days.14,15 This discrepancy between the residence time of aerosols and the duration of the impacts 

56 of assimilated ICs suggests that PM2.5 forecasts can be further improved.

57 There are two types of imbalances that have hindered the improvement by using assimilated ICs 

58 for model initialization. First, the number of assimilated species is often limited, resulting in the 

59 imbalance between the assimilated and unassimilated variables.16 Also, the incomplete vertical 

60 coverage of the assimilated data (e.g., by assimilating only surface observations) may lead to the 

61 imbalance in space.17 By model initialization, these imbalances will be brought into the CTM and 

62 generate spurious species interactions and vertical transport, which in turn degrade the forecasting 

63 performance.18 Although this model imbalance issue is rarely discussed in the air quality 

64 forecasting literature, some previous studies have indicated that PM2.5 forecasts can be improved 

65 by extracting more observational information across space and chemical species. For example, 

66 Schwartz19 showed that better forecasts were achieved by simultaneously assimilating surface 

67 PM2.5 observations and satellite aerosol optical depth (AOD) retrievals. Moreover, it has been 

68 found that 2- to 3-day forecasts of PM2.5 can be significantly improved by assimilating multi-

69 species surface chemical observations (e.g., PM2.5, SO2, and NO2).8,20

70 Model imbalances due to initialization, or initialization shocks, have been well recognized and 

71 explored in numerical weather prediction and ocean modeling.21,22 Several procedures to mitigate 

72 the initialization shock and increase the dynamical balance have been developed. These include, 

73 among others, pre- and post-processing methods such as nonlinear normal mode initialization23,24 

74 and digital filtering,25 as well as incremental analysis update schemes that gradually introduce the 
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75 analysis increments over a time window.26 Although these initialization techniques are effective 

76 in reducing spurious high-frequency oscillations, they do not completely eliminate the imbalances 

77 and can partially undo the efforts of data assimilation.27,28

78 In this study, we suggest a new way to extract information from the assimilated ICs without 

79 bringing the imbalances into the CTM, and introduce an Initial Error Transport Model (IETM) 

80 approach to improving PM2.5 forecasts. The model describes the transport of errors from the ICs 

81 by advection, diffusion, and decay processes, and calculates the impacts of assimilated ICs 

82 separately from the CTM. The CTM forecasts with unassimilated ICs are then corrected by the 

83 IETM output. We implement and test our method on PM2.5 forecasts over central and eastern China 

84 during January 2018 and July 2017. The reductions in root-mean-square error (RMSE) for 4-day 

85 forecasts were still apparent, substantially improving results from direct initialization of the CTM. 

86 Reasons that explain the improvements are also discussed.

87 METHODS AND DATA

88 IETM Methodology

89 Our model for describing the transport of initial errors is motived by the fundamental principles 

90 and major components of the governing equations for CTMs. A generic form of the governing 

91 equation for a pollutant of interest is given by

92 (1)
∂𝑐f

∂𝑡 = ∇ ⋅ (𝐾f∇𝑐f) ―∇ ⋅ (𝒗f𝑐f) + 𝐸f + 𝑅f(𝑐f) + 𝐷f(𝑐f)

93 where  is the pollutant concentration,  is the eddy diffusivity,  is the wind vector, and , 𝑐f 𝐾f 𝒗f 𝐸f

94 , and  are the changes of concentrations resulting from the emission, reaction, and deposition 𝑅f 𝐷f
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95 processes, respectively. Here the superscript “f” stands for “forecast.” Equation 1 explicitly models 

96 the diffusion and advection processes, while leaving the other components nominally defined. Air 

97 quality forecasts are then obtained by solving the equation numerically with appropriate ICs. 

98 Conventionally, assimilated ICs with less bias and higher accuracy are supplied directly to the 

99 CTM. This approach, however, also brings imbalances in the assimilated ICs into the CTM, 

100 resulting in model imbalances and limiting the benefits of assimilated ICs.

101 We next derive a governing equation for the forecast errors. Suppose that the true concentrations 

102 follow the same form of governing equation as eq 1:

103 (2)
∂𝑐 ∗

∂𝑡 = ∇ ⋅ (𝐾 ∗ ∇𝑐 ∗ ) ―∇ ⋅ (𝒗 ∗ 𝑐 ∗ ) + 𝐸 ∗ + 𝑅 ∗ (𝑐 ∗ ) + 𝐷 ∗ (𝑐 ∗ )

104 Define the forecast error by . To obtain an equation in terms of e only, we assume for 𝑒 = 𝑐f ― 𝑐 ∗

105 simplicity that the eddy diffusivity and the wind vector are without error, that is,  and 𝐾f = 𝐾 ∗ 𝒗f

106 . In the presence of errors in  and , the resulting equation will still be a good = 𝒗 ∗ 𝐾f 𝒗f

107 approximation, provided that these errors are relatively small. This assumption is reasonable, since 

108 diffusion is negligibly slow compared to advection29 and wind forecasts are sufficiently accurate 

109 for up to 4 days.30 Now, subtracting eq 2 from eq 1 gives the equation for the forecast error :𝑒

110 (3)
∂𝑒
∂𝑡 = ∇ ⋅ (𝐾f∇𝑒) ―∇ ⋅ (𝒗f𝑒) + 𝛹(𝑐f,𝑐 ∗ )

111 where

112 𝛹(𝑐f,𝑐 ∗ ) = 𝐸f + 𝑅f(𝑐f) + 𝐷f(𝑐f) ― 𝐸 ∗ ― 𝑅 ∗ (𝑐 ∗ ) ― 𝐷 ∗ (𝑐 ∗ )

113 The first and second terms on the right-hand side of eq 3 are the diffusion and advection operators, 

114 respectively, which reflect the transport of forecast errors. Here the transported error refers to the 
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115 error transported from the previous time step, which involves errors arising from all sources 

116 including emission, reaction, and deposition. Meanwhile, the last term  in eq 3 represents the 𝛹

117 error arising from all uncertainties at the current time step. This part of error is generally difficult 

118 to estimate because it depends on the unknown true emission, reaction, and deposition processes. 

119 Fortunately, for PM2.5 as a pollutant with a typical lifetime of 4 days in the lower troposphere,31 

120 the error generated at a single time step is relatively small compared to the transported error, as we 

121 will show in SI Figure S1 and the Results and Discussion section. A related work by Skachko et 

122 al.32 found that transport plays a major role in describing the evolution of model error for data 

123 assimilation.

124 Although an explicit expression of  in eq 3 is not available, the physical and chemical removal 𝛹

125 processes of the pollutant are expected to follow an exponential decay.33 We thus approximate  𝛹

126 by a decay term and arrive at the governing equation for our initial error transport model (IETM):

127 (4)
∂𝑒
∂𝑡 = ∇ ⋅ (𝐾f∇𝑒) ―∇ ⋅ (𝒗f𝑒) ― 𝛼𝑒

128 where  is a decay rate parameter that controls the lifetime of the forecast errors. This simplified 𝛼

129 equation can then be solved numerically. Although eq 4 depends on e only, solving the equation 

130 requires knowing the initial error . Since  is unknown, we estimate it by the 𝑒0 = 𝑐f
0 ― 𝑐 ∗

0 𝑐 ∗
0

131 assimilated initial concentration. Finally, consider a baseline forecast  that is obtained by 𝑐f

132 solving eq 1 with unassimilated ICs. In view of the relation  mentioned above, we 𝑒 = 𝑐f ― 𝑐 ∗

133 correct the baseline forecast by subtracting the solution  to eq 4 and obtain our final forecast𝑒i

134 𝑐i = 𝑐f ― 𝑒i
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135 where the superscript “i” stands for the IETM approach.

136 To recap, the proposed IETM approach describes the transport of initial errors through a 

137 simplified governing equation consisting of diffusion, advection, and decay terms. The solution to 

138 this equation is then used to correct the baseline forecast from the full CTM with unassimilated 

139 ICs. Overall, the IETM methodology avoids breaking the model balances in the CTM by 

140 calculating the impacts of assimilated ICs separately from the CTM, thereby improving the final 

141 forecasts.

142 Numerical Implementation

143 We adopted the Nested Air Quality Prediction Modeling System (NAQPMS)34 developed by the 

144 Institute of Atmospheric Physics, Chinese Academy of Sciences, as the CTM in this study. 

145 NAQPMS runs in three dimensions with 20 vertical layers; more details about NAQPMS are 

146 provided in Supporting Information (SI) Section S1. We used the method of optimal interpolation 

147 (OI) for data assimilation, which is described in SI Section S2. Differences between the 

148 unassimilated and assimilated ICs are treated as the ICs for the IETM. Numerical schemes and 

149 parameter settings for implementing the advection, diffusion, and decay processes in eq 4 are 

150 described as follows.

151 The advection process is calculated through a mass conservative, peak-preserving, mixing ratio 

152 bounded advection algorithm developed by Walcek and Aleksic.35 The algorithm employs dual-

153 linear segment approximations and a special treatment near the local maxima and minima to 

154 preserve extremes and reduce numerical diffusion. It has been widely used in CTMs to advect 
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155 chemical species with nonnegative concentrations;34,36,37 however, it does not require positive-

156 definite initial fields, and negative quantities can be advected. A two-dimensional implementation 

157 of the scheme is described in SI Section S3 and applied for the horizontal advection of forecast 

158 errors. Vertical advection is not considered here for three reasons. First, only surface in situ 

159 observations are assimilated in this study, so that the assimilated concentrations in the surface layer 

160 are more accurate than those in higher layers. Second, vertical wind speeds are significantly 

161 smaller than horizontal wind speeds. Finally, omitting the vertical advection would introduce a 

162 relatively small error, but can save almost 90% of the computational cost.

163 The implementation of the diffusion process is straightforward except for determining the value 

164 of eddy diffusivity . Sometimes,  is set to zero or an empirical constant because diffusion is 𝐾f 𝐾f

165 negligibly slow compared to advection.29 Here, it is calculated by a scheme based on model 

166 resolution and wind speed derivatives.38

167 The decay rate parameter  in eq 4 determines the lifetime of forecast errors. It has been shown 𝛼

168 that the lifetimes of components in PM2.5 range from less than a day to a few weeks.14 Here, we 

169 regard the lifetime of the impacts of initial errors as the same as the lifetime of PM2.5, which is 

170 about 4 days in the lower troposphere.31 Accordingly,  is set to the reciprocal of the lifetime, 𝛼

171 that is, 1/96 h-1. As a result, the impacts of initial errors will last at least 4 days if not transported 

172 outside the simulation domain.

173 During forecasting, we run the full CTM once to obtain the baseline forecast, and run the IETM 

174 once to yield the correction. Compared with the conventional method that runs the CTM once with 
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175 assimilated ICs, our method requires extra computation to run the IETM. However, the IETM is a 

176 two-dimensional, simplified model, which is easy and cheap to implement. Moreover, since the 

177 background forecast has already been obtained in the OI assimilation scheme, it can be used 

178 directly as the baseline forecast, thereby saving even more computation.

179
180 Figure 1. (a) Domain configurations and (b) distribution of monitoring sites. The outer domain 

181 (D1) covers East Asia at a 45 km horizontal resolution, and the inner domain (D2) covers central 

182 and eastern China at a 15 km horizontal resolution. Colored regions in (b) indicate the Beijing-

183 Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta regions from north to south.

184

185 Observational Data

186 The surface PM2.5 observations used in this study were obtained from the China National 

187 Environmental Monitoring Center. These observations were first examined by a probabilistic 

188 automatic outlier detection method39 to remove data with abnormally large representation or 
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189 observational errors. After excluding sites with excessive missing or removed data, there were 

190 1326 monitoring sites located in the research area as shown in Figure 1. Most of these sites were 

191 in urban areas and there was more than one monitoring site for most cities. To ensure that there 

192 was at least one assimilation site for each city, one validation site was randomly selected for cities 

193 with more than two available sites. A total of 1003 sites were selected for assimilation, among 

194 which 57 were located in the Beijing-Tianjin-Hebei (BTH) region, 120 in the Yangtze River Delta 

195 (YRD) region, and 59 in the Pearl River Delta (PRD) region. The other 323 sites were used for 

196 validation, including 13, 37, and 15 sites in the BTH, YRD, and PRD region, respectively.

197 Configurations of Forecasting Experiments

198 Three forecasting experiments were carried out to produce 96 h forecasts of PM2.5 during 

199 January 2018 and July 2017. These experiments share the same domain configurations, emission 

200 inventories, meteorological initial and boundary conditions, and parameter settings for the CTM, 

201 with the only difference being the treatments of ICs as described below.

202 The first experiment supplies the unassimilated ICs, which are extracted from the forecasts 

203 started 24 h ago, directly to the CTM. The second experiment uses the assimilated ICs instead for 

204 the CTM. The third experiment implements the proposed method, which corrects the forecasts 

205 produced in the first experiment with the output from the IETM. The ICs for the IETM are obtained 

206 by subtracting the assimilated ICs from the unassimilated ICs. While the CTM includes 20 vertical 

207 layers, only surface PM2.5 observations were obtained and assimilated in this study. The restart 

208 interval is set to 24 h and the assimilation frequency is hourly. Components of PM2.5 in the 
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209 assimilated ICs (e.g., nitrate, sulfate, organic aerosols, and black carbon) are adjusted 

210 proportionally to the change of total PM2.5 before and after data assimilation.

211 RESULTS AND DISCUSSION

212 Transport of Forecast Errors

213 It is well documented that transport plays a major role in the evolution of PM2.5.40-42 The PM2.5 

214 driven by cold surges can travel up to 2000 km from northern to southern China within two days.43 

215 Moreover, components with longer lifetimes (e.g., dust and black carbon) can travel across 

216 oceans,44 and intercontinental transport of aerosols is estimated to account for 36–97% of the 

217 background surface concentrations.40

218 Equation 3 suggests that the forecast errors of PM2.5 can be similarly transported. Numerical 

219 evidence for such error transport from the forecasting experiments is shown in Figure 2 and SI 

220 Video S1. At the beginning of the forecast period, PM2.5 concentrations above 300 μg m-3 are 

221 found in Henan, Hebei, Hunan, and Hubei. During the forecast, most PM2.5 is transported to the 

222 Pacific Ocean by a strong northwest wind. At the lead time of 32 h, PM2.5 concentrations for most 

223 of the Chinese mainland fall below 150 μg m-3, as shown in the top panel of Figure 2. For 

224 comparison, we estimated the forecast errors by the difference between the forecast and the 

225 assimilated concentrations, as shown in the middle panel of Figure 2. Accuracy of the assimilated 

226 data is verified in SI Section S4 and Figure S2. As is clear from Figure 2, forecast errors are 

227 transported along with concentrations, and large forecast errors occur mostly in heavily polluted 

228 areas. The transported initial errors, calculated by using the IETM approach, are shown in the 
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229 bottom panel of Figure 2. The estimated forecast errors and the transported initial errors are 

230 identical by definition at the start of the forecast. During the forecast, the differences increase, but 

231 the transported errors consistently account for most of the estimated errors. The differences are 

232 likely attributable to uncertainties in the emissions, reactions, deposition, and wind fields. To sum 

233 up, these results confirm that forecast errors of PM2.5 can be transported along with concentrations 

234 from the CTM and the transported errors have a strong impact on forecasts with a lead time up to 

235 32 h.

236 To further demonstrate the importance of transport in the evolution of forecast errors, we 

237 decompose the forecast errors into two parts: the error transported from an hour ago and the other 

238 error that is generated during the last hour. Both parts of error involve uncertainties stemming from 

239 the CTM modules and the input data, thus forming a different decomposition from those usually 

240 discussed in the literature. As shown in SI Figure S1, the transported error outweighs the other 

241 error by a factor of 6.6. This result is consistent with the work of Skachko et al.,32 which found 

242 that transport plays a major role in describing the evolution of model error for data assimilation.
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243

244 Figure 2. Illustrations of the transport of PM2.5 forecast errors. The forecast starts at 20:00 on 

245 January 6, 2018. Forecast errors (middle) are estimated by the difference between the forecast (top) 

246 and assimilated concentrations. Transported errors (bottom) are calculated by using the IETM 

247 approach. An animated version of this figure is provided in SI Video S1.

248
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249 Comparisons of Forecasting Methods

250 We compare the proposed IETM method with two commonly used forecasting schemes 

251 mentioned above, which we refer to as CTM forecasting with unassimilated ICs (CTMf) and that 

252 with assimilated ICs (CTMa). Three statistical measures are used to evaluate the accuracy of the 

253 forecasts: mean bias (MB), root-mean-square error (RMSE), and correlation coefficient ( ). 𝒓

254 Results for 1- to 4-day PM2.5 forecasts during January 2018 using three methods over the study 

255 period are summarized in Table 1. Examples of the forecast PM2.5 concentrations at three 

256 validation sites in the BTH, YRD, and PRD regions are shown in SI Figure S3.

257 As noted from Table 1, the CTMf method exhibits a large upward bias of 57.0–64.0 μg m-3 for 

258 1- to 4-day forecasts over all validation sites. This overestimation could be largely explained by 

259 stringent emission controls that are not captured by the currently used emission inventory, such as 

260 strengthening industrial emissions standards, upgrading industrial boilers, phasing out outdated 

261 industrial capacities, and promoting clean fuels in the residential sector.
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262 Table 1. Performance Statistics for 1- to 4-Day PM2.5 Forecasts During January 2018 Using 

263 Three Methodsa

1-day forecast 2-day forecast 3-day forecast 4-day forecast
region method

MB RMSE 𝒓 MB RMSE 𝒓 MB RMSE 𝒓 MB RMSE 𝒓

CTMf 64.0 98.9 0.43 59.8 97.5 0.39 59.3 98.3 0.36 57.0 98.3 0.31

CTMa 51.3 82.6 0.47 57.0 93.6 0.40 58.0 96.4 0.36 56.4 97.4 0.31

all

IETM 15.8 47.7 0.58 31.1 70.5 0.39 41.9 81.9 0.34 47.2 88.9 0.29

CTMf 66.7 111.5 0.54 64.1 109.2 0.49 70.1 115.4 0.41 66.6 119.9 0.33

CTMa 48.9 86.7 0.59 62.1 105.7 0.49 69.4 114.1 0.41 66.3 119.4 0.33

BTH

IETM 22.6 60.5 0.61 51.2 94.3 0.46 64.9 108.4 0.41 64.4 117.1 0.33

CTMf 78.1 112.4 0.68 70.1 113.8 0.61 67.0 122.2 0.50 66.3 121.2 0.47

CTMa 62.8 92.8 0.71 67.3 109.6 0.62 65.7 120.2 0.50 65.7 120.2 0.47

YRD

IETM 21.5 53.1 0.73 38.6 81.2 0.60 51.9 103.6 0.48 58.6 110.0 0.46

CTMf 49.1 76.4 0.20 47.7 75.1 0.20 48.2 78.5 0.21 49.3 81.1 0.18

CTMa 41.3 66.7 0.27 44.2 70.9 0.22 46.4 76.0 0.21 48.3 79.6 0.17

PRD

IETM 1.6 34.8 0.60 -5.3 47.4 0.18 4.7 55.4 0.04 20.5 63.6 0.07

264 aBTH, Beijing-Tianjin-Hebei region; YRD, Yangtze River Delta region; PRD, Pearl River Delta 
265 region. MB, mean bias (μg m-3); RMSE, root-mean-square error (μg m-3); , correlation 𝒓

266 coefficient. The CTMf and CTMa methods refer to CTM forecasting with unassimilated and 
267 assimilated ICs, respectively, and IETM refers to CTMf corrected by the IETM output.

268

269 The CTMa method yields improved forecasting performance over CTMf by initializing the CTM 

270 with the assimilated data. As shown in Figure 3, the RMSE of 1-day forecasts using the CTMf 

271 method exceeds 150 μg m-3 at most validation sites in the Sichuan Basin, the North China Plain, 

272 and the Hubei–Hunan Plain, while RMSEs under 50 μg m-3 are found mainly in Northeast China, 
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273 Northwest China, and Yunnan. A reduction of RMSE is clearly observed in areas with high 

274 RMSEs, especially the North China Plain. The RMSE of 1-day forecasts over all validation sites 

275 is lowered by 16.2 μg m-3, amounting to a reduction of 16.4% (Table 1).

276

277 Figure 3. Maps of RMSE at validation sites for 1-day forecasts during January 2018. The RMSEs 

278 of the CTMf, CTMa, and IETM methods are shown in (a)–(c), respectively, and differences 

279 between the RMSEs of IETM and CTMa are shown in (d).

280
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281

282 Figure 4. Curves of RMSE over all validation sites as functions of lead time for PM2.5 forecasts 

283 during January 2018. Shaded areas around the curves for CTMa and IETM represent 95% 

284 confidence intervals, which are calculated by using the bootstrap method. The red line represents 

285 the RMSE of assimilated PM2.5 from the CTM.

286

287 Although PM2.5 forecasts are generally improved by the CTMa method, the benefits are largely 

288 limited to 1-day forecasts. At the beginning of the forecast, the RMSE for the CTMa method is 

289 substantially lower than that for CTMf, as evident from Figure 4. However, the RMSE for CTMa 

290 increases dramatically and its advantage over CTMf is quickly lost, especially during the first hour. 

291 A similar phenomenon in the first hour of the forecast was also noted by previous work,19 where 

292 only observations of PM2.5, but not its precursors, were assimilated. Compared with the relatively 

293 large improvement for 1-day forecasts, only reductions of 3.9, 1.9, and 0.9 μg m-3, or 4.0%, 1.9%, 
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294 and 0.9%, respectively, are obtained from the CTMa method for 2- to 4-day forecasts (Table 1). 

295 These results are consistent with previous studies suggesting that most improvements by 

296 assimilating surface PM2.5 observations are limited to 1-day forecasts.11-13

297 By contrast, improvements from the IETM method tend to be more substantial and last longer. 

298 Starting with the same reduction in RMSE as that by CTMa, the IETM forecasts only see a gradual 

299 increase in RMSE during the first two days, and the impacts of assimilated ICs are still visible on 

300 the fourth day in Figure 4. A periodic diurnal variation in the RMSEs of all forecasts is noted in 

301 Figure 4, which is likely caused by uncertainties in the diurnal variation of emissions and 

302 meteorological conditions such as solar intensity, temperature, wind speed, and the height of the 

303 planetary boundary layer. As shown spatially in Figure 3, improvements in RMSE for 1-day 

304 forecasts by IETM over CTMa are apparent at most validation sites and more pronounced in areas 

305 with high RMSEs. Remarkably, while the RMSEs for validation sites in Guangdong, Fujian, and 

306 Zhejiang are scarcely reduced by CTMa, they are cut down to under 50 μg m-3 by the IETM 

307 method. Compared with the results for CTMf, the reductions in RMSE for 1- to 4-day forecasts 

308 by the IETM method are 51.2, 27.0, 16.4, and 9.4 μg m-3, or 51.8%, 27.7%, 16.7%, and 9.5%, 

309 respectively, which are 3.2, 6.9, 8.6, and 10.4 times those by the CTMa method (Table 1). Table 

310 1 also suggests that improvements by the IETM method are mainly in the MB and RMSE but less 

311 in the correlation coefficient, especially for 2- to 4-day forecasts. This inconsistency is due to the 

312 fact that r is a standardized measure that magnifies the contributions of locations with low 

313 concentrations and hence small forecast errors. The IETM approach, however, tends to transport 
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314 large forecast errors to locations with small errors, which may decrease r for those locations and 

315 offset the improvement in r elsewhere. Nevertheless, since PM2.5 concentrations and forecast 

316 errors show marked spatiotemporal variability, the MB and RMSE measures seem more 

317 appropriate for assessing predictive accuracy in this case. 

318 To further test the robustness of our method for different periods and seasons, we applied it to 

319 the month of July 2017. Although the RMSE is much lower in the summer, the results show similar 

320 trends of improvement to those for January 2018. Notably, as shown in SI Figure S4, the RMSEs 

321 for 1-day forecasts in the Sichuan Basin are only slightly reduced by the CTMa method, but are 

322 cut by about a half with the IETM method. The reduced RMSEs for 1- to 4-day forecasts during 

323 July 2017 and January 2018 are compared in SI Figure S5, which demonstrate similar patterns and 

324 last up to 4 days. These results together suggest that the IETM method can yield amplified and 

325 prolonged improvement over commonly used forecasting schemes.

326 Model Balances in the Forecasts

327 It is useful to investigate the ways in which the proposed IETM method helps to mitigate the 

328 imbalance issue. Two types of imbalances can generally occur in the CTM due to data assimilation. 

329 The first type is the imbalance between the assimilated and unassimilated model variables.16 

330 Ideally, the calculation of chemical reactions should be more accurate with the assimilated ICs. In 

331 reality, however, only a few of the species involved in the CTM can be assimilated owing to the 

332 lack of observations. This inconsistency can thus disturb the balance of chemical reactions. As a 

333 result, improvements for the assimilated species may diminish quickly as the CTM tries to reach 
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334 a new reaction balance. The second type is the imbalance in space.17 For instance, in this study, 

335 the accuracy of ICs in the surface layer was improved by assimilating surface PM2.5 observations, 

336 whereas PM2.5 in the higher layers was not affected since no lidar or satellite data were assimilated. 

337 Such an imbalance may lead to spurious differences between the concentrations of PM2.5 in the 

338 surface layer and in the adjacent layer. During the forecast, these spurious differences tend to be 

339 lessened by vertical transport in the CTM; however, the effects of data assimilation on surface 

340 PM2.5 are also counteracted. Collectively, these two types of imbalances may cause spurious 

341 species interactions and vertical transport in the CTM, thereby diminishing the benefits from data 

342 assimilation.

343 The IETM method takes a fundamentally different way to extract information from the 

344 assimilated ICs. It calculates the transport of initial errors and corrects the baseline forecast 

345 accordingly. Neither of the two imbalance problems mentioned above will be encountered. First, 

346 the IETM does not explicitly involve any reaction process, thereby avoiding interactions between 

347 the assimilated and unassimilated species. Moreover, only the surface layer is considered in the 

348 IETM, so that no vertical imbalance will arise.

349 To verify the above arguments, we estimated the concentrations of PM2.5 components using the 

350 IETM by assuming that the chemical composition of PM2.5 is the same as that in the baseline CTM 

351 forecast. Results averaged over the YRD region for a 4-day period are shown in Figure 5. Since 

352 no precursors of PM2.5 were assimilated in this study, chemical reactions between PM2.5 

353 components and their precursors were significantly disturbed in the CTMa method. As expected, 
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354 the concentrations of highly reactive PM2.5 components, including nitrate, ammonium, and sulfate, 

355 change abruptly in the first hour and become indistinguishable from the CTMf forecasts (Figure 

356 5b–d). By contrast, improvements for these components by the IETM method are consistently 

357 large and can last up to four days. Similar trends are found for those less reactive components, 

358 including organic aerosols, black carbon, and other PM2.5 components (Figure 5e–g). In this case, 

359 it is interesting to note that, although the CTMa forecasts converge to those by CTMf and the 

360 effects of data assimilation almost disappear within a day, the changes are not as abrupt as those 

361 for highly reactive components. This difference suggests that vertical transport may play a major 

362 role for these components, which takes a longer time to reach a dynamic balance. The relatively 

363 longer duration of assimilation effect may also be attributed to the start time of 20:00 and weaker 

364 vertical transport in the nighttime. In summary, improvements by the IETM method are substantial 

365 and consistent across all components of PM2.5, and are not affected by either spurious species 

366 interactions or vertical transport.
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367

368 Figure 5. Time series of the CTMf, CTMa, and IETM forecasts of total PM2.5 (a) and its 

369 components (b–g) over the Yangtze River Delta region. The forecast starts at 20:00 on January 17, 

370 2018.

371 Limitations and Possible Extensions

372 Fully exploiting the benefits of data assimilation is crucial for improving air quality forecasting. 

373 Our proposed method provides a reliable, flexible way to enhance and extend the impacts of the 

374 assimilated data without being affected by the imbalance issue. The methodology is easy to 

375 implement and highly efficient as it does not require expensive CTM computations or complex 

376 initialization strategies. Nevertheless, the IETM assumes that the lifetime of PM2.5 forecast errors 

377 is prespecified and vertical transport is negligible. Although these assumptions affect only the 

378 calculated impacts of assimilated ICs and seem plausible in most cases, there are exceptions. For 

379 instance, scavenging of PM2.5 by precipitation would result in a shorter lifetime of PM2.5. Besides, 

380 when air masses collide or wildfires occur, vertical transport may play a more important role and 
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381 should not be ignored. Moreover, since the IETM trades model complexity for model balance, its 

382 advantages over direct initialization techniques would diminish as the number of species and 

383 vertical coverage in the assimilated data increase.

384 The IETM method could be extended in many ways to deal with these limitations. For example, 

385 a more sophisticated decay scheme, incorporating the reaction and deposition processes, could be 

386 developed, which would provide better predictions over areas and periods with unusual PM2.5 

387 lifetimes. Moreover, the forecast errors that are not explained by the transport or decay of initial 

388 errors could be modeled using statistical or machine learning methods, which is likely to yield 

389 further improvement for longer-range forecasts.

Page 24 of 30

ACS Paragon Plus Environment

Environmental Science & Technology



25

390 ASSOCIATED CONTENT

391 Supporting Information

392 Detailed descriptions of the CTM and data assimilation method, implementation of horizontal 

393 advection, validation of assimilation results, supplementary figures (PDF)

394 Animation of the transport of PM2.5 forecast errors (Video S1) (AVI)

395 AUTHOR INFORMATION

396 Corresponding Authors

397 *Email: wuhuangjian@pku.edu.cn

398 *Email: weilin@math.pku.edu.cn

399 Notes

400 The authors declare no competing financial interest.

401 ACKNOWLEDGMENTS

402 This work was supported by National Key R&D Program of China grants 2016YFC0207703, 

403 2016YFC0207701, 2018YFC0213106, and 2018YFC0213100, National Natural Science 

404 Foundation of China grants 11671018, 71532001, 91644216, and 41705108, Beijing Natural 

405 Science Foundation grant Z190001, and Beijing Academy of Artificial Intelligence.

Page 25 of 30

ACS Paragon Plus Environment

Environmental Science & Technology



26

406 REFERENCES

407  (1) Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality 
408 forecasting, part I: History, techniques, and current status. Atmos. Environ. 2012, 60, 632-655.
409  (2) Kumar, R.; Peuch, V.-H.; Crawford, J. H.; Brasseur, G. Five steps to improve air-quality 
410 forecasts. Nature 2018, 561 (7721), 27-29.
411  (3) Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; 
412 Liu, W.; Ding, Y.; Lei, Y.; Li, J. H.; Wang, Z.; Zhang, X.; Wang, Y.; Cheng, J.; Liu, Y.; Shi, Q.; 
413 Yan, L.; Geng, G.; Hong, C.; Li, M.; Liu, F.; Zheng, B.; Cao, J.; Ding, A.; Gao, J.; Fu, Q.; Huo, 
414 J.; Liu, B.; Liu, Z.; Yang, F.; He, K.; Hao, J. Drivers of improved PM2.5 air quality in China from 
415 2013 to 2017. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (49), 24463-24469.
416  (4) Daley, R., Atmospheric Data Analysis. Cambridge University Press: Cambridge, U.K., 
417 1991.
418  (5) Talagrand, O.; Courtier, P. Variational assimilation of meteorological observations with the 
419 adjoint vorticity equation. I: Theory. Q. J. R. Meteorol. Soc. 1987, 113 (478), 1311-1328.
420  (6) Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using 
421 Monte Carlo methods to forecast error statistics. J. Geophys. Res. 1994, 99 (C5), 10143-10162.
422  (7) Bocquet, M.; Elbern, H.; Eskes, H.; Hirtl, M.; Žabkar, R.; Carmichael, G. R.; Flemming, J.; 
423 Inness, A.; Pagowski, M.; Camaño, J. L. P.; Saide, P. E.; San Jose, R.; Sofiev, M.; Vira, J.; 
424 Baklanov, A.; Carnevale, C.; Grell, G.; Seigneur, C. Data assimilation in atmospheric chemistry 
425 models: current status and future prospects for coupled chemistry meteorology models. Atmos. 
426 Chem. Phys. 2015, 15 (10), 5325-5358.
427  (8) Peng, Z.; Lei, L.; Liu, Z.; Su, J.; Ding, A.; Ban, J.; Chen, D.; Kou, X.; Chu, K. The impact 
428 of multi-species surface chemical observation assimilation on air quality forecasts in China. 
429 Atmos. Chem. Phys. 2018, 18 (23), 17387-17404.
430  (9) Cheng, X.; Liu, Y.; Xu, X.; You, W.; Zang, Z.; Gao, L.; Chen, Y.; Su, D.; Yan, P. Lidar 
431 data assimilation method based on CRTM and WRF-Chem models and its application in PM2.5 
432 forecasts in Beijing. Sci. Total Environ. 2019, 682, 541-552.
433  (10) Saide, P. E.; Kim, J.; Song, C. H.; Choi, M.; Cheng, Y.; Carmichael, G. R. Assimilation of 
434 next generation geostationary aerosol optical depth retrievals to improve air quality simulations. 
435 Geophys. Res. Lett. 2014, 41 (24), 9188-9196.
436  (11) Ma, C.; Wang, T.; Zang, Z.; Li, Z. Comparisons of three-dimensional variational data 
437 assimilation and model output statistics in improving atmospheric chemistry forecasts. Adv. 
438 Atmos. Sci. 2018, 35 (7), 813-825.
439  (12) Li, Z.; Zang, Z.; Li, Q. B.; Chao, Y.; Chen, D.; Ye, Z.; Liu, Y.; Liou, K. N. A three-
440 dimensional variational data assimilation system for multiple aerosol species with WRF/Chem 
441 and an application to PM2.5 prediction. Atmos. Chem. Phys. 2013, 13 (8), 4265-4278.
442  (13) Feng, S.; Jiang, F.; Jiang, Z.; Wang, H.; Cai, Z.; Zhang, L. Impact of 3DVAR assimilation 
443 of surface PM2.5 observations on PM2.5 forecasts over China during wintertime. Atmos. Environ. 
444 2018, 187, 34-49.

Page 26 of 30

ACS Paragon Plus Environment

Environmental Science & Technology



27

445  (14) Textor, C.; Schulz, M.; Guibert, S.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; 
446 Berglen, T.; Boucher, O.; Chin, M.; Dentener, F.; Diehl, T.; Easter, R.; Feichter, H.; Fillmore, 
447 D.; Ghan, S.; Ginoux, P.; Gong, S.; Grini, A.; Hendricks, J.; Horowitz, L.; Huang, P.; Isaksen, I.; 
448 Iversen, I.; Kloster, S.; Koch, D.; Kirkevåg, A.; Kristjansson, J. E.; Krol, M.; Lauer, A.; 
449 Lamarque, J. F.; Liu, X.; Montanaro, V.; Myhre, G.; Penner, J.; Pitari, G.; Reddy, S.; Seland, Ø.; 
450 Stier, P.; Takemura, T.; Tie, X. Analysis and quantification of the diversities of aerosol life 
451 cycles within AeroCom. Atmos. Chem. Phys. 2006, 6 (7), 1777-1813.
452  (15) Croft, B.; Pierce, J. R.; Martin, R. V. Interpreting aerosol lifetimes using the GEOS-Chem 
453 model and constraints from radionuclide measurements. Atmos. Chem. Phys. 2014, 14 (8), 4313-
454 4325.
455  (16) Weaver, A. T.; Deltel, C.; Machu, E.; Ricci, S.; Daget, N. A multivariate balance operator 
456 for variational ocean data assimilation. Q. J. R. Meteorol. Soc. 2005, 131 (613), 3605-3625.
457  (17) Greybush, S. J.; Kalnay, E.; Miyoshi, T.; Ide, K.; Hunt, B. R. Balance and Ensemble 
458 Kalman Filter Localization Techniques. Mon. Weather Rev. 2011, 139 (2), 511-522.
459  (18) Carrassi, A.; Bocquet, M.; Bertino, L.; Evensen, G. Data assimilation in the geosciences: 
460 An overview of methods, issues, and perspectives. WIREs Clim. Change 2018, 9 (5), No. e535.
461  (19) Schwartz, C. S.; Liu, Z.; Lin, H.-C.; McKeen, S. A. Simultaneous three-dimensional 
462 variational assimilation of surface fine particulate matter and MODIS aerosol optical depth. J. 
463 Geophys. Res. 2012, 117 (D13), No. D13202.
464  (20) Zheng, H.; Liu, J.; Tang, X.; Wang, Z.; Wu, H.; Yan, P.; Wang, W. Improvement of the 
465 Real-time PM2.5 Forecast over the Beijing-Tianjin-Hebei Region using an Optimal Interpolation 
466 Data Assimilation Method. Aerosol Air Qual. Res. 2018, 18 (5), 1305-1316.
467  (21) Balmaseda, M.; Anderson, D. Impact of initialization strategies and observations on 
468 seasonal forecast skill. Geophys. Res. Lett. 2009, 36 (1), No. L01701.
469  (22) Mulholland, D. P.; Laloyaux, P.; Haines, K.; Balmaseda, M. A. Origin and Impact of 
470 Initialization Shocks in Coupled Atmosphere–Ocean Forecasts. Mon. Weather Rev. 2015, 143 
471 (11), 4631-4644.
472  (23) Machenhauer, B. On the Dynamics of Gravity Oscillations in a Shallow Water Model, 
473 with Applications to Normal Mode Initialization. Contrib. Atmos. Phys. 1977, 50, 253-271.
474  (24) Baer, F.; Tribbia, J. J. On Complete Filtering of Gravity Modes Through Nonlinear 
475 Initialization. Mon. Weather Rev. 1977, 105 (12), 1536-1539.
476  (25) Lynch, P.; Huang, X.-Y. Initialization of the HIRLAM Model Using a Digital Filter. Mon. 
477 Weather Rev. 1992, 120 (6), 1019-1034.
478  (26) Bloom, S. C.; Takacs, L. L.; da Silva, A. M.; Ledvina, D. Data Assimilation Using 
479 Incremental Analysis Updates. Mon. Weather Rev. 1996, 124 (6), 1256-1271.
480  (27) Williamson, D. L.; Daley, R.; Schlatter, T. W. The Balance between Mass and Wind Fields 
481 Resulting from Multivariate Optimal Interpolation. Mon. Weather Rev. 1981, 109 (11), 2357-
482 2376.
483  (28) Errico, R. M.; Rosmond, T. E.; Goerss, J. S. A Comparison of Analysis and Initialization 
484 Increments in an Operational Data-Assimilation System. Mon. Weather Rev. 1993, 121 (2), 579-
485 588.

Page 27 of 30

ACS Paragon Plus Environment

Environmental Science & Technology



28

486  (29) Keller, C. A.; Evans, M. J. Application of random forest regression to the calculation of 
487 gas-phase chemistry within the GEOS-Chem chemistry model v10. Geosci. Model Dev. 2019, 12 
488 (3), 1209-1225.
489  (30) Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. 
490 Nature 2015, 525 (7567), 47-55.
491  (31) Kristiansen, N. I.; Stohl, A.; Olivié, D. J. L.; Croft, B.; Søvde, O. A.; Klein, H.; 
492 Christoudias, T.; Kunkel, D.; Leadbetter, S. J.; Lee, Y. H.; Zhang, K.; Tsigaridis, K.; Bergman, 
493 T.; Evangeliou, N.; Wang, H.; Ma, P.-L.; Easter, R. C.; Rasch, P. J.; Liu, X.; Pitari, G.; Di 
494 Genova, G.; Zhao, S. Y.; Balkanski, Y.; Bauer, S. E.; Faluvegi, G. S.; Kokkola, H.; Martin, R. 
495 V.; Pierce, J. R.; Schulz, M.; Shindell, D.; Tost, H.; Zhang, H. Evaluation of observed and 
496 modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global 
497 models. Atmos. Chem. Phys. 2016, 16 (5), 3525-3561.
498  (32) Skachko, S.; Ménard, R.; Errera, Q.; Christophe, Y.; Chabrillat, S. EnKF and 4D-Var data 
499 assimilation with chemical transport model BASCOE (version 05.06). Geosci. Model Dev. 2016, 
500 9 (8), 2893-2908.
501  (33) Liu, X.; Yeo, K.; Hwang, Y.; Singh, J.; Kalagnanam, J. A statistical modeling approach for 
502 air quality data based on physical dispersion processes and tts application to ozone modeling. 
503 Ann. Appl. Stat. 2016, 10 (2), 756-785.
504  (34) Wang, Z.; Maeda, T.; Hayashi, M.; Hsiao, L.-F.; Liu, K.-Y. A Nested Air Quality 
505 Prediction Modeling System for Urban and Regional Scales: Application for High-Ozone 
506 Episode in Taiwan. Water Air Soil Pollut. 2001, 130 (1-4), 391-396.
507  (35) Walcek, C. J.; Aleksic, N. M. A simple but accurate mass conservative, peak-preserving, 
508 mixing ratio bounded advection algorithm with Fortran code. Atmos. Environ. 1998, 32 (22), 
509 3863-3880.
510  (36) Jacobson, M. Z. GATOR-GCMM: A global- through urban-scale air pollution and weather 
511 forecast model 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, 
512 sea ice, and snow. J. Geophys. Res. 2001, 106 (D6), 5385-5401.
513  (37) Kadowaki, M.; Katata, G.; Terada, H.; Nagai, H. Development of the Eulerian atmospheric 
514 transport model GEARN-FDM: Validation against the European tracer experiment. Atmos. 
515 Pollut. Res. 2017, 8 (2), 394-402.
516  (38) Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic 
517 experiment. Mon. Weather Rev. 1963, 91 (3), 99-164.
518  (39) Wu, H.; Tang, X.; Wang, Z.; Wu, L.; Lu, M.; Wei, L.; Zhu, J. Probabilistic Automatic 
519 Outlier Detection for Surface Air Quality Measurements from the China National Environmental 
520 Monitoring Network. Adv. Atmos. Sci. 2018, 35 (12), 1522-1532.
521  (40) Liu, J.; Mauzerall, D. L.; Horowitz, L. W.; Ginoux, P.; Fiore, A. M. Evaluating inter-
522 continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical 
523 depth. Atmos. Environ. 2009, 43 (28), 4327-4338.
524  (41) Anenberg, S. C.; West, J. J.; Yu, H.; Chin, M.; Schulz, M.; Bergmann, D.; Bey, I.; Bian, 
525 H.; Diehl, T.; Fiore, A.; Hess, P.; Marmer, E.; Montanaro, V.; Park, R.; Shindell, D.; Takemura, 

Page 28 of 30

ACS Paragon Plus Environment

Environmental Science & Technology



29

526 T.; Dentener, F. Impacts of intercontinental transport of anthropogenic fine particulate matter on 
527 human mortality. Air Qual. Atmos. Health 2014, 7 (3), 369-379.
528  (42) Chin, M.; Diehl, T.; Ginoux, P.; Malm, W. Intercontinental transport of pollution and dust 
529 aerosols: implications for regional air quality. Atmos. Chem. Phys. 2007, 7 (21), 5501-5517.
530  (43) Wang, J.; Zhang, M.; Bai, X.; Tan, H.; Li, S.; Liu, J.; Zhang, R.; Wolters, M. A.; Qin, X.; 
531 Zhang, M.; Lin, H.; Li, Y.; Li, J.; Chen, L. Large-scale transport of PM2.5 in the lower 
532 troposphere during winter cold surges in China. Sci. Rep. 2017, 7, No. 13238.
533  (44) Yu, H.; Remer, L. A.; Chin, M.; Bian, H.; Tan, Q.; Yuan, T.; Zhang, Y. Aerosols from 
534 overseas rival domestic emissions over North America. Science 2012, 337 (6094), 566-569.

535

Page 29 of 30

ACS Paragon Plus Environment

Environmental Science & Technology



30

536 TOC Art

537

538 (For Table of Contents Only)

539

Page 30 of 30

ACS Paragon Plus Environment

Environmental Science & Technology


