
Statistica Sinica (2013): Supplement

NETWORK-REGULARIZED HIGH-DIMENSIONAL COX

REGRESSION FOR ANALYSIS OF GENOMIC DATA

Hokeun Sun1, Wei Lin2, Rui Feng2 and Hongzhe Li2

1Columbia University and 2University of Pennsylvania

Supplementary Material

S1. Additional Simulation Results

Standard errors for Tables 1 and 2 are given in Tables S1 and S2, respectively.

We conducted an additional simulation study to check if the proposed methods

are sensitive to the way in which the weights wij are generated. With the same

settings as in Models 5 and 6, we generated the weights wij by sample correlation

coefficients between two gene expressions. For illustrative purposes, we compare

the performance of the adaptive Laplacian net method with unweighted and

weighted networks based on 30 simulation replicates. The simulation results are

summarized in Table S3, suggesting that the variable selection and estimation

performance of the adaptive Laplacian net method is insensitive to the choice of

the network between the unweighted and weighted versions.

S2. Proofs of Lemmas

Proof of Lemma 1. Let Q(β) be the objective function in (2.6). We first

consider the |Â|-dimensional subspace Bs = {β ∈ Rp : β
Âc = 0}. The condition

that I∗
ÂÂ

(β̂, λ2) is positive definite implies that Q(β) is strictly convex in a

neighborhood of β̂ in Bs. Then the zero-gradient condition (A.1) implies that β̂

is a strict minimizer of Q(β) in the subspace Bs.
It remains to show that, for any β1 ∈ Rp \ Bs, we have Q(β1) < Q(β̂). Let

β2 be the projection of β1 onto to the subspace Bs; then Q(β2) ≤ Q(β̂). It

suffices to show that Q(β1) < Q(β2). An application of the mean value theorem

gives

Q(β1)−Q(β2) =
∑

j∈Âc : β1j 6=0

∂Q(β̄)

∂βj
β1j
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Table S1. Standard errors for Table 1.

Method Sensitivity Specificity MCC # of genes # of FPs MSE
Model 1

Lnet 0.010 0.001 0.009 0.83 0.54 0.001
AdaLnet 0.011 0.001 0.010 0.83 0.56 0.001
Lasso 0.013 0.002 0.004 2.92 2.40 0.001
Enet 0.012 0.001 0.010 1.05 0.74 0.001
GLγ 0.009 0.001 0.009 0.69 0.47 0.001

Model 2
Lnet 0.011 0.001 0.009 0.86 0.61 0.001
AdaLnet 0.015 0.001 0.011 0.95 0.63 0.001
Lasso 0.011 0.002 0.006 2.34 1.98 0.001
Enet 0.015 0.001 0.010 1.52 1.07 0.001
GLγ 0.015 0.001 0.014 1.04 0.74 0.001

Model 3
Lnet 0.014 0.002 0.006 2.21 1.67 0.001
AdaLnet 0.010 0.001 0.008 0.90 0.65 0.001
Lasso 0.005 0.001 0.005 0.86 0.78 0.001
Enet 0.014 0.001 0.011 1.82 1.48 0.001
GLγ 0.010 0.001 0.008 0.52 0.20 0.001

Model 4
Lnet 0.010 0.001 0.009 1.05 0.84 0.001
AdaLnet 0.015 0.001 0.011 0.96 0.57 0.001
Lasso 0.009 0.001 0.007 1.15 0.92 0.001
Enet 0.016 0.001 0.009 1.99 1.46 0.001
GLγ 0.009 0.001 0.007 1.15 0.92 0.001

=
∑

j∈Âc : β1j 6=0

{Uj(β̄)− λ1 sgn(β̄j)− λ2L̃j,· β̄}β1j , (S.1)

where β̄ = (β̄1, . . . , β̄p)
T lies between β1 and β2, β1j is the jth component of β1,

and L̃j,· is the jth row of L̃. Condition (A.2) and the fact that sgn(β̄) = sgn(β1)

entail that each term in (S.1) is negative. Hence, Q(β1) < Q(β2) and the proof

is complete.

The proofs of Lemmas 2 and 3 involve modern empirical process theory.

For the reader’s convenience, we collect some empirical process notation here.

The unfamiliar reader is referred to Chapter 19 of van der Vaart (1998) for a

short introduction and van der Vaart and Wellner (1996) or Kosorok (2008) for

a detailed treatment. For a measurable function f , denote by Pnf and Pf the

expectations of f under the empirical measure Pn and the probability measure

P , respectively. Let ‖ · ‖P,r denote the usual Lr(P )-norm. The “size” of a
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Table S2. Standard errors for Table 2.

Method Sensitivity Specificity MCC # of genes # of FPs MSE
Model 5

Lnet 0.014 0.001 0.007 0.78 1.51 0.001
AdaLnet 0.011 0.001 0.008 0.86 0.60 0.001
Lasso 0.006 0.001 0.005 1.10 0.96 0.001
Enet 0.015 0.002 0.009 2.14 1.65 0.001
GLγ 0.011 0.001 0.009 0.50 0.20 0.001

Model 6
Lnet 0.009 0.001 0.009 0.84 0.71 0.001
AdaLnet 0.014 0.001 0.011 0.97 0.52 0.001
Lasso 0.009 0.001 0.007 1.17 0.98 0.001
Enet 0.017 0.001 0.010 1.91 1.39 0.001
GLγ 0.014 0.001 0.011 0.70 0.31 0.001

Model 7
Lnet 0.013 0.002 0.008 2.43 2.04 0.001
AdaLnet 0.011 0.001 0.008 0.73 0.49 0.001
Lasso 0.007 0.001 0.006 1.31 1.19 0.001
Enet 0.014 0.001 0.009 1.82 1.47 0.001
GLγ 0.012 0.001 0.008 1.00 0.76 0.001

Model 8
Lnet 0.011 0.001 0.010 1.07 0.88 0.001
AdaLnet 0.014 0.001 0.009 0.90 0.55 0.001
Lasso 0.009 0.001 0.007 1.30 1.14 0.001
Enet 0.015 0.001 0.009 1.57 1.19 0.001
GLγ 0.015 0.000 0.010 0.74 0.38 0.001

Table S3. Simulation results for Models 5 and 6 with unweighted and weighted networks.
Sensitivity, specificity, MCC, number of selected genes, number of false positives (FPs),
and mean squared error (MSE) were averaged over 30 replicates, with standard errors
given in parentheses. AdaLnet: adaptive Laplacian net with an unweighted network;
wAdaLnet: adaptive Laplacian net with a weighted network.

Method Sensitivity Specificity MCC # of genes # of FPs MSE
Model 5

AdaLnet 0.569 0.996 0.688 29.37 4.33 0.078
(0.016) (0.001) (0.012) (0.94) (0.61) (0.001)

wAdaLnet 0.561 0.996 0.683 28.93 4.27 0.078
(0.016) (0.001) (0.013) (0.89) (0.59) (0.001)

Model 6
AdaLnet 0.604 0.995 0.701 32.23 6.60 0.078

(0.011) (0.001) (0.011) (0.96) (0.40) (0.001)
wAdaLnet 0.607 0.995 0.704 32.33 6.60 0.078

(0.011) (0.001) (0.011) (0.95) (0.40) (0.001)
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class F of functions is measured by the bracketing number N[ ](ε,F , Lr(P )), the

minimum number of ε-brackets in Lr(P ) needed to cover F , and the covering

number N(ε,F , L2(Q)), the minimum number of L2(Q)-balls of radius ε needed

to cover F . The logarithms of the bracketing number and covering number are

called entropy with bracketing and entropy, respectively. The bracketing integral

and uniform entropy integral are defined as

J[ ](δ,F , L2(P )) =

∫ δ

0

√
logN[ ](ε,F , L2(P )) dε

and

J(δ,F , L2) =

∫ δ

0

√
log sup

Q
N(ε‖F‖Q,2,F , L2(Q)) dε,

respectively, where F is an envelope function of F , i.e., |f | ≤ F for all f ∈ F ,

and the supremum is taken over all probability measures Q with ‖F‖Q,r > 0. To

save notation, we will use “.” to denote “less than or equal to up to a constant.”

The following lemma will be useful in the proofs of Lemmas 2 and 3.

Lemma 4 (Concentration of S(k)(·, ·), k = 0, 1, 2). Under Conditions (C1) and

(C2), there exist constants C,K > 0 such that

P

(
sup

β∈B0, t∈[0,τ ]
|S(0)(β, t)− s(0)(β, t)| ≥ C

√
s/n(1 + x)

)
≤ exp(−Ksx2), (S.2)

P

(
sup

β∈B0, t∈[0,τ ]
|S(1)
j (β, t)− s(1)j (β, t)| ≥ C

√
s/n(1 + x)

)
≤ exp(−Ksx2), (S.3)

and

P

(
sup

β∈B0, t∈[0,τ ]
|S(2)
ij (β, t)− s(2)ij (β, t)| ≥ C

√
s/n(1 + x)

)
≤ exp(−Ksx2), (S.4)

for all x > 0 and i, j = 1, . . . , p, where S
(1)
j (·, ·) is the jth component of S(1)(·, ·)

and S
(2)
ij (·, ·) is the (i, j)th entry of S(2)(·, ·).

Proof. We show (S.3) only; the other two inequalities follow similarly. De-

note Wj = supβ∈B0, t∈[0,τ ] |S
(1)
j (β, t) − s(1)j (β, t)|. We first control the expecta-

tion EWj by bounding the bracketing number of the class of functions Sj ≡
{Y (t)Xj exp(βTX) : β ∈ B0, t ∈ [0, τ ]}. By Condition (C2), for any β ∈ B0,
|βTX| ≤M‖βA‖∞ ≤M(‖β0‖∞ + d) <∞. Then we have, for any β1,β2 ∈ B0,

|exp(βT1 X)− exp(βT2 X)| ≤ C|βT1 X− βT2 X| ≤ CM‖β1 − β2‖∞.
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Hence, we need as many ε-brackets to cover the class of functions C ≡ {exp(βTX) :

β ∈ B0} as we need hypercubes of edge length ε/(CM) to cover B0, implying

that the bracketing entropy of C is at most of order s log(1/ε). Also, one can

easily show that the bracketing entropy of the class of functions {Y (t) : t ∈ [0, τ ]}
is at most of order log(1/ε) (van der Vaart (1998), Example 19.6). Thus, the

bracketing entropy of Sj satisfies

logN[ ](ε,Sj , L2(P )) . s log(1/ε) + log(1/ε) . s log(1/ε).

An application of the maximal inequality in Corollary 19.35 of van der Vaart

(1998) yields

EWj . n−1/2J[ ](‖F‖P,2,Sj , L2(P )) . n−1/2
∫ ‖F‖P,2

0

√
s log(1/ε) dε .

√
s/n,

where F is a bounded envelope function. We then apply the functional Hoeffding

inequality (Massart (2007)) to conclude that

P
(
Wj ≥ C

√
s/n(1 + x)

)
≤ P (Wj ≥ EWj + C

√
s/nx) ≤ exp(−Ksx2),

which completes the proof.

Proof of Lemma 2. We first write

Uj(β0) = Pn
∫ τ

0
{Xj − X̄j(β0, t)} dN(t) = Pn

∫ τ

0
{Xj − X̄j(β0, t)} dM(t)

= Pn
∫ τ

0
Xj dM(t)− Pn

∫ τ

0
X̄j(β0, t) dM(t) ≡ T1 − T2,

where M(t) = N(t) −
∫ t
0 Y (s)λ0(s) exp(βT0 X) ds is the counting process mar-

tingale and X̄j(·, ·) is the jth component of X(·, ·). Note that term T1 is an

independent sum of mean-zero, bounded random variables, and an application of

Hoeffding’s inequality (Hoeffding (1963)) gives P (|T1| ≥ n−1/2x) ≤ 2 exp(−Kx2).
Next consider term T2. From Lemma 4, we have

P ( sup
t∈[0,τ ]

|S(0)(β0, t)− s(0)(β0, t)| ≥ δ) ≤ exp(−Kn)

and

P ( sup
t∈[0,τ ]

|S(1)
j (β0, t)− s

(1)
j (β0, t)| ≥ δ) ≤ exp(−Kn),

for some constant δ > 0 and j = 1, . . . , p. From now on, we condition on the event

that supt∈[0,τ ] |S(0)(β0, t)−s(0)(β0, t)| ≤ δ and supt∈[0,τ ] |S
(1)
j (β0, t)−s

(1)
j (β0, t)| ≤
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δ for j = 1, . . . , p, and bound T2. Write

X̄j(β0, t)− ej(β0, t) =
1

S(0)(β0, t)
{S(1)

j (β0, t)− s
(1)
j (β0, t)}

−
s
(1)
j (β0, t)

S(0)(β0, t)s
(0)(β0, t)

{S(0)(β0, t)− s(0)(β0, t)},

where ej(·, ·) is the jth component of e(·, ·). Since S(0)(β0, ·) and s(0)(β0, ·)
are bounded away from zero on [0, τ ], the above representation implies that

supt∈[0,τ ] |X̄j(β0, t) − ej(β0, t)| ≤ δ′ for some constant δ′ > 0. Note also that

X̄j(β0, ·) is of uniformly bounded variation.

Let Fj be the class of functions f : [0, τ ]→ R of uniformly bounded variation

and such that supt∈[0,τ ] |f(t)− ej(t)| ≤ δ′. By constructing hypercubes centered

at piecewise constant functions on a grid, one can show that the entropy of Fj
satisfies

logN(ε,Fj , ‖ · ‖∞) . (1/ε) log(1/ε). (S.5)

Furthermore, let Mj be the class of functions {
∫ τ
0 f(t) dM(t) : f ∈ Fj} and

denote Vj = supg∈Mj
|(Pn−P )g| = supg∈Mj

|Png|. Note that, for any f1, f2 ∈ Fj ,∣∣∣∣∫ τ

0
f1(t) dM(t)−

∫ τ

0
f2(t) dM(t)

∣∣∣∣ ≤ sup
u∈[0,τ ]

|f1(u)− f2(u)|
∫ τ

0
|dM(t)|.

This, in view of Theorem 2.7.11 of van der Vaart and Wellner (1996), implies

that

N[ ](2ε‖F‖P,2,Mj , L2(P )) ≤ N(ε,Fj , ‖ · ‖∞), (S.6)

where F =
∫ τ
0 |dM(t)| is bounded. An application of the maximal inequality in

Corollary 19.35 of van der Vaart (1998), along with (S.5) and (S.6), yields

EVj . n−1/2J[ ](‖G‖P,2,Mj , L2(P ))

. n−1/2
∫ ‖G‖P,2

0

√
(1/ε) log(1/ε) dε . n−1/2,

where G is a bounded envelope function.

We now apply the functional Hoeffding inequality to obtain

P
(
|T2| ≥ Cn−1/2(1 + x)

)
≤ P (|T2| ≥ EVj + Cn−1/2x) ≤ exp(−Kx2).

Combining the bounds for T1 and T2 gives the desired inequality.
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Proof of Lemma 3. We first write

Iij(β)− σij(β) =

∫ τ

0
{S(2)

ij (β, t)− s(2)ij (β, t)} dt

+

∫ τ

0

{
S
(1)
i (β, t)S

(1)
j (β, t)

S(0)(β, t)
−
s
(1)
i (β, t)s

(1)
j (β, t)

s(0)(β, t)

}
dt

≡ T1(β) + T2(β).

It follows from (S.4) in Lemma 4 that

P

(
sup
β∈B0

|T1(β)| ≥ C
√
s/n(1 + x)

)
≤ exp(−Ksx2).

To bound term T2(β), write

S
(1)
i (β, t)S

(1)
j (β, t)

S(0)(β, t)
−
s
(1)
i (β, t)s

(1)
j (β, t)

s(0)(β, t)

=
S
(1)
j (β, t)

S(0)(β, t)
{S(1)

i (β, t)− s(1)i (β, t)}+
s
(β,t)
i

S(0)(β, t)
{S(1)

j (β, t)− s(1)j (β, t)}

−
s
(1)
i (β, t)s

(1)
j (β, t)

S(0)(β, t)s(0)(β, t)
{S(0)(β, t)− s(0)(β, t)}.

As in the proof of Lemma 2, it is sufficient to condition on the event that

supβ∈B0, t∈[0,τ ] |S
(0)(β, t)−s(0)(β, t)| ≤ δ and supβ∈B0, t∈[0,τ ] |S

(1)
j (β, t)−s(1)j (β, t)|

≤ δ for some constant δ > 0 and j = 1, . . . , p. Then (S.2) and (S.3) in Lemma 4

imply that

P

(
sup
β∈B0

|T2(β)| ≥ C
√
s/n(1 + x)

)
≤ D exp(−Ksx2).

Putting the bounds for T1(β) and T2(β) together completes the proof.
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