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Abstract: We consider estimation and variable selection in high-dimensional Cox

regression when a prior knowledge of the relationships among the covariates, de-

scribed by a network or graph, is available. A limitation of the existing methodology

for survival analysis with high-dimensional genomic data is that a wealth of struc-

tural information about many biological processes, such as regulatory networks

and pathways, has often been ignored. In order to incorporate such prior network

information into the analysis of genomic data, we propose a network-based regu-

larization method for high-dimensional Cox regression, by using an `1-penalty to

induce sparsity of the regression coefficients and a quadratic Laplacian penalty to

encourage smoothness between the coefficients of neighboring variables on a given

network. The proposed method is implemented by an efficient coordinate descent

algorithm. In the setting where the dimensionality p may grow exponentially fast

with the sample size n, we establish model selection consistency and estimation

bounds for the proposed estimators. The theoretical results provide insights into

the gain from taking into account the network structural information. Extensive

simulation studies indicate that our method outperforms Lasso and elastic net in

terms of variable selection accuracy and stability. We apply our method to a breast

cancer gene expression study and identify several biologically plausible subnetworks

and pathways that are associated with breast cancer distant metastasis.

Key words and phrases: Laplacian penalty, network analysis, regularization, spar-

sity, survival data, variable selection, weak oracle property.

1. Introduction

With advances in high-throughput technology, gene expression profiling is

extensively used to discover new markers, pathways, and new therapeutic targets.

This technique measures the expression levels of tens of thousands of genes. In

cancer genomics, gene expression levels provide important molecular signatures

for cancers, which in turn can be very predictive for cancer recurrence or survival.
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To link high-dimensional genomic data to censored survival outcomes, Cox’s

proportional hazards model (Cox (1972)) is most commonly used, which specifies

that the hazard function of a failure time T conditional on a p-dimensional vector

of genomic measurements X takes the form

λ(t |X) = λ0(t) exp(βT0 X), (1.1)

where λ0(·) is an unspecified baseline hazard function and β0 is a p-vector of re-

gression coefficients. A key feature of genomic data is that the dimensionality p

may be much larger than the sample size n, so that traditional methodology can-

not be directly applied. To make inferences for the high-dimensional Cox model

(1.1), a variety of regularization approaches have been proposed. Of particular

interest is the Lasso method (Tibshirani (1996, 1997); Gui and Li (2005)), which

can perform estimation and variable selection simultaneously by shrinking some

estimates to exactly zero. Alternative methods that exploit sparsity include the

SCAD (Fan and Li (2001, 2002)), adaptive Lasso (Zou (2006); Zhang and Lu

(2007)), and Dantzig selector (Candes and Tao (2007); Antoniadis, Fryzlewicz

and Letué (2010)), among others. All these methods can lead to parsimonious

models, which are crucial for achieving good prediction performance and easy

interpretation with high dimensionality.

Although the Lasso-type regularization methods have been demonstrated to

be very useful in high-dimensional failure time regression, two major drawbacks

remain. First, in the linear regression context, the Lasso has been shown to be

model selection consistent only under the irrepresentable condition (Zhao and Yu

(2006)), which is quite stringent and may not be satisfied in high dimensions be-

cause of multicollinearity. Recent developments have also confirmed that similar

restrictions exist for survival models (Bradic, Fan and Jiang (2011); Lin and Lv

(2013)). Second, these procedures lack a built-in mechanism to incorporate prior

structural information about the covariates, which is often available in scientific

applications. For instance, in genomic studies, a wealth of knowledge about genes

that are functionally similar or belong to the same pathways has accumulated

over the years and can be obtained through several publicly available databases.

It is expected that taking into account such biological knowledge should help to

identify important genes that are functionally related and produce more reliable

and biologically more interpretable results.
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Several efforts have been made to overcome these drawbacks. The elastic

net (Zou and Hastie (2005)) has been applied to high-dimensional Cox regres-

sion (Engler and Li (2009); Wu (2012)) to achieve some grouping effects. This

method, still, does not utilize any prior information on the graphical structure

among the covariates. Wang et al. (2009) proposed hierarchically penalized Cox

regression when the variables can be naturally grouped. However, their method

is not intended for incorporating any graphical or network structure and, more

importantly, their penalty function is nonconvex, which may be a potential issue

for efficient computation.

The complexity of genomic data and the aforementioned considerations have

motivated us to propose in this paper a network-based regularization method for

high-dimensional Cox regression. We aim to incorporate prior gene regulatory

network information, as represented by an undirected graph, into the analysis

of genomic data and censored survival outcomes. Specifically, our method uses

an `1-penalty to enforce sparsity of the regression coefficients and a quadratic

Laplacian penalty to encourage smoothness between the coefficients of neighbor-

ing variables on a given network. The resulting optimization problem is convex

and allows for an efficient implementation by coordinate descent optimization.

Our method extends the work of Li and Li (2010), where only linear regression

models were considered. The extension, however, is nontrivial in that new tech-

niques are required for theoretical development under the Cox model. Owing

to the semiparametric nature of survival models, high-dimensional analysis of

regularization methods for survival data is much more challenging than for (gen-

eralized) linear models, and results of this kind are very rare. In fact, even in the

special case of `1-penalized Cox regression, our theoretical results are novel and

substantially different from the few available in the literature (e.g., Bradic, Fan

and Jiang (2011); Huang et al. (2013); Kong and Nan (2012)). Moreover, our

theoretical results provide new insights into the gain from taking into account

the covariate graphical structure information. We demonstrate through extensive

simulation studies and a real data example that our method outperforms Lasso

and elastic net, which do not utilize any prior network information, in terms of

variable selection and biological interpretability.
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The rest of this paper is organized as follows. In Section 2, we introduce

a network-based regularization method for high-dimensional Cox regression and

describe a coordinate descent algorithm for implementation. We provide in Sec-

tion 3 theoretical results in the setting where the dimensionality p may grow

exponentially fast with the sample size n, and discuss their consequences and

implications. Simulation studies and real data analysis are presented in Sections

4 and 5, respectively. We conclude with a brief discussion in Section 6. Proofs and

additional simulation results are relegated to the Appendix and Supplementary

Material.

2. Methodology

2.1. Network-regularized Cox regression

We begin by introducing some notation. Let T be the failure time and C the

censoring time. Denote by T̃ = T∧C the censored failure time and ∆ = I(T ≤ C)

the failure indicator, where I(·) is the indicator function. Let X = (X1, . . . , Xp)

be a vector of covariates and assume that T and C are conditionally independent

given X. The observed data consist of the triples (T̃i,∆i,Xi), i = 1, . . . , n, which

are independent copies of (T̃ ,∆,X). Moreover, we assume that the relationships

among the covariates are specified by a network (weighted graph) G = (V,E,W ),

where V = {1, . . . , p} is the set of vertices corresponding to the p covariates, an

element (i, j) in the edge set E ⊂ V × V indicates a link between vertices i and

j, and W = (wij), (i, j) ∈ E is the set of weights associated with the edges. For

simplicity, we assume that G contains no loops or multiple edges. In practice,

the weight of an edge can be used to measure the strength or uncertainty of the

link between two vertices. For instance, in a gene regulatory network constructed

from data, the weight may indicate the probability that two genes are functionally

related. Further, denote by di =
∑

j: (i, j)∈E wij the degree of vertex i and define

the normalized Laplacian matrix L = (lij) of the graph G by

lij =


1, if i = j and di 6= 0,

−wij/
√
didj , if (i, j) ∈ E,

0, otherwise.
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In the low-dimensional setting, estimation of β0 in model (1.1) is based on

maximizing the partial likelihood

L(β) =

n∏
i=1

{
exp(βTXi)∑
j∈Ri

exp(βTXj)

}∆i

,

where Ri is the index set for the subjects that are at risk just before time T̃i.

In the high-dimensional setting where the dimensionality p is comparable to or

much larger than the sample size n, however, some form of regularization is

required. We assume that β0 is sparse in the sense that only a small portion of

the components of β0 are nonzero. We are interested in identifying the nonzero

components of β0 as well as accurate estimation and prediction.

In the context of linear regression, to obtain a sparse estimate that approx-

imately retains the structure of a given network, Li and Li (2010) introduced a

network-constrained penalty,

p(β;λ1, λ2) = λ1‖β‖1 +
λ2

2
βTLβ

= λ1

p∑
j=1

|βj |+
λ2

2

∑
(i, j)∈E

wij

(
βi√
di
− βj√

dj

)2

,
(2.1)

where β = (β1, . . . , βp)
T and λ1, λ2 ≥ 0 are two regularization parameters. The

penalty (2.1) consists of two parts. The first term is an `1 part that penalizes

the regression coefficients individually and is the key to achieving sparsity and

performing variable selection. The second term is a quadratic Laplacian penalty

that penalizes on the differences of scaled coefficients between neighboring vari-

ables on a given network, thus promoting local smoothness over the network and

encouraging simultaneous selection of related variables. The scaling of coeffi-

cients by the (square root of) degrees is preferable for two reasons. First, the

penalty on each linked pair suggests that the scaling should allow variables with

a larger degree to achieve a more dramatic effect. This is often desirable in prac-

tice; for example, in genomic studies, genes that are highly connected to others,

such as the hub genes, are believed to play a fundamental role in biological pro-

cesses (Lehner et al. (2006)). Second, in addition to the bias caused by the `1

part, the quadratic penalty induces extra estimation bias and, without scaling or

normalization, a highly connected variable would have been overpenalized and
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hence subject to unendurable bias. In fact, the normalized Laplacian matrix

has eigenvalues between 0 and 2 (Chung (1997)), leading to a numerically more

stable procedure.

Using the penalty specified by (2.1), we propose to estimate β0 in the high-

dimensional model (1.1) by the penalized partial likelihood estimator

β̂ = arg min
β∈Rp

{
− 1

n
`(β) + p(β;λ1, λ2)

}
, (2.2)

where `(β) is the log partial likelihood

`(β) =
n∑
i=1

∆i

[
βTXi − log

{∑
j∈Ri

exp(βTXj)

}]
. (2.3)

2.2. Accounting for different signs of coefficients

As pointed out by Li and Li (2010), the penalty (2.1) may not perform well

when two neighboring variables have opposite signs of regression coefficients,

which is reasonable in, e.g., network-based analysis of gene expression data. To

address this issue, they proposed a modified version of (2.1),

p∗(β; β̃, λ1, λ2) = λ1‖β‖1 +
λ2

2
βT L̃β

= λ1

p∑
j=1

|βj |+
λ2

2

∑
(i, j)∈E

wij

(
sgn(β̃i)βi√

di
− sgn(β̃j)βj√

dj

)2

,
(2.4)

where L̃ = (l̃ij) = STLS with S = diag(sgn(β̃1), . . . , sgn(β̃p)) and β̃ = (β̃1, . . . , β̃p)

is obtained from a preliminary regression analysis.

Here we motive the penalty (2.4) from another point of view. To account for

regression coefficients with opposite signs, it is natural to consider the penalty

p∗∗(β;λ1, λ2) = λ1‖β‖1 +
λ2

2
|β|TL|β|

= λ1

p∑
j=1

|βj |+
λ2

2

∑
(i, j)∈E

wij

(
|βi|√
di
− |βj |√

dj

)2

,
(2.5)

where |β| = (|β1|, . . . , |βp|)T . Similar to the penalty (2.1), it explicitly uses

the Laplacian matrix as a differential operator, distinguishing them from other

network-based penalties such as that considered in Pan, Xie and Shen (2010). To
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emphasize this unique feature, we refer to penalties (2.1) and (2.5) as the Lapla-

cian net and absolute Laplacian net, respectively. Note however that the latter

penalty is in general nonconvex, posing challenges for efficient implementation

and theoretical analysis. In a similar spirit to the idea of Zou and Li (2008), we

propose to use the approximation

|βj | ≈ |β̃j |+ sgn(β̃j)(βj − β̃j) = sgn(β̃j)βj for βj ≈ β̃j ,

in the second term of (2.5), which gives rise to (2.4). Therefore, the penalty (2.4)

can be viewed as an adaptive, convex approximation to (2.5) and should inherit

the performance of the latter provided that a reasonably good initial estimate β̃

can be obtained. We call the penalty (2.4) the adaptive Laplacian net.

We now propose to estimate β0 by the adaptively penalized partial likelihood

estimator

β̂ = arg min
β∈Rp

{
− 1

n
`(β) + p∗(β; β̃, λ1, λ2)

}
, (2.6)

where `(β) and p∗(β; β̃, λ1, λ2) are defined in (2.3) and (2.4), respectively. Since

an ordinary least squares estimator does not perform well or can even fail when p

grows fast with n, whereas the Lasso and elastic net produce sparse estimates that

may prevent many edges on a given network from being active, we recommend

that the initial estimate β̃ be computed from a ridge regression for model (1.1),

β̃ = arg min
β∈Rp

{
− 1

n
`(β) + λ

n∑
j=1

β2
j

}
,

where λ ≥ 0 is a regularization parameter. The ridge method does not shrink

any coefficient to exactly zero and thus help to preserve and utilize all the infor-

mation contained in the network. We will demonstrate in our simulation studies

and real data analysis that this modified approach can effectively adapt to the

different signs of the coefficients and yield very encouraging results. Note that the

optimization problem (2.2) is a special case of (2.6) with sgn(β̃i) = sgn(β̃j) 6= 0

for all (i, j) ∈ E; hence, to avoid redundancy, we will present implementation

details and theoretical properties only for the latter.

2.3. Implementation

Since the objective function in (2.6) is convex, the optimization problem can

be solved by many commonly used algorithms for convex optimization. We now
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describe an implementation by coordinate descent, a method that is especially

appealing for large-scale sparse problems (Friedman et al. (2007); Wu and Lange

(2008)). We adapt the coordinate descent algorithm to network-regularized high-

dimensional Cox regression, which turns out to be very efficient.

Denote γ = (γ1, . . . , γn)T = (βTX1, . . . ,β
TXn)T . Following Simon et al.

(2011), we first approximate `(β) by

˜̀(β;γ) =
1

2

n∑
i=1

ui(γ)
(
yi(γ)− βTXi

)2
,

where ui(γ) = ∂2`(β)/∂γ2
i and yi(γ) = γi − (∂`(β)/∂γi)/ui(γ). A simple calcu-

lation as in Li and Li (2010) yields that the univariate optimization problem

β̂j = arg min
βj∈R

{
− 1

n
˜̀(β;γ) + p∗(β; β̃, λ1, λ2)

}
has the exact solution

β̂j =
sgn(zj)(|zj | − λ1)+

n−1
∑n

i=1 ui(γ)X2
ij + λ2 l̃jj

, (2.7)

where

zj =
1

n

n∑
i=1

ui(γ)Xij

(
yi(γ)−

∑
k 6=j

βkXik

)
− λ2

∑
k 6=j

l̃jkβk

and Xij is the jth component of Xi. We then obtain the following algorithm

for computing the solution to the optimization problem (2.6) for a given pair of

regularization parameters (λ1, λ2):

Step 1. Initialize β̂ = 0 and γ̂ = (β̂
T
X1, . . . , β̂

T
Xn)T .

Step 2. Compute ui(γ̂) and yi(γ̂) for i = 1, . . . , n.

Step 3. Update β̂j by (2.7) cyclically for j = 1, . . . , p until convergence.

Step 4. Update γ̂ = (β̂
T
X1, . . . , β̂

T
Xn)T and repeat Steps 2 and 3 until conver-

gence.

To select the tuning parameters λ1 and λ2 in the above algorithm, it is

convenient to reparameterize them as λ1 = λa and λ2 = λ(1 − a), where λ ≥ 0

and 0 ≤ a ≤ 1. We first set a to a sufficiently fine grid of values on [0, 1]. For each

fixed a, set λmax = (na)−1 maxj
∑n

i=1 ui(0)Xijyi(0), which ensures that β̂ = 0,

and let λmin = ελmax for some small ε ∈ (0, 1). We then compute the solution
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path for a decreasing sequence of λ from λmax to λmin, at each step using the

solution from the previous position as a warm start. Finally, we use K-fold cross-

validation to choose the optimal pair (λ, a) that minimizes the cross-validation

error

CV(λ, a) = − 1

n

K∑
k=1

{
`
(
β̂

(−k)
(λ, a)

)
− `(−k)

(
β̂

(−k)
(λ, a)

)}
,

where β̂
(−k)

(λ, a) is the estimate obtained from excluding the kth part of the

data with a given pair of values of (λ, a), and `(−k)(·) is the log partial likelihood

without the kth part of the data.

3. Theoretical Properties

To state the theoretical properties of the proposed estimators, we adopt

the usual counting process notation. For subject i, denote by Ni(t) = I(T̃i ≤
t,∆i = 1) the counting process for the observed failure and Yi(t) = I(T̃i ≥
t) the at-risk indicator, and denote by N(t) and Y (t) the generic processes.

For notational convenience, we write v⊗0 = 1, v⊗1 = v, and v⊗2 = vvT , for

any vector v. Define S
(k)

(β, t) = n−1
∑n

j=1 Yj(t)X
⊗k
j exp(βTXj), s(k)(β, t) =

E{Y (t)X⊗k exp(βTX)}, k = 0, 1, 2, X(β, t) = S(1)(β, t)/S(0)(β, t), and e(β, t) =

s(1)(β, t)/s(0)(β, t). Using the counting process notation, the partial likelihood

score function can be written as

U(β) =
1

n

n∑
i=1

∫ τ

0
{Xi −X(β, t)} dNi(t),

where τ is the maximum follow-up time. The performance of the penalized partial

likelihood estimators depends critically on the covariance structure reflected by

the empirical information matrix

I(β) =
1

n

n∑
i=1

∫ τ

0

{
S(2)(β, t)

S(0)(β, t)
− S(1)(β, t)⊗2

}
dNi(t)

and its population counterpart

Σ(β) =

∫ τ

0

{
s(2)(β, t)

s(0)(β, t)
− s(1)(β, t)⊗2

}
s(0)(β, t)λ0(t) dt.

Also, denote the augmented empirical and population information matrices by

I∗(β, λ2) = I(β) +λ2L̃ and Σ∗(β, λ2) = Σ(β) +λ2L̃, respectively. Note that L̃,
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and hence Σ∗(β, λ2), depends on the initial estimator β̃ through the signs of the

coefficients in β̃.

Further, define the active set A = {j : β0j 6= 0} and estimated active set

Â = {j : β̂j 6= 0}, where β0j and β̂j are the jth components of β0 and β̂, re-

spectively. Let s = |A| be the number of nonzero coefficients in β0, and denote

the complement of a set B by Bc. We use sets to index vectors and matrices;

for example, β0A is the subvector formed by β0j with j ∈ A, and Σ∗AcA(β, λ2) is

the submatrix formed by the (i, j)th entries of Σ∗(β, λ2) with i ∈ Ac and j ∈ A.

Finally, let d be a signal threshold such that minj∈A |β0j | ≥ d and let B0 be the

hypercube {β ∈ Rp : ‖βA−β0A‖∞ ≤ d,βAc = 0}, where ‖ · ‖∞ is the supremum

norm. Note that all quantities we have defined so far can depend on the sample

size n, and in particular, we allow the dimensions s and p to grow with n.

We need to impose the following conditions:

(C1)
∫ τ

0 λ0(t) dt <∞ and P{Y (τ) = 1} > 0.

(C2) The covariates Xj , j = 1, . . . , p, are bounded and there exists a constant

M > 0 such that
∑

j∈A |Xj | ≤M .

(C3) There exists a constant Cmin > 0 such that

inf
β∈B0

Λmin

(
Σ∗AA(β, λ2)

)
≥ Cmin,

where Λmin(·) denotes the minimum eigenvalue.

(C4) There exists a constant α ∈ (0, 1] such that

sup
β∈B0

‖Σ∗AcA(β, λ2)Σ∗AA(β, λ2)−1‖∞ ≤ 1− α,

where ‖ · ‖∞ is the matrix ∞-norm.

Condition (C1) is standard in the asymptotic theory for the Cox model

(Andersen and Gill (1982)). The boundedness assumptions in Condition (C2)

are convenient for technical derivations, but are not essential and can be weakened

to tail bound conditions as in Lin and Lv (2013). Conditions (C3) and (C4) are

two main assumptions for obtaining strong performance guarantees. The former

reflects the intuition that the relevant covariates cannot be overly dependent,

which is required for estimating the nonzero effects with diverging dimensionality;

the latter formalizes the intuition that the set of relevant covariates and the



NETWORK-REGULARIZED COX REGRESSION 11

set of irrelevant covariates cannot be overly correlated, which is intrinsic for

distinguishing between these two sets of variables and achieving model selection

consistency. In the special case of `1 regularization, these conditions parallel

those in Wainwright (2009) that concern linear regression models, and are also

related to those in Bradic, Fan and Jiang (2011) for the Cox model.

Two new messages are conveyed by these conditions. First, since Conditions

(C3) and (C4) are imposed on submatrices of the augmented matrix Σ∗(β, λ2),

a proper choice of λ2 and L̃ can substantially relax the conditions. Specifically,

Weyl’s inequality (Horn and Johnson (1985)) and the fact that L̃ is positive

semidefinite entail that Λmin

(
Σ∗AA(β, λ2)

)
≥ Λmin

(
ΣAA(β)

)
. Hence, the Lapla-

cian net method tends to improve on the condition number of the sparse infor-

mation matrix ΣAA(β0) and weaken the restriction imposed by Condition (C3);

that is, it has the conditioning effect. On the other hand, nonzero entries in the

matrix Σ(β) indicate that the contributions of the corresponding covariates in

the partial likelihood score equation are correlated, which are shrunk toward zero

by the entries of λ2L̃ provided that the choice of L̃ correctly captures this re-

lationship; that is, the Laplacian net has the correlation shrinkage effect, which

helps to relax the restrictions in both Conditions (C3) and (C4). It is worth

pointing out that the elastic net, with an identity matrix in place of L̃, does

not have the latter effect. Note also that the (approximate) sign consistency of

the initial estimator β̃ plays a helpful, but not essential, role in achieving these

effects through the matrix L̃.

Second, in a different nature from the conditions in Bradic, Fan and Jiang

(2011), Condition (C4) shows that restrictions on the population information

matrix, rather than its empirical counterpart, are sufficient, which can then be

viewed as a high-dimensional extension of the classical asymptotic regularity

conditions. Such an extension is highly nontrivial and is achieved by a detailed

characterization of the uniform convergence of the empirical information matrix,

which is provided in the following result.

Proposition 1 (Concentration of empirical matrices). Under Conditions (C1)-

(C4), if s = O(n1/3), then there exist constants D,K > 0 such that

P

(
inf
β∈B0

Λmin

(
I∗AA(β, λ2)

)
≤ Cmin

2

)
≤ s2D exp

(
−K n

s2

)
(3.1)
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and

P

(
sup
β∈B0

‖I∗AcA(β, λ2)I∗AA(β, λ2)−1‖∞ ≥ 1− α

2

)
≤ psD exp

(
−K n

s3

)
. (3.2)

The proof of Proposition 1, which relies on a series of novel concentration

inequalities, is given in the Appendix. This result says that with high probability,

the empirical matrices satisfy almost the same conditions as those imposed on

their population counterparts, which are then needed in subsequent derivations.

The following theorem is our main theoretical result. It shows that, under

suitable conditions, the proposed estimators correctly identify the sparse model

and are also uniformly consistent in estimating the nonzero effects, i.e., they

possess the weak oracle property in the sense of Lv and Fan (2009).

Theorem 1 (Weak oracle property). In addition to Conditions (C1)-(C4), as-

sume that
n

s3(s ∨ log p)
→∞ (3.3)

and the regularization parameters λ1 and λ2 are chosen to satisfy

nλ2
1

log p
→∞, λ2

λ1
‖L̃ ·,Aβ0A‖∞ <

α

8
, and d >

5
√
s

2Cmin
λ1, (3.4)

where L̃ ·,A is the submatrix formed by the columns of L̃ with index j ∈ A.

Then there exist constants D,K > 0 such that, with probability at least 1 −
D exp(−Knλ2

1) − D exp(−Kn/s3) → 1, the optimization problem (2.6) has a

unique solution that satisfies the following properties:

(a) (Sparsity) β̂Ac = 0.

(b) (`∞-loss) ‖β̂A − β0A‖∞ ≤ 5
√
sλ1/(2Cmin).

The conditions and conclusions of Theorem 1 have important implications.

The dimension condition (3.3) allows both s and p to grow with n, at the rates of

s = o(n1/4) and log p = o(n), respectively. This setting is especially relevant in

genomic studies, where the number of features usually far exceeds the sample size

and should be modeled as being exponentially growing with the latter, while the

number of relevant features can also grow slightly as more features are included

in the analysis. The conditions in (3.4) are the requirements on the choice of the

regularization parameters. In particular, the second condition in (3.4) requires
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λ2 to be within a certain proportion of λ1, depending on the matrix L̃ and

the signal β0A. This is reasonable because the bias induced by the quadratic

Laplacian penalty should be controlled at a certain level so as not to prevent

consistent variable selection; see a related discussion in Hebiri and van de Geer

(2011) for linear regression models.

In view of the last condition in (3.4), parts (a) and (b) in Theorem 1 together

imply sign consistency (Zhao and Yu (2006)), which is in fact stronger than model

selection consistency. The benefit of the Laplacian net method in estimation can

be clearly seen from the upper bound in part (b); with appropriately chosen λ2

and L̃, one obtains a larger constant Cmin defined in Condition (C3) and hence

a smaller estimation loss.

4. Simulation Studies

We conducted simulation studies to evaluate the finite-sample performance

of the proposed Laplacian net (Lnet) and adaptive Laplacian net (AdaLnet)

methods, and compare them with two popular variable selection procedures,

Lasso and elastic net (Enet). We also made comparisons with the Cox regression

method with the network-based penalty considered in Pan, Xie and Shen (2010),

which is a sum of grouped penalties, each in the form of the `γ-norm of the

two coefficients for a pair of neighboring nodes on a given network (GLγ). We

considered scenarios that are likely to be encountered in genomic studies, with

different settings on the strengths and directions of genetic effects.

We simulated gene expression data within an assumed network. Each net-

work consists of 100 disjoint regulatory modules, each with one transcription

factor gene (TF) and ten regulated genes, resulting in a total of p = 1100 genes.

In this setting, di = 10 for the TFs and di = 1 for the regulated genes, and

wij = 1 between the TFs and their regulated genes and 0 otherwise. The ex-

pression value of each TF was generated from a standard normal distribution,

and the expression values of the ten regulated genes were generated from a con-

ditional normal distribution with a correlation of ρ between the expressions of

these genes and that of the corresponding TF. We set ρ = 0.7 for five regulated

genes and ρ = −0.7 for the other five. This mimics the fact that the TF can

either activate or repress the regulated genes. We then generated failure times
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from the Cox model

λ(t |X) = λ0(t) exp

( 44∑
j=1

βjXj

)
,

which includes only the s = 44 relevant genes. The baseline hazard function

λ0(t) was specified by a Weibull distribution with shape parameter 5 and scale

parameter 2, and censoring times were generated from U(2, 15), resulting in a

censoring rate of about 30%. In each setting, the sample size was fixed at n = 200

and the simulations were replicated 50 times. We applied fivefold cross-validation

to choose the optimal tuning parameters.

We considered six different models. In Model 1, we examined the situation

where all genes within the same module have the same directions in their effects

on the survival outcome. The coefficients βj , j = 1, . . . , 22, which correspond to

the genes in the first two modules, were generated from the uniform distribution

U(0.1, 1), while βj , j = 23, . . . , 44, were generated from U(−1,−0.1). In Model

2, we allowed more diversity in the directions of genetic effects by assigning a

random set of three regulated genes different signs of regression coefficients from

the other regulated genes within the same module, while keeping their absolute

values the same as in Model 1.

We then considered models where the TFs have stronger effects than the reg-

ulated genes, as typically observed in practice. In Model 3, we set the regression

coefficients of the four TFs to (2,−2, 4,−4), and those of the regulated genes to

βTF/
√

10, where βTF is the coefficient of the corresponding TF. In Model 4, we

changed the signs of regression coefficients of three genes in each module as in

Model 2. In Model 5, we allowed the ten regulated genes within each module

to have different effect sizes, with regression coefficients defined as βTF/
√
j + 4

for j = 1, . . . , 10. In Model 6, we changed the signs of regression coefficients of

three genes in each module from Model 5. Finally, Models 7 and 8 have the same

settings as Models 5 and 6, except that the coefficients of two randomly selected

genes in each module were set to zero. Note that only Model 3 assumes that the

neighboring genes have the same degree-scaled coefficients.

The variable selection performance of each method is summarized by three

measures: sensitivity, specificity, and the Matthews correlation coefficient (MCC)
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defined by

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP, TN, FP and FN denote the numbers of true positives, true negatives,

false positives and false negatives, respectively. The MCC is an overall measure of

variable selection accuracy, and a larger MCC indicates a better variable selection

performance.

Simulation results for Models 1 and 2 are reported in Table 1. We observed

that, in general, AdaLnet and Enet gave the best overall variable selection per-

formance, while Lasso tended to select too many variables with high false positive

rates. In contrast, GLγ tended to select the smallest number of genes and re-

sulted in the lowest sensitivities. Since the majority of the genes were irrelevant

and all methods resulted in sparse models, specificity in all cases was much higher

than sensitivity and was comparable among all methods. Enet selected a slightly

higher proportion of irrelevant genes and hence had slightly lower specificity

compared with AdaLnet. Comparisons of the results for Models 1 and 2 suggest

the additional benefit of accounting for different directions of the genetic effects

from AdaLnet. In Model 1, since all genes within the same module have equal

directions in their effects, Lnet and AdaLnet had similar performance, although

AdaLnet showed slightly higher sensitivity because the expression levels of these

relevant genes were not always positively correlated. In Model 2, where linked

genes may affect the survival outcome in opposite directions, AdaLnet exhibited

consistent improvement over Lnet in terms of sensitivity and MCC. All methods

had similar estimation performance in terms of mean squared error (MSE). Lasso

had a lightly smaller MSE than the other methods at the price of a much worse

variable selection performance.

Simulation results for Models 3-8 are summarized in the rest of Table 1 and

Table 2, indicating essentially the same trends as for Models 1 and 2. In these

settings, where the TFs and regulated genes had different strengths of effects, the

improvement of Lnet and AdaLnet over Lasso and Enet was even more dramatic,

because the difference in effect sizes has been taken into account by our methods.

In addition, AdaLnet always resulted in the highest MCC among the four models

considered. GLγ gave the smallest number of false positives; however, it also had
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Table 1. Simulation results for Models 1-4. (n, p, s) = (200, 1100, 44). Sensitivity,
specificity, MCC, number of selected genes, number of false positives (FPs), and mean
squared error (MSE) were averaged over 50 replicates. Lnet: Laplcian net; AdaLnet:
adaptive Laplacian net; Lasso: `1-penalty; Enet: elastic net; GLγ : group `γ-penalty.
Standard errors are given in the Supplementary Material.

Method Sensitivity Specificity MCC # of genes # of FPs MSE
Model 1

Lnet 0.346 0.997 0.524 18.84 3.60 0.016
AdaLnet 0.395 0.996 0.559 21.47 4.09 0.016
Lasso 0.435 0.950 0.310 72.25 53.13 0.012
Enet 0.407 0.995 0.561 22.77 4.88 0.016
GLγ 0.233 0.998 0.431 12.66 2.42 0.015

Model 2
Lnet 0.442 0.996 0.600 23.54 4.09 0.015
AdaLnet 0.557 0.996 0.682 28.79 4.23 0.015
Lasso 0.465 0.958 0.362 64.32 43.88 0.011
Enet 0.616 0.991 0.675 36.68 9.58 0.015
GLγ 0.434 0.996 0.594 22.99 3.91 0.014

Model 3
Lnet 0.526 0.987 0.591 37.06 13.91 0.070
AdaLnet 0.624 0.995 0.715 33.24 5.77 0.071
Lasso 0.363 0.975 0.346 42.67 26.71 0.067
Enet 0.684 0.986 0.682 44.90 14.79 0.072
GLγ 0.437 0.999 0.633 20.26 1.05 0.070

Model 4
Lnet 0.446 0.996 0.601 24.34 4.71 0.070
AdaLnet 0.633 0.995 0.728 32.62 4.76 0.070
Lasso 0.407 0.974 0.376 45.66 27.76 0.063
Enet 0.661 0.988 0.684 41.96 12.88 0.072
GLγ 0.541 0.999 0.703 25.22 1.40 0.070

in general lower sensitivity and MCC compared to AdaLnet. Lasso and Enet

resulted in large numbers of false positives. The Supplementary Material contains

some additional simulation settings where the weights wij were generated by

sample correlation coefficients between two gene expressions, yielding very similar

results.

Our algorithm is also very fast: the average computation time for obtaining a

single solution path over a grid of 50 points in our simulation setting with (n, p) =

(200, 1100) was about 0.7 second, only slightly above the average computation

time for the Lasso from the R package glmnet.
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Table 2. Simulation results for Models 5-8. (n, p, s) = (200, 1100, 44). Sensitivity,
specificity, MCC, number of selected genes, number of false positives (FPs), and mean
squared error (MSE) were averaged over 50 replicates. Lnet: Laplcian net; AdaLnet:
adaptive Laplacian net; Lasso: `1-penalty; Enet: elastic net; GLγ : group `γ-penalty.
Standard errors are given in the Supplementary Material.

Method Sensitivity Specificity MCC # of genes # of FPs MSE
Model 5

Lnet 0.491 0.989 0.575 10.65 12.08 0.077
AdaLnet 0.567 0.996 0.687 29.55 4.62 0.077
Lasso 0.339 0.977 0.337 39.61 24.71 0.073
Enet 0.649 0.985 0.651 44.83 16.28 0.078
GLγ 0.377 0.999 0.586 17.46 0.88 0.076

Model 6
Lnet 0.439 0.996 0.600 23.52 4.22 0.076
AdaLnet 0.642 0.996 0.732 31.43 3.98 0.076
Lasso 0.404 0.973 0.369 46.74 28.98 0.069
Enet 0.650 0.988 0.675 41.61 13.00 0.078
GLγ 0.523 0.998 0.686 24.78 1.75 0.076

Model 7
Lnet 0.518 0.985 0.553 35.06 16.43 0.067
AdaLnet 0.587 0.992 0.639 29.61 8.48 0.067
Lasso 0.424 0.969 0.349 47.99 32.73 0.061
Enet 0.656 0.983 0.610 42.05 18.42 0.069
GLγ 0.507 0.994 0.606 24.87 6.62 0.066

Model 8
Lnet 0.483 0.993 0.582 24.83 7.45 0.067
AdaLnet 0.641 0.992 0.673 31.84 8.76 0.067
Lasso 0.458 0.969 0.373 49.22 32.74 0.059
Enet 0.676 0.984 0.632 41.10 16.78 0.069
GLγ 0.564 0.994 0.647 26.41 6.10 0.067

5. Application to a Breast Cancer Gene Expression Study

We illustrate the proposed method by application to analyzing a gene ex-

pression data set for patients with lymph-node-negative primary breast cancer

reported by Wang et al. (2005). These 286 patients were treated between 1980

and 1995 and did not receive adjuvant systemic therapy, of which 107 (37.4%)

developed distant metastases in a median follow-up time of 7.2 years. Gene ex-

pression profiles were measured on these patients using Affymetrix HG-U133A

arrays. To perform a network-based analysis, we focus our analysis on the genes

that can be mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG)
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pathways (Kanehisa and Goto (2000)). After merging the gene expression data

with the KEGG pathways, we obtained a network consisting of 2563 genes and

15,028 edges. Based on this KEGG network, the edge weight wij = 1 if genes

i and j are linked and 0 otherwise, and the node degree di is the number of

genes that link to gene i. The focus of our analysis is to identify the genes and

pathways on the KEGG network that are related to cancer survival.

5.1. Regression coefficients of linked genes on the KEGG network

We first demonstrate that the regression coefficients of linked genes on the

KEGG network are closer to each other than randomly selected gene pairs. We

have a total of p = 2, 554 genes with 15,028 edges after removing all isolated genes

and loops. For each of these genes, we first obtained the estimated regression

coefficient from fitting the Cox model with the expression level of this gene as

a covariate. Denote the estimated coefficient for gene i as β̂i. We define the

difference between the absolute values of scaled coefficients of two linked genes

by

Dij =
|β̂i|√
di
− |β̂j |√

dj
,

where di is the total number of genes linked to gene i. The sum of absolute

differences of all linked genes is given by DE =
∑

(i,j)∈E |Dij |, where E is the

edge set of all linked genes on the KEGG network.

We obtained DE = 2.8645 for the 15,028 edges of the KEGG network. We

then performed a randomization test to see if the regression coefficients of the

linked genes are likely to be similar. Specifically, we generated an edge set consist-

ing of randomly selected 15,028 gene pairs out of the total p(p−1)/2 = 3, 260, 181

pairs and calculated DE0 using the same node degrees as in calculating DE . With

50,000 random edge sets, we obtained the empirical distribution of DE0 as shown

in Figure 1. It is clear that the observed DE is far away from the empirical distri-

bution for randomly selected edge sets, where the range of DE0 is between 10.28

and 15.05. We also observe that the coefficient difference of the linked genes on

the KEGG network is much smaller than any of the randomly selected gene pairs,

which indicates that the regression coefficients of two linked genes in this data

set are more similar than randomly selected gene pairs. This partially supports
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Figure 1. Analysis of breast cancer gene expression data: histogram of the sum of
scaled differences between two Cox regression coefficients for 15,028 randomly selected
gene pairs based on 50,000 permutations. The vertical bar represents the sum of scaled
differences between two Cox regression coefficients for the 15,028 genes pairs on the
KEGG network.

our biological intuition that genes connected in the KEGG network should have

similar regression coefficients in the Cox model.

5.2. Genes and subnetworks selected

We applied the Lnet, AdaLnet, Lasso, and Enet methods to the data set

and used tenfold cross-validation to choose the optimal tuning parameters. Lnet,

AdaLnet, Lasso, and Enet selected 98, 140, 62, and 87 genes, respectively. AdaL-

net identified many more genes and edges on the KEGG network than Lasso,

Enet, and Lnet.

Figure 2 shows the non-isolated genes and associated subnetworks that were

identified by these four methods. We observed that AdaLnet selected 47 non-

isolated genes, many more than Lasso (14), Enet (19), and Lnet (27). The largest

connected component on the subnetwork identified by AdaLnet includes 11 genes,

most of which are involved in the mitogen-activated protein kinase (MAPK) path-

way. The MAPK pathway participates in fundamental cellular processes such as

proliferation, differentiation, migration, and apoptosis, and plays a key role in

the development and progression of cancer (Dhillon et al. (2007)). Of particu-

lar interest is the well-known oncogene SRC; it has recently been revealed that
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Lasso
Enet

Lnet

AdaLnet

Figure 2. Subnetworks of the KEGG network identified by four different methods applied
to the breast cancer gene expression data set. Only non-isolated genes are shown.

Src pathway activity is critical for the survival of disseminated breast cancer

cells in the bone marrow microenvironment, leading to an extended period for

latent metastasis in breast cancer (Zhang et al. (2009)). This connected subnet-

work also includes DUSP4/DUSP14 genes, which negatively regulate members

of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK) and

are associated with cellular proliferation and differentiation (Guan and Butch

(1995)). In contrast, although Lasso and Enet identified some links in this sub-

network (e.g., NRAS-TMP3, MAPK9-DUSP4 and NRAS-TPM3-ACTC1), the

results from these analyses did not provide strong evidence indicating the in-

volvement of the MAPK pathway in distant metastases of breast cancer.

A second largest component includes two human leukocyte antigen (HLA)

class I molecules and three killer immunoglobulin-like receptors (KIRs). It has
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been known that altered expression of classical (e.g., HLA-C) and nonclassical

(e.g., HLA-E) HLA class I molecules is among the immune escape routes most

widely taken by tumor cells (Algarra et al. (2004)). The clinical impact of tumor

expression of classical and nonclassical HLAs as well as their interactions have

recently been confirmed in a study of 677 early breast cancer patients (de Kruijf

et al. (2010)). Another second largest component includes CD44 and integrin α5

(ITGA5), which have been identified as target genes of microRNAs miR-373/520c

and miR-31, respectively, in mediating breast cancer metastasis (Valastyan et al.

(2009)). It is interesting to note that SRC was not selected by Lasso, Enet, or

Lnet, HLA-C and HLA-E not selected by Lasso or Enet, and ITGA5 not selected

by Lasso.

The fourth subnetwork identified by AdaLnet involves the inflammatory

chemokines CCL2 and CCL23 and its receptor CCR6. A causal role was re-

cently attributed to inflammation in many malignant diseases, including breast

cancer. The different inflammatory mediators that are involved in this disease

include cells, cytokines, and chemokines, and many studies have addressed the

involvement and roles of the inflammatory chemokine CCL2 (MCP-1) in breast

malignancy and progression (Soria and Ben-Baruch (2008)). Another subnet-

work identified by AdaLnet only includes genes in the Wnt signaling pathway

(WNT4, WNT8B, and FZD6), which is also implicated in breast cancer metas-

tasis (Matsuda et al. (2009)).

5.3. Stability selection

We have observed that AdaLnet selected more genes than the other methods,

and we now demonstrate that the genes selected are also quite stable. Following

Meinshausen and Bühlmann (2010), let Sk be the kth random subsample of

{1, . . . , n} of size bn/2c without replacement, where bxc is the largest integer not

greater than x. To balance the censored observations, we sampled half of the

censored subjects and half of the uncensored subjects. For a given pair of tuning

parameters (λ, α), the selection probability of gene j is defined as

Pr(λ,α)(j) =
1

K

K∑
k=1

I{β̂λ,αj (Sk) 6= 0},
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Table 3. Summary of stability measurements of the genes selected by four different
methods. The minimum (Min), first quantile (Q1), median, mean, third quantile (Q3),
and maximum (Max) are shown.

Method # of genes Min Q1 Median Mean Q3 Max
All selected genes

Lasso 62 0.06 0.21 0.30 0.31 0.40 0.65
Enet 87 0.35 0.65 0.79 0.76 0.87 0.99
Lnet 98 0.46 0.71 0.82 0.80 0.91 1.00
AdaLnet 140 0.34 0.60 0.75 0.73 0.87 0.99

Selected genes that are linked on the KEGG network
Lasso 14 0.12 0.22 0.40 0.37 0.47 0.65
Enet 19 0.44 0.69 0.80 0.78 0.91 0.99
Lnet 27 0.56 0.71 0.84 0.81 0.94 1.00
AdaLnet 47 0.39 0.68 0.80 0.78 0.92 0.99

where β̂λ,αj (Sk) is the estimate of βj using a regularization procedure based on the

subsample Sk given the tuning parameters (λ, α), and K is the number of resam-

pling replicates. We used K = 100 as suggested by Meinshausen and Bühlmann

(2010). A measurement of stability of gene j is then given by maxλ,α Pr(λ,α)(j).

Table 3 summarizes the stability measurements of the genes selected by each of

the four methods. We observed that Lnet resulted in the highest variable selec-

tion stability, followed by AdaLnet and Enet. It is also interesting to note that

the selected genes that are linked on the KEGG network had in general higher

stability than those isolated genes. By encouraging connectivity of the solution,

genes that are highly connected in the graph tend to be more often selected,

improving stability of the solution.

6. Discussion

We have proposed a network-based regularization method for high-dimen-

sional Cox regression, as a means to incorporate prior network structural infor-

mation about the covariates. We have provided theoretical results in a general

high-dimensional setting that shed light on the benefits of taking into account

such structural information. Simulation studies and real data analysis have con-

firmed the superior performance of our method in terms of variable selection

accuracy and stability. In genomic studies, regularization methods that ignore

current biological knowledge often result in selection of isolated genes, render-
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ing interpretation of the results difficult. In contrast, network-based methods

can identify many more functionally related genes and help to bridge the gap

between genomic data analysis and understanding of biological mechanisms.

A practical issue in the application of the proposed methodology is to decide

which existing biological network to use and how to account for its uncertainty.

Choice of the network to use with measured gene expression data depends on the

scientific questions asked and whether the network interactions can be reflected

at the transcriptional levels. In our analysis of the breast cancer gene expression

data, we chose the KEGG pathways and aimed to identify which KEGG subnet-

works were associated with distant metastasis. Alternatively, we could focus on

the known cancer-related pathways or the large-scale protein-protein interaction

network. Instead of using the prior network information, one can build a gene

co-expression network from the data and use it to determine the gene neighbors;

see Section 3 of Huang et al. (2011) for a discussion of adjacency measures that

can be used for the construction of such networks. Finally, if the prior network

structure is inaccurate or uninformative, we expect that the tuning parameter

λ2 should be very small and therefore the Laplacian penalty will have almost no

effects on variable selection and estimation. Incorporating the uncertainty of the

network structure directly into our methodology and theory would be worthwhile

future topics.

We have used the convex `1-penalty to induce sparsity of the regression

coefficients to facilitate theoretical analysis and fast computation of a global

solution. It would be interesting to explore several nonconvex extensions as in

Huang et al. (2011) for linear regression models. If one would replace the `1-

penalty in our method by SCAD or MCP, the main arguments used in this paper

could be adapted to establish the oracle property of the modified method, under

stronger conditions than those required by the weak oracle property. It is worth

noting that the concentration inequalities established in this paper reflect some

intrinsic properties of the Cox model in high dimensions and do not depend on

any specific penalty function; hence, they will continue to play a pivotal role in

the theoretical development of such nonconvex extensions.

We have demonstrated in Section 5.1 that local smoothness of regression

coefficients over a gene network may be a biologically plausible assumption. One
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can consider alternatively the weaker assumption that two neighboring variables

are either both important or both unimportant, which would be more reasonable

and likely to be satisfied in broader contexts. Network-based regularization under

this assumption could be achieved by a modification of the Laplacian penalty.

The discrete nature of the weaker assumption, however, makes the choice of a

penalty that allows for efficient implementation much more challenging. These

are interesting topics but are beyond the scope of the current paper.
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Appendix: Proofs

We first present a few lemmas that will be essential to the proofs of our

main results; their proofs can be found in the Supplementary Material. Note

that constants in our proofs may vary from line to line. Lemma 1 provides

optimality conditions for the optimization problem (2.6), while Lemmas 2 and 3

characterize the uniform convergence of the large vector U(β0) and matrix I(·),
respectively, toward their population counterparts.

Lemma 1 (Optimality conditions). A vector β̂ ∈ Rp is a unique solution to the

optimization problem (2.6) if the following conditions hold:

U
Â

(β̂)− λ1 sgn(β̂
Â

)− λ2L̃Â,· β̂ = 0, (A.1)

‖U
Âc(β̂)− λ2L̃Âc,· β̂‖∞ < λ1, (A.2)

and I∗
ÂÂ

(β̂, λ2) is positive definite, where L̃
Â,· and L̃

Âc,· are the submatrices

formed by the jth rows of L̃ with j ∈ Â and j ∈ Âc, respectively.

Lemma 2 (Concentration of U(β0)). Under Conditions (C1) and (C2), there

exist constants C,D,K > 0 such that

P
(
|Uj(β0)| ≥ Cn−1/2(1 + x)

)
≤ D exp

(
−K(x2 ∧ n)

)
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for all x > 0 and j = 1, . . . , p, where Uj(β0) is the jth component of U(β0).

Lemma 3 (Concentration of I(·)). Under Conditions (C1) and (C2), there exist

constants C,D,K > 0 such that

P

(
sup
β∈B0

|Iij(β)− σij(β)| ≥ C
√
s/n(1 + x)

)
≤ D exp

(
−K(sx2 ∧ n)

)
for all x > 0 and i, j = 1, . . . , p, where Iij(·) and σij(·) are the (i, j)th entries of

I(·) and Σ(·), respectively.

Proof of Proposition 1. By the Hoffman-Wielandt inequality (Horn and John-

son (1985)), we have∣∣Λmin

(
I∗AA(β, λ2)

)
− Λmin

(
Σ∗AA(β, λ2)

)∣∣
≤
{ s∑
j=1

∣∣Λ(j)

(
I∗AA(β, λ2)

)
− Λ(j)

(
Σ∗AA(β, λ2)

)∣∣2}1/2

≤ ‖I∗AA(β, λ2)−Σ∗AA(β, λ2)‖F = ‖IAA(β)−ΣAA(β)‖F ,

where Λ(j)(·) denotes the jth smallest eigenvalue and ‖·‖F is the Frobenius norm.

It then follows from Lemma 3 and the union bound that

P

(
sup
β∈B0

∣∣Λmin

(
I∗AA(β, λ2)

)
− Λmin

(
Σ∗AA(β, λ2)

)∣∣ ≥ Cmin

2

)
≤ P

(
sup
β∈B0

‖IAA(β)−ΣAA(β)‖F ≥
Cmin

2

)
= P

(
sup
β∈B0

∑
i, j∈A

|Iij(β)− σij(β)|2 ≥ C2
min

4

)

≤
∑
i, j∈A

P

(
sup
β∈B0

|Iij(β)− σij(β)| ≥ Cmin

2s

)
≤ s2D exp

(
−K n

s2

)
,

which, together with Condition (C2), implies (3.1).

To show (3.2), we write

I∗AcA(β, λ2)I∗AA(β, λ2)−1 −Σ∗AcA(β, λ2)Σ∗AA(β, λ2)−1

= {I∗AcA(β, λ2)−Σ∗AcA(β, λ2)}I∗AA(β, λ2)−1

+ Σ∗AcA(β, λ2){I∗AA(β, λ2)−1 −Σ∗AA(β, λ2)−1}

= {IAcA(β, λ2)−ΣAcA(β, λ2)}I∗AA(β, λ2)−1
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−Σ∗AcA(β, λ2)Σ∗AA(β, λ2)−1{IAA(β, λ2)−ΣAA(β, λ2)}I∗AA(β, λ2)−1

≡ T1 − T2.

First consider term T1. By Lemma 3 and the union bound, we have

P

(
sup
β∈B0

‖IAcA(β, λ2)−ΣAcA(β, λ2)‖∞ ≥
α

4
· Cmin

2
√
s

)
= P

(
sup
β∈B0

max
i∈Ac

∑
j∈A
|Iij(β, λ2)− σij(β, λ2)| ≥ α

4
· Cmin

2
√
s

)

≤
∑
i∈Ac

P

(
sup
β∈B0

∑
j∈A
|Iij(β, λ2)− σij(β, λ2)| ≥ α

4
· Cmin

2
√
s

)
(A.3)

≤
∑
i∈Ac

∑
j∈A

P

(
sup
β∈B0

|Iij(β, λ2)− σij(β, λ2)| ≥ α

4
· Cmin

2s3/2

)

≤ (p− s)sD exp

(
−K n

s3

)
.

Also, since ‖I∗AA(β, λ2)−1‖∞ ≤
√
s‖I∗AA(β, λ2)−1‖2 =

√
s/Λmin

(
I∗AA(β, λ2)

)
,

(3.1) implies that

P

(
sup
β∈B0

‖I∗AA(β, λ2)−1‖∞ ≥
2
√
s

Cmin

)
≤ P

(
inf
β∈B0

Λmin

(
I∗AA(β, λ2)

)
≤ Cmin

2

)
≤ s2D exp

(
−K n

s2

)
.

(A.4)

Hence, we have

P

(
sup
β∈B0

‖T1‖∞ ≥
α

4

)
≤ P

(
sup
β∈B0

‖IAcA(β, λ2)−ΣAcA(β, λ2)‖∞ ≥
α

4
· Cmin

2
√
s

)
+ P

(
sup
β∈B0

‖I∗AA(β, λ2)−1‖∞ ≥
2
√
s

Cmin

)
≤ (p− s)sD exp

(
−K n

s3

)
+ s2D exp

(
−K n

s2

)
.

Then consider term T2. Similar to (A.3), we have

P

(
sup
β∈B0

‖IAA(β, λ2)−ΣAA(β, λ2)‖∞ ≥
α

4(1− α)
· Cmin

2
√
s

)
≤ s2D exp

(
−K n

s3

)
.
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This, together with Condition (C3) and (A.4), leads to

P

(
sup
β∈B0

‖T2‖∞ ≥
α

4

)
≤ P

(
sup
β∈B0

‖IAA(β, λ2)−ΣAA(β, λ2)‖∞ ≥
α

4(1− α)
· Cmin

2
√
s

)
+ P

(
sup
β∈B0

‖I∗AA(β, λ2)−1‖∞ ≥
2
√
s

Cmin

)
≤ s2D exp

(
−K n

s3

)
.

Combining the bounds for T1 and T2 gives

P

(
sup
β∈B0

‖I∗AcA(β, λ2)I∗AA(β, λ2)−1 −Σ∗AcA(β, λ2)Σ∗AA(β, λ2)−1‖∞ ≥
α

2

)
≤ psD exp

(
−K n

s3

)
,

which, along with Condition (C3), implies (3.2). This completes the proof.

Proof of Theorem 1. The idea of the proof is to first define an “ideal” event

that occurs with high probability, and then analyze the behavior of the penalized

estimator β̂ conditional on that event by using deterministic arguments based

on Lemma 1.

First, by Lemma 2 and the union bound, we have

P

(
‖U(β0)‖∞ ≥

α

8
λ1

)
≤

p∑
j=1

P

(
|Uj(β0)| ≥ α

8
λ1

)
≤ pD exp(−Knλ2

1).

This inequality, along with (3.1) and (3.2) in Proposition 1, implies that with

probability at least 1 − pD exp(−Knλ2
1) − psD exp(−Kn/s3), the following in-

equalities hold:

‖U(β0)‖∞ <
α

8
λ1, inf

β∈B0
Λmin

(
I∗AA(β, λ2)

)
>
Cmin

2
, (A.5)

and

sup
β∈B0

‖I∗AcA(β, λ2)I∗AA(β, λ2)−1‖∞ < 1− α

2
. (A.6)

We now condition on the event that the above inequalities hold. It suffices

to find a β̂ ∈ Rp that satisfies all the optimality conditions in Lemma 1 and the

desired properties. Take β̂Ac = 0, and we will determine β̂A by condition (A.1).
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A Taylor expansion of UA(β̂) gives UA(β̂) = UA(β0)−IAA(β̄)(β̂A−β0A), where

β̄ lies between β0 and β̂. Also, we have L̃A,· β̂ = L̃AAβ0A + L̃AA(β̂A − β0A).

Substituting into the equation UA(β̂)−λ1 sgn(β̂A)−λ2L̃A,· β̂ = 0 and rearranging

yield

β̂A − β0A = I∗AA(β̄, λ2)−1{UA(β0)− λ1 sgn(β̂A)− λ2L̃AAβ0A}. (A.7)

Define a function f : Rs → Rs by f(θ) = β0A+IAA(θ̄, λ2)−1{UA(β0)−λ1 sgn(θ)−
λ2L̃AAβ0A}, where θ̄Ac = 0 and θ̄A lies between β0A and θ. Let K denote the

hypercube {θ ∈ Rs : ‖θ−β0A‖∞ ≤ 5
√
sλ1/(2Cmin)}. Then, by (A.4), (A.5), and

the assumption (λ2/λ1)‖L̃ ·,Aβ0A‖∞ < α/8, we have, for θ ∈ K,

‖f(θ)− β0A‖∞ ≤ ‖I∗AA(θ̄, λ2)−1‖∞{‖UA(β0)‖∞ + λ1 + λ2‖L̃AAβ0A‖∞}

≤ 2
√
s

Cmin

(
α

8
λ1 + λ1 +

α

8
λ1

)
≤ 5

√
s

2Cmin
λ1,

i.e., f(K) ⊂ K. Also, the assumption d > 5
√
s/(2Cmin) entails that sgn(θ) =

sgn(β0A); hence, f is a continuous function on the convex, compact set K. An

application of Brouwer’s fixed point theorem yields that equation (A.7) has a

solution β̂A in K. Moreover, sgn(β̂A) = sgn(β0A) and hence Â = A. Thus, we

have found a β̂ ∈ Rp that satisfies (A.1) and the desired properties. Moreover,

(A.5) implies that I∗AA(β̂, λ2) is positive definite.

It remains to verify that β̂ also satisfies (A.2). A Taylor expansion of UAc(β̂)

and substituting (A.7) give

UAc(β̂)− λ2L̃Ac,· β̂

= UAc(β0)− IAcA(β̄)(β̂A − β0A)− λ2L̃AcA(β̂A − β0A)− λ2L̃AcAβ0A

= UAc(β0)− I∗AcA(β̄, λ2)(β̂A − β0A)− λ2L̃AcAβ0A

= UAc(β0)− I∗AcA(β̄, λ2)I∗AA(β̄, λ2)−1{UA(β0)− λ1 sgn(β̂A)− λ2L̃AAβ0A}

− λ2L̃AcAβ0A.

Then, by (A.5), (A.6), and the assumption (λ2/λ1)‖L̃ ·,Aβ0A‖∞ < α/8, we have

‖UAc(β̂)− λ2L̃Ac,· β̂‖∞
≤ ‖UAc(β0)‖∞ + ‖I∗AcA(β̄, λ2)I∗AA(β̄, λ2)−1‖∞
× {‖UA(β0)‖∞ + λ1 + λ2‖L̃AAβ0A‖∞}+ λ2‖L̃AcAβ0A‖∞
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<
α

8
λ1 +

(
1− α

2

)(
α

8
λ1 + λ1 +

α

8
λ1

)
+
α

8
λ1

≤ α

8
λ1 +

α

8
λ1 +

(
1− α

2

)
λ1 +

α

8
λ1 +

α

8
λ1 = λ1,

which verifies (A.2) and concludes the proof.
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