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1. ADDITIONAL SIMULATIONS

We conducted additional simulations to compare the performance of the two-step procedures
formed by adding a refitting step to the proposed method and lasso (ii), respectively. The means
and standard errors of performance measures are summarized in Table S1. We observe that, in the
more challenging settings where the proposed method tends to miss fewer important variables
than lasso (ii), it also has an advantage over lasso (ii) in terms of prediction and estimation, which
is consistent with our comparisons of one-step procedures.

2. PROOFS

Proof of Proposition 1. To apply Theorem 4 of Rockafellar (1976) for the convergence of the
method of multipliers, we need only verify for problem (3) that (a) Slater’s condition is satisfied,
and (b) there exists a constant c such that the c-sublevel set of feasible points Bc = {β : Q(β) ≤
c and

∑p
j=1 βj = 0} is nonempty and bounded, where Q(·) is the objective function in problem

Table S1. Means and standard errors (in parentheses) of various performance measures for
two two-step procedures based on 100 simulations

(n, p) Method PE `1 loss `2 loss `∞ loss FP FN

ρ = 0·2
(50, 30) Lasso (ii) 0·37 (0·01) 0·87 (0·04) 0·11 (0·01) 0·18 (0·01) 4·15 (0·28) 0·00 (0·00)

Proposed 0·36 (0·01) 0·83 (0·04) 0·10 (0·01) 0·17 (0·01) 3·57 (0·23) 0·00 (0·00)

(100, 200) Lasso (ii) 0·30 (0·01) 0·54 (0·03) 0·05 (0·00) 0·13 (0·00) 2·96 (0·23) 0·00 (0·00)
Proposed 0·30 (0·00) 0·55 (0·02) 0·05 (0·00) 0·12 (0·00) 3·03 (0·24) 0·00 (0·00)

(100, 1000) Lasso (ii) 0·34 (0·01) 0·63 (0·03) 0·10 (0·01) 0·17 (0·01) 2·84 (0·21) 0·13 (0·04)
Proposed 0·32 (0·01) 0·60 (0·03) 0·07 (0·01) 0·14 (0·01) 3·10 (0·22) 0·04 (0·02)

ρ = 0·5
(50, 30) Lasso (ii) 0·38 (0·01) 1·08 (0·05) 0·16 (0·01) 0·21 (0·01) 5·00 (0·30) 0·02 (0·01)

Proposed 0·39 (0·01) 1·08 (0·05) 0·16 (0·01) 0·21 (0·01) 4·81 (0·27) 0·02 (0·01)

(100, 200) Lasso (ii) 0·33 (0·01) 0·76 (0·04) 0·11 (0·02) 0·17 (0·01) 4·61 (0·27) 0·09 (0·05)
Proposed 0·31 (0·01) 0·69 (0·03) 0·07 (0·01) 0·14 (0·01) 4·60 (0·29) 0·01 (0·01)

(100, 1000) Lasso (ii) 0·61 (0·05) 1·59 (0·10) 0·69 (0·08) 0·47 (0·03) 2·44 (0·20) 1·29 (0·13)
Proposed 0·59 (0·07) 1·53 (0·11) 0·63 (0·10) 0·43 (0·03) 3·73 (0·29) 0·99 (0·13)

PE, prediction error; FP, number of false positives; FN, number of false negatives.
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(3). Claim (a) holds since in this case Slater’s condition reduces to feasibility and 0 is a feasible
point. To show (b), take any c ≥ Q(0); then Bc is nonempty since 0 ∈ Bc, and is bounded since
‖β‖1 ≤ c/λ for β ∈ Bc. Proposition 1 follows from the aforementioned result. �

Proof of Proposition 2. For J ⊂ {1, . . . , p− 1}, let Zr
J denote the submatrix formed by the

jth columns of Zr with j ∈ J . Define

P r =

Ir−1 −1 0

0
... Ip−1−r

0 −1 0

 ∈ R(p−1)×(p−1),

and let Er ∈ R(p−1)×(p−1) denote the matrix with 1s in the rth column and 0s else-
where. Then we have sgn(β∗S\r

)− sgn(β∗r )1s−1 = P r
S\rS\p

{sgn(β∗S\p
)− sgn(β∗p)1s−1},Zr

S\r
=

Zp
S\p

(P r
S\rS\p

)T, and Zr
Sc = Zp

Sc − Zp
S\p

(Er
ScS\p

)T. Furthermore,

Cr
S\rS\r

= n−1(Zr
S\r

)TZr
S\r

= n−1P r
S\rS\p

(Zp
S\p

)TZp
S\p

(P r
S\rS\p

)T

= P r
S\rS\p

Cp
S\pS\p

(P r
S\rS\p

)T,

Cr
ScS\r

= n−1(Zr
Sc)TZr

S\r
= n−1{Zp

Sc − Zp
S\p

(Er
ScS\p

)T}TZp
S\p

(P r
S\rS\p

)T

= n−1{(Zp
Sc)

TZp
S\p
− Er

ScS\p
(Zp

S\p
)TZp

S\p
}(P r

S\rS\p
)T

= (Cp
ScS\p

− Er
ScS\p

Cp
S\pS\p

)(P r
S\rS\p

)T.

Substituting these identities into the left-hand side of (9) yields

Cr
ScS\r

(Cr
S\rS\r

)−1{sgn(β∗S\r
)− sgn(β∗r )1s−1}+ sgn(β∗r )1p−s

= (Cp
ScS\p

− Er
ScS\p

Cp
S\pS\p

)(Cp
S\pS\p

)−1{sgn(β∗S\p
)− sgn(β∗p)1s−1}+ sgn(β∗r )1p−s

= Cp
ScS\p

(Cp
S\pS\p

)−1{sgn(β∗S\p
)− sgn(β∗p)1s−1}

− Er
ScS\p

{sgn(β∗S\p
)− sgn(β∗p)1s−1}+ sgn(β∗r )1p−s

= Cp
ScS\p

(Cp
S\pS\p

)−1{sgn(β∗S\p
)− sgn(β∗p)1s−1}

− {sgn(β∗r )− sgn(β∗p)}1p−s + sgn(β∗r )1p−s

= Cp
ScS\p

(Cp
S\pS\p

)−1{sgn(β∗S\p
)− sgn(β∗p)1s−1}+ sgn(β∗p)1p−s,

and (10) follows similarly. �
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