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Abstract

In genetical genomics studies, it is important to jointly analyze gene expression

data and genetic variants in exploring their associations with complex traits, where

the dimensionality of gene expressions and genetic variants can both be much larger

than the sample size. Motivated by such modern applications, we consider the problem

of variable selection and estimation in high-dimensional sparse instrumental variables

models. To overcome the difficulty of high dimensionality and unknown optimal instru-

ments, we propose a two-stage regularization framework for identifying and estimating

important covariate effects while selecting and estimating optimal instruments. The

methodology extends the classical two-stage least squares estimator to high dimensions

by exploiting sparsity using sparsity-inducing penalty functions in both stages. The

resulting procedure is efficiently implemented by coordinate descent optimization. For

the representative L1 regularization and a class of concave regularization methods,

we establish estimation, prediction, and model selection properties of the two-stage

regularized estimators in the high-dimensional setting where the dimensionality of co-

variates and instruments are both allowed to grow exponentially with the sample size.

The practical performance of the proposed method is evaluated by simulation studies

and its usefulness is illustrated by an analysis of mouse obesity data. Supplementary

materials for this article are available online.
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1 Introduction

Genome-wide studies have been widely conducted to search tens of thousands of gene ex-

pressions or hundreds of thousands of single nucleotide polymorphisms (SNPs) to detect

associations with complex traits. By measuring and analyzing gene expressions and genetic

variants on the same subjects, genetical genomics studies provide an integrative and powerful

approach to addressing fundamental questions in genetics and genomics at the functional

level. In these studies, gene expression levels are viewed as quantitative traits that are sub-

ject to genetic analysis for identifying expression quantitative trait loci (eQTLs), in order to

understand the genetic architecture of gene expression variation. The increasing availability

of high-throughput genetical genomics data sets opens up the possibility of jointly analyzing

gene expression data and genetic variants in exploring their associations with complex traits,

with the goal of identifying key genes and genetic markers that are potentially causal for

complex human diseases such as obesity, heart disease, and cancer (Emilsson et al. 2008).

Although in the past decade gene expression profiling has led to the discovery of many

gene signatures that are highly predictive for clinical outcomes, the effort of using these find-

ings to dissect the genetics of complex traits and diseases is often compromised by the critical

issue of confounding. It is well known that many factors, such as unmeasured variables, ex-

perimental conditions, and environmental perturbations, may exert pronounced influences

on gene expression levels, which may in turn induce spurious associations and/or distort true

associations of gene expressions with the response of interest (Leek and Storey 2007; Fusi,

Stegle, and Lawrence 2012). Moreover, due to the difficulty of high dimensionality, empirical

studies are mostly based on marginal models, which are especially prone to variability caused

by pleiotropic effects and dependence among genes. Ignoring these confounding issues tends

to produce results that are both biologically less interpretable and less reproducible across

independent studies.

Instrumental variables (IV) methods provide a practical and promising approach to con-

trol for confounding in genetical genomics studies, with genetic variants playing the role of

instruments. This approach exploits the reasonable assumption that the genotype is assigned

randomly, given the parents’ genes, at meiosis and independently of possible confounding

factors, and affects a clinical phenotype only indirectly through some intermediate pheno-

types. In observational epidemiology, Mendelian randomization has been proposed as a class

of methods for using genetic variants as instruments to assess the causal effect of a modifiable

phenotype or exposure on a disease outcome; see, for example, Lawlor et al. (2008) for a

review. The primary scenario considered in this context, however, involves only one exposure

variable and requires the existence of a genetic variant whose relationship with the exposure

has been well established. Thus, the methodology intended for Mendelian randomization is
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typically not applicable to genetical genomics studies, where the number of expression phe-

notypes is exceedingly large and the genetic architecture of each phenotype may be complex

and unknown.

IV models and methods have been extensively studied in the econometrics literature,

where the problem is often cast in the framework of simultaneous equation models (Heck-

man 1978). It has been shown that classical IV estimators such as the two-stage least squares

(2SLS) estimator and the limited information maximum likelihood (LIML) estimator are con-

sistent only when the number of instruments increases slowly with the sample size (Chao and

Swanson 2005; Hansen, Hausman, and Newey 2008). Recent developments have introduced

regularization methods to mitigate the overfitting problem in high-dimensional feature space

by exploiting the sparsity of important covariates, thereby improving the performance of IV

estimators substantially. Caner (2009) considered penalized generalized method of moments

(GMM) with the bridge penalty for variable selection and estimation in the classical setting

of fixed dimensionality. Gautier and Tsybakov (2011) developed a Dantzig selector–type

procedure to select important covariates and estimate the noise level simultaneously in high-

dimensional IV models where the dimensionality may be much larger than the sample size.

Under the assumption that the important covariates are uncorrelated with the regression er-

ror, Fan and Liao (2012) proposed a penalized focused GMM method based on a nonsmooth

loss function to perform variable selection and achieve oracle properties in high dimensions.

All the aforementioned methods, however, do not exploit the sparsity of instruments and

hence are still facing the dimensionality curse of many instruments. Another active line of

research in the econometrics literature has been concerned with the use of regularization and

shrinkage methods for estimating optimal instruments in the context of estimating a low-

dimensional parameter; see, for example, Okui (2011) and Carrasco (2012). Of particular

interest is the recent work of Belloni et al. (2012), where Lasso-based methods were applied

to form first-stage predictions and estimate optimal instruments in an IV model with many

instruments but itself of fixed dimensionality.

In this article, we focus on the application of high-dimensional sparse IV models to ge-

netical genomics, where we are interested in associating gene expression data with a complex

trait to identify potentially causal genes by using genetic variants as instruments. Motivated

by this important application, we propose a two-stage regularization (2SR) methodology for

identifying and estimating important covariate effects while selecting and estimating optimal

instruments. Our approach merges the two independent lines of research mentioned above

and provides a regularization framework for IV models that accommodate covariates and

instruments both of high dimensionality. Specifically, the proposed procedure consists of

two stages: In the first stage the covariates are regressed on the instruments in a regularized
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multivariate regression model and predictions are obtained, and in the second stage the re-

sponse of interest is regressed on the first-stage predictions in a regularized regression model

to perform final variable selection and estimation. In each stage, a sparsity-inducing penalty

function is employed to yield desirable statistical properties and practical performance. The

methodology can be viewed a high-dimensional extension of the 2SLS method, allowing the

use of regularization methods to address the high-dimensional challenge in both stages.

Several key features make the proposed methodology especially appealing for the kind of

applications we consider in this article. First, unlike marginal regression models commonly

used in empirical studies that analyze a few variables at a time, our method allows for the

joint modeling and inference of high-dimensional genetical genomics data. In view of the

fact that many genes interact with each other and contribute together to a complex trait

or disease, joint modeling is crucial for correcting bias and controlling false positives due

to possible confounding. Second, our method requires neither a specification of a small set

of important instruments nor an importance ranking among the instruments; instead, we

consider the estimation of optimal instruments as a variable selection problem and allow

the procedure to choose important instruments based on the data. Third, the proposed

implementation by coordinate descent optimization is computationally very efficient and

has provable convergence properties, therefore bypassing the computational obstacles faced

by traditional model selection methods. Finally, we rigorously justify our method for the

representative L1 regularization and a class of concave regularization methods in the high-

dimensional setting where the dimensionality of covariates and instruments are both allowed

to grow exponentially with the sample size. Through the theoretical analysis, we explicate

the impact of dimensionality and the role of regularization, and provide strong performance

guarantees for the proposed method.

The remainder of this article is organized as follows. Section 2 introduces the high-

dimensional sparse IV model. The 2SR methodology and implementation are presented in

Section 3. Theoretical properties of the regularized estimators are investigated in Section 4.

We illustrate our method by simulation studies in Section 5 and an analysis of mouse obesity

data in Section 6. We conclude with some discussion in Section 7. Proofs are relegated to

the Appendix and Supplementary Material.

2 Sparse Instrumental Variables Models

Suppose we have a quantitative trait or clinical phenotype y, a p-vector of gene expression

levels x, and a q-vector of numerically coded genotypes z. In reality, there may be a sufficient

set of unobserved confounding phenotypes w that act as proxies for the long-term effects

of environmental exposures and/or the state of the microenvironment of the cells or tissues

4



z1

z2

x1

x2

y

w

(a)

z1

z2

x1

x2

y

w

u

(b)

z1

z2

x1

x2

y

w

u

(c)

Figure 1: Causal diagrams showing the relationships between two genotypes z1 and z2,
two gene expression levels x1 and x2, a clinical phenotype y, an unobserved phenotype w
that confounds the associations between gene expression levels and the clinical phenotype,
and an unobserved variable u representing possibly present population substructure. The
population substructure (a) is not present, (b) affects genotypes and gene expression levels,
or (c) affects genotypes and the clinical phenotype.

within which the biological processes occur. These phenotypes are likely to have strong

influences on gene expression levels while contributing substantially to the clinical phenotype.

Figure 1(a) illustrates the confounding between x and y with an example of six variables.

If an ordinary regression analysis is to be applied, the effects of x1 and x2 on y would be

seriously confounded by w, resulting in a spurious association or effect modification.

One way of controlling for the confounding due to w is through the use of the genotype

z as instruments. In order for z to be valid instruments, the following conditions must be

satisfied (Didelez, Meng, and Sheehan 2010):

1. The genotype z is (marginally) independent of the confounding phenotype w between

x and y;

2. The genotype z is not (marginally) independent of the intermediate phenotype x;

3. Conditionally on x and w, the genotype z and the clinical phenotype y are indepen-

dent.

The above conditions are not easily testable from the observed data, but can often be

justified on the basis of plausible biological assumptions. Condition 1 is ensured by the usual

assumption that the genotype is assigned at meiosis randomly, given the parents’ genes, and

independently of any confounding phenotype. Condition 2 requires that the genetic variants

be reliably associated with the gene expression levels, which is often demonstrated by cis-

eQTLs with strong regulatory signals. Condition 3 requires that the genetic variants have

no direct effects on the clinical phenotype and can affect the latter only indirectly through

the gene expression levels. Owing to the large pool of gene expressions included in genetical

genomics studies, the possibility of a strong indirect effect is greatly reduced and hence this
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condition is also mild and tends to be satisfied in practice.

We discuss here more on these assumptions for genetical genomics data and possible

biological complications. Population stratification is a major concern in genome-wide asso-

ciation studies, where the presence of subpopulations with different allele frequencies and

different distributions of quantitative traits or risks of disease can lead to spurious associa-

tions (Lin and Zeng 2011). Two typical scenarios for the impact of population stratification

are illustrated in Figure 1(b) and (c). In Figure 1(b), all three conditions for valid IVs are

still satisfied, although the population substructure, represented by an unobserved variable

u, may strengthen or weaken the associations between the genotype z and gene expression

levels x required by Condition 2. In Figure 1(c), Condition 3 is violated because conditioning

on x and w alone is insufficient to guarantee the independence of the genotype z and the

clinical phenotype y. To deal with possible population stratification, one can regress out

the principal components calculated from the genotype data in clinical phenotype regression

and gene expression regressions. We also require that the tissue where the gene expressions

are measured be relevant to the clinical phenotype. Condition 3 assumes that the genetic

variants have no direct effects on the clinical phenotype but manifest their effects through

expressions in the relevant tissue. Using a phenotype-irrelevant tissue can potentially lead

to violation of Condition 3. It is important, however, to note that strong instruments, a

majority of which are most likely cis-eQTLs, play a predominant role in our methodology.

Recent studies have revealed that these cis-eQTLs and their effect sizes are highly conserved

across human tissues and populations (Göring 2012; Stranger et al. 2012). This fact helps to

lessen the risks of potential assumption violations, although great care should be exercised

in justifying the assumptions on a case-by-case basis. See, for example, Didelez and Shee-

han (2007) and Lawlor et al. (2008) for more discussion on the complications in Mendelian

randomization studies.

Suppose we have n independent observations of (y,x, z). Denote by y, X, and Z, respec-

tively, the n× 1 response vector, the n× p covariate matrix, and the n× q genotype matrix.

Using the genotypes as instruments, we consider the following linear IV model for the joint

modeling of the data (y,X,Z):

y = Xβ0 + η,

X = ZΓ0 + E,
(1)

where β0 and Γ0 are a p×1 vector and a q×p matrix, respectively, of regression coefficients,

and η = (η1, . . . , ηn)T and E = (ε1, . . . , εn)T are an n × 1 vector and an n × p matrix,

respectively, of random errors such that the (p + 1)-vector (εTi , ηi) is multivariate normal

conditional on Z with mean zero and covariance matrix Σ = (σjk). We write σjj = σ2
j .
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Without loss of generality, we assume that each variable is centered about zero so that no

intercept terms appear in (1), and that each column of Z is standardized to have L2 norm
√
n. We emphasize that εi and ηi may be correlated because of the arbitrary covariance

structure. In contrast to the usual linear model regressing y on X, model (1) does not

require that the covariate X and the error η be uncorrelated, thus substantially relaxing the

assumptions of ordinary regression models and being more appealing in data analysis.

We are interested in making inference for the IV model (1) in the high-dimensional

setting where the dimensions p and q can both be much larger than the sample size n.

In addition to selecting and estimating important covariate effects, since the identities of

optimal instruments are unknown, we also regard the identification and estimation of optimal

instruments as a variable selection and estimation problem. As is typical in high-dimensional

sparse modeling, we assume that model (1) is sparse in the sense that only a small subset of

the regression coefficients in β0 and Γ0 are nonzero. Our goal is, therefore, to identify and

estimate the nonzero coefficients in both β0 and Γ0.

3 Regularization Methods and Implementation

In this section, we first study the suboptimality of penalized least squares (PLS) estimators

for the causal parameter β0. We then propose the 2SR methodology and present an efficient

coordinate descent algorithm for implementation. Finally, strategies for tuning parameter

selection are discussed.

3.1 Suboptimality of Penalized Least Squares

In the classical setting where no regularization is needed, it is well known that the ordinary

least squares estimator is inconsistent in the presence of endogeneity, that is, when some

of the covariates are correlated with the error term. In high dimensions, without using the

instruments, a direct application of one-stage regularization leads to the PLS estimator

β̂
∗

= arg min
β∈Rp

{
1

2n
‖y −Xβ‖22 +

p∑
j=1

pµ(|βj|)

}
,

where βj is the jth component of β and pµ(·) is a penalty function that depends on a tuning

parameter µ > 0. With appropriately chosen penalty functions, the PLS estimator has been

shown to enjoy superior performance and theoretical properties; see, for example, Fan and

Lv (2010) for a review. When the data are generated from the linear IV model (1), however,

the usual linear model that assumes the covariates to be uncorrelated with the error term is

misspecified, and the PLS estimator β̂
∗

is no longer a reasonable estimator of β0. In fact,

theoretical results in Lu, Goldberg, and Fine (2012) and Lv and Liu (2013) on misspecified

generalized linear models imply that, under some regularity conditions, the PLS estimator β̂
∗
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is consistent for the least false parameter β∗ that minimizes the Kullback–Leibler divergence

from the true model, which satisfies the equation

XT (Xβ0 + η0 −Xβ∗) = 0, (2)

where η0 = E(η |X). The following proposition shows that there is a nonnegligible gap

between β∗ and the true parameter β0.

Proposition 1 (Gap between β∗ and β0). If ‖n−1XTη0‖∞ 6= oP (1) and max1≤j≤p ‖xj‖2 =

OP (
√
n), where xj is the jth column of X, then ‖β∗ − β0‖1 6= oP (1).

It is interesting to compare the gap ‖β∗ − β0‖1 6= oP (1) with the minimax optimal rate

O(s
√

(log p)/n) for high-dimensional linear regression in L1 loss over the L0 ball B0(s) =

{β ∈ Rp : ‖β‖0 ≤ s} (Ye and Zhang 2010; Raskutti, Wainwright, and Yu 2011): the former

dominates the latter if s2 log p = o(n). Thus, Proposition 1 entails that, in the presence of

endogeneity, any optimal procedure for estimating β∗, such as the PLS estimator with L1 or

other sparsity-inducing penalties, is suboptimal for estimating β0 as long as s2 log p = o(n).

Moreover, since by definition Xβ∗ is the orthogonal projection of E(y |X) onto the column

space of X, the component Xβ∗ is generally closer to the expected response than Xβ0. This

will likely lead to a larger proportion of variance explained for the PLS method. Hence, to

assess how well the fitted model predicts the response in model (1), it is more meaningful to

compare the predicted values Xβ̂ to the causal component Xβ0.

3.2 Two-Stage Regularization

One standard way of eliminating endogeneity is to replace the covariates by their expectations

conditional on the instruments. This idea leads to the classical two-stage least squares (2SLS)

method (Anderson 2005), in which the covariates are first regressed on the instruments

and the response is then regressed on the first-stage predictions of the covariates. The

performance of the 2SLS method deteriorates drastically or become inapplicable, however,

as the dimensionality of covariates and instruments increase. We thus propose to apply

regularization methods to cope with the high dimensionality in both stages of the 2SLS

method, resulting in the following 2SR methodology.

Stage 1. The goal of the first stage is to identify and estimate the nonzero effects of the

instruments and obtain the predicted values of the covariates. Let ‖·‖F denote the Frobenius

norm of a matrix. The first-stage regularized estimator is defined as

Γ̂ = arg min
Γ∈Rq×p

{
1

2n
‖X− ZΓ‖2F +

q∑
i=1

p∑
j=1

pλj(|γij|)

}
, (3)

where γij is the (i, j)th entry of the matrix Γ, pλj(·) is a sparsity-inducing penalty function
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to be discussed later, and λj > 0 are tuning parameters that control the strength of the first-

stage regularization. After the estimate Γ̂ is obtained, the predicted value of X is formed by

X̂ = ZΓ̂.

Stage 2. Substituting the first-stage prediction X̂ for X, we proceed to identify and

estimate the nonzero effects of the covariates. The second-stage regularized estimator is

defined as

β̂ = arg min
β∈Rp

{
1

2n
‖y − X̂β‖22 +

p∑
j=1

pµ(|βj|)

}
, (4)

where βj is the jth component of β, pµ(·) is a sparsity-inducing penalty function as before,

and µ > 0 is a tuning parameter that controls the strength of the second-stage regularization.

We thus obtain the pair (β̂, Γ̂) as our final estimator for the regression parameter (β0,Γ0)

in model (1).

We consider the following three choices of the penalty function pλ(t) for t ≥ 0: (a) the L1

penalty or Lasso (Tibshirani 1996), pλ(t) = λt; (b) the smoothly clipped absolute deviation

(SCAD) penalty (Fan and Li 2001),

pλ(t) = λ

∫ t

0

{
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ)

}
dθ, a > 2;

and (c) the minimax concave penalty (MCP) (Zhang 2010),

pλ(t) =

∫ t

0

(aλ− θ)+
a

dθ, a > 1.

The SCAD and MCP penalties have an additional tuning parameter a to control the shape

of the function. These penalty functions have been widely used in high-dimensional sparse

modeling and their properties are well understood in ordinary regression models (e.g., Fan

and Lv 2010). Moreover, the fact that these penalties belong to the class of quadratic spline

functions on [0,∞) allows for a closed-form solution to the corresponding penalized least

squares problem in each coordinate, leading to very efficient implementation via coordinate

descent (e.g., Mazumder, Friedman, and Hastie 2011).

3.3 Implementation

We now present an efficient coordinate descent algorithm for solving the optimization prob-

lems (3) and (4) with the Lasso, SCAD, and MCP penalties. We first note that the matrix

optimization problem (3) can be decomposed into p penalized least squares problems,

γ̂j = arg min
γj∈Rq

{
1

2n
‖xj − Zγj‖22 +

q∑
i=1

pλj(|γij|)

}
, (5)

9



where xj is the jth column of the covariate matrix X and γj = (γ1j, . . . , γqj)
T . The uni-

variate solution to the unpenalized least squares problem (5) is given by γ̃ij = n−1(xj −∑
k 6=i γkjzk)

Tzi = n−1rTj zi + γij, where zj is the jth column of the instrument matrix Z,

rj = xj −
∑q

k=1 γkjzk is the current residual, and we have used the fact n−1zTj zj = 1 due to

standardization. The penalized univariate solution, then, can be obtained by γij = S(γ̃ij;λ),

where S(·;λ) is a thresholding operator defined for Lasso, SCAD, and MCP, respectively, as

SLasso(t;λ) = sgn(t)(|t| − λ)+,

SSCAD(t;λ) =


sgn(t)(|t| − λ)+, if |t| ≤ 2λ,

sgn(t)
|t| − λa/(a− 1)

1− 1/(a− 1)
, if 2λ < |t| ≤ aλ,

t, if |t| > aλ,

and

SMCP(t;λ) =

 sgn(t)
(|t| − λ)+
1− 1/a

, if |t| ≤ aλ,

t, if |t| > aλ.

Similarly, if the jth column x̂j of the first-stage prediction matrix X̂ is standardized to

have L2 norm
√
n, the penalized univariate solution for the optimization problem (4) is

given by βj = S(β̃j;µ), where β̃j = n−1rT x̂j + βj is the unpenalized univariate solution and

r = y−
∑p

k=1 βkx̂k is the current residual. We summarize the coordinate descent algorithm

for computing the 2SR estimator (β̂, Γ̂) in Algorithm 1.

Algorithm 1. Coordinate descent for the 2SR estimator

Initialize: β,Γ← 0 or warm starts, λ1, . . . , λp, µ > 0
for j = 1, . . . , p do

while γj not convergent do
for i = 1, . . . , q do
γij ← S(γ̃ij;λj)

Γ̂← (γ1, . . . ,γp), X̂← ZΓ̂
while β not convergent do

for j = 1, . . . , p do
βj ← S(β̃j, µ)

β̂ ← β

The convergence of Algorithm 1 to a local minimum for β̂ and Γ̂ follows from the con-

vergence properties of coordinate descent algorithms for penalized least squares; see, for

example, Lin and Lv (2013). Since the SCAD and MCP penalties are nonconvex, conver-

gence to a global minimum is not guaranteed in general. In practice, coordinate descent

algorithms are often used to produce a solution path over a grid of regularization parameter
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values, with warm starts from nearby solutions. In this case, the algorithm tends to find a

sparse local solution with superior performance.

3.4 Tuning parameter selection

The 2SR method has p + 1 regularization parameters λ1, . . . , λp and µ to be tuned. We

propose to choose the optimal tuning parameters by K-fold cross-validation. Specifically, we

define the cross-validation error for λj and µ by

CV(λj) =
1

K

K∑
k=1

‖x(k)
j − Z(k)γ̂

(−k)
j (λj)‖22 (6)

and

CV(µ) =
1

K

K∑
k=1

‖y(k) − X̂(k)β̂
(−k)

(µ)‖22, (7)

respectively, where x
(k)
j , Z(k), y(k), and X̂(k) are vectors/matrices for the kth part of the

sample, and Γ̂
(−k)

(λj) and β̂
(−k)

(µ) are the estimates obtained with the kth part removed.

In view of the fact that in typical genetical genomics studies, both p and q can be in the

thousands, it is necessary to reduce the search dimension of tuning parameters. To this end,

we propose to first determine the optimal λj that minimizes the criterion (6), for j = 1, . . . , p,

and then, with λ1, . . . , λp fixed, find the optimal µ that minimizes the criterion (7). The

practical performance of this search strategy proves to be very satisfactory.

4 Theoretical Properties

In this section, we investigate the theoretical properties of the 2SR estimators. Through our

theoretical analysis, we wish to understand (a) the impact of the dimensionality of covariates

and instruments as well as other factors on the quality of the regularized estimators, and

(b) the role of the two-stage regularization in providing performance guarantees for the

regularized estimators, especially for the second-stage estimators. To address (a), we adopt

a nonasymptotic framework that allows the dimensionality of covariates and instruments to

vary freely and thus can both be much larger than the sample size; to address (b), we impose

conditions only on the instrument matrix Z, and treat the covariate matrix X and the first-

stage prediction X̂ as nondeterministic. The major challenge arises in the characterization

of the second-stage estimation, where the “design matrix” X̂ is neither fixed nor a random

design sampled from a known distribution. Therefore, existing formulations for the high-

dimensional analysis of ordinary regression models are inapplicable to our setting. We also

stress that our theoretical analysis is essentially different from the recent developments in

sparse IV models. The methods and results developed by Gautier and Tsybakov (2011)
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and Fan and Liao (2012) involve only one-stage estimation and regularization. The second-

stage estimation considered by Belloni et al. (2012) is of fixed dimensionality, which allows

them to focus on estimation efficiency based on standard asymptotic analysis. Owing to the

complications involved in the analysis of a general penalty, we first consider the representative

case of L1 regularization in Section 4.1, which allows us to obtain clean conditions providing

important insights. We then present in Section 4.2 a generalization of the theory, which is

applicable to a much broader class of regularization methods.

4.1 L1 Regularization

We begin by introducing some notation. Let ‖ · ‖1 and ‖ · ‖∞ denote the matrix 1-norm

and ∞-norm, respectively, that is, ‖A‖1 = maxj
∑

i |aij| and ‖A‖∞ = maxi
∑

j |aij| for any

matrix A = (aij). For any vector α, matrix A, and index sets I and J , let αJ denote the

subvector formed by the jth components of α with j ∈ J , and AIJ the submatrix formed

with the (i, j)th entries of A with i ∈ I and j ∈ J . Also, denote by J c the complement of J

and |J | the number of elements in J . Following Bickel, Ritov, and Tsybakov (2009), define

the restricted eigenvalue for an n×m matrix A and 1 ≤ s ≤ m by

κ(A, s) = min
|J |≤s

min
δ 6=0

‖δJc‖1≤3‖δJ‖1

‖Aδ‖2√
n‖δJ‖2

.

Let supp(α) denote the support of a vector α = (αj), that is, supp(α) = {j : αj 6= 0}. Define

the sparsity levels r = max1≤j≤p |supp(γ0j)| and s = |supp(β0)|, and the first-stage noise

level σmax = max1≤j≤p σj, where γ0j is the jth column of Γ0. We consider the parameter

space with ‖Γ0‖1 ≤ L and ‖β0‖1 ≤M for some constants L,M > 0.

To derive nonasymptotic bounds on the estimation and prediction loss of the regularized

estimators Γ̂ and β̂, we impose the following conditions:

(C1) There exists κ1 > 0 such that κ(Z, r) ≥ κ1.

(C2) There exists κ2 > 0 such that κ(ZΓ0, s) ≥ κ2.

We emphasize that dimensions p and q, sparsity levels r and s, and lower bounds κ1 and

κ2 may all depend on the sample size n; we have suppressed the dependency for notational

simplicity. Conditions (C1) and (C2) are analogous to those in Bickel, Ritov, and Tsybakov

(2009) for usual linear models, and require that the matrices Z and ZΓ0 be well behaved over

some restricted sets of sparse vectors. One important difference, however, is that Condition

(C2) is imposed on the conditional expectation matrix ZΓ0 of X, rather than the first-stage

prediction matrix, or the second-stage design matrix, X̂. This condition is more natural in

our context, but poses new challenges for the analysis.

The estimation and prediction quality of the first-stage estimator Γ̂ is characterized by

12



the following result.

Theorem 1 (Estimation and prediction loss of Γ̂). Under Condition (C1), if we choose

λj = Cσj

√
log p+ log q

n
(8)

with a constant C ≥ 2
√

2, then with probability at least 1 − (pq)1−C
2/8, the regularized esti-

mator Γ̂ defined by (3) with the L1 penalty satisfies

‖Γ̂− Γ0‖1 ≤
16C

κ21
σmaxr

√
log p+ log q

n

and

‖Z(Γ̂− Γ0)‖2F ≤
16C2

κ21
σ2
maxpr(log p+ log q).

Using the nonasymptotic bounds provided by Theorem 1, we can show that Condition

(C2) also holds with high probability for the matrix X̂ = ZΓ̂ with a smaller κ2; see Lemma

A.1 in the Appendix. This allows us to establish the following result concerning the estima-

tion and prediction quality of the second-stage estimator β̂.

Theorem 2 (Estimation and prediction loss of β̂). Under Conditions (C1) and (C2), if the

regularization parameters λj are chosen as in (8) and satisfy

λmax(2L+ λmax) ≤
κ21κ

2
2

322rs
, (9)

where λmax = max1≤j≤p λj, then there exist constants c0, c1, c2 > 0 such that, if we choose

µ =
C0

κ1

√
r(log p+ log q)

n
, (10)

where C0 = c0Lmax(σp+1,Mσmax), then with probability at least 1−c1(pq)−c2, the regularized

estimator β̂ defined by (4) with the L1 penalty satisfies

‖β̂ − β0‖1 ≤
64C0

κ1κ22
s

√
r(log p+ log q)

n

and

‖X̂(β̂ − β0)‖22 ≤
64C2

0

κ21κ
2
2

rs(log p+ log q).

We now turn to the model selection consistency of β̂. Let C = n−1(ZΓ0)
TZΓ0, S =

supp(β0), and ϕ = ‖(CSS)−1‖∞. Define the minimum signal b0 = minj∈S |β0j|, where β0j is

the jth component of β0. To study the model selection consistency, we replace Condition

(C2) by the following condition:

(C3) There exists a constant 0 < α ≤ 1 such that ‖CScS(CSS)−1‖∞ ≤ 1− α.

13



Condition (C3) is in the same spirit as the irrepresentability condition in Zhao and Yu

(2006) for the ordinary Lasso problem. Although Condition (C3) is placed on the covariance

matrix of ZΓ0, we can apply Theorem 1 to show that it also holds with high probability for

the covariance matrix of X̂ = ZΓ̂ with a smaller α; see Lemma A.3 in the Appendix. The

model selection consistency of β̂, along with a closely related L∞ bound, is established by

the following result.

Theorem 3 (Model selection consistency of β̂). Under Conditions (C1) and (C3), if the

regularization parameter λj are chosen as in (8) and satisfy

16ϕ

κ21
rsλmax(2L+ λmax) ≤

α

4− α
, (11)

then there exist constants c0, c1, c2 > 0 such that, if the regularization parameter µ is chosen

as in (10) and the minimal signal satisfies

b0 >
2

2− α
ϕµ,

then with probability at least 1− c1(pq)−c2, there exists a regularized estimator β̂ defined by

(4) with the L1 penalty that satisfies

(a) (Sign consistency) sgn(β̂) = sgn(β0), and

(b) (L∞ loss)

‖β̂S − β0S‖∞ ≤
2C0ϕ

(2− α)κ1

√
r(log p+ log q)

n
.

Theorem 3 shows that the second-stage estimator β̂ has the weak oracle property in the

sense of Lv and Fan (2009). Two remarks are in order. First, the validity of our arguments

for Theorems 2 and 3 relies on the first-stage regularization only through the estimation

and prediction bounds given in Theorem 1; this allows the arguments to be generalized to a

generic class of regularization methods for the first stage, which will be explored in Section

4.2. Second, a key difference from the high-dimensional analysis of the usual linear model is

that X and η may be correlated, and we have to make good use of the assumption that E

and η are mean zero conditional on Z; see Lemma A.2 in the Appendix.

Theorems 1–3 deliver the important message that dimensions p and q contribute only a

logarithmic factor to the estimation and prediction loss, and thus are both allowed to grow

exponentially with the sample size n. Note that (9) and (11) are critical assumptions relating

the first-stage regularization parameter λmax to the key quantities in the second stage. To

gain further insight into the dimension restrictions, suppose for simplicity that κ1, κ2, and

ϕ are constants; then (9) and (11) hold for sufficiently large n provided that

r2s2(log p+ log q) = o(n). (12)
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This implies that dimensions p and q can grow at most as eo(n) and sparsity levels r and s

can grow as o(
√
n), if the other quantities are fixed. Moreover, when q and r are also fixed,

the relation (12) reduces to s2 log p = o(n). In view of the remark following Proposition 1

and the L1 bound given in Theorem 2, we see that the 2SR estimator achieves the optimal

rate for estimating β0, which is asymptotically faster than that of the PLS estimator.

4.2 General Regularization

We next present a theory for the second-stage estimator β̂ that generalizes the results in

Section 4.1 in two aspects. First, we allow the first-stage regularization to be arbitrary

provided that certain nonasymptotic bounds are satisfied. Second, we allow the second-

stage regularization to adopt a generic form of sparsity-inducing penalties, thus including

the Lasso, SCAD, and MCP as special cases. Specifically, we impose the following conditions:

(C4) There exist e1, e2, and probability π0, which may depend on (n, p, q, r), such that

the first-stage estimator Γ̂ satisfies ‖Γ̂ − Γ0‖1 ≤ e1 and max1≤j≤p n
−1‖Z(γ̂j − γ0j)‖22 ≤ e2

with probability 1− π0.
(C5) The penalty function ρµ(·) ≡ pµ(·)/µ is increasing and concave on [0,∞), and has

a continuous derivative ρ′µ(·) on (0,∞). In addition, ρ′µ(·) is increasing in µ, and ρ′µ(0+) ≡
ρ′(0+) ∈ (0,∞) is independent of µ.

Moreover, we replace Condition (C3) by the weaker assumption:

(C6) There exist constants 0 < α ≤ 1, 0 ≤ ν ≤ 1/2, and c ≥ 1 such that

‖CScS(CSS)−1‖∞ ≤
{

(1− α)
ρ′(0+)

ρ′µ(b0/2)

}
∧ (cnν).

The family of penalty functions in Condition (C5) and a similar condition to (C6) were

studied by, for example, Fan and Lv (2011) for generalized linear models; see the discussion

therein for the motivation of these conditions. In particular, Condition (C5) captures several

desirable properties of commonly used sparsity-inducing penalties, and allows us to establish

a unified theory for these penalties. Condition (C6) is generally weaker than Condition (C3),

since concavity implies that ρ′(0+) ≥ ρ′µ(b0/2) and the right-hand side can be much larger

than 1− α. Note that for the L1 penalty, ρ′µ(·) ≡ 1 and this condition reduces to Condition

(C3). For SCAD and MCP, when the signals are sufficiently strong such that b0/2 ≥ aµ, we

have ρ′µ(b0/2) = 0 and the right-hand side can grow at most as O(
√
n).

Following Lv and Fan (2009), for any vector θ = (θj) with θj 6= 0 for all j, define the
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local concavity of the penalty function ρµ(·) at point θ by

τ(ρµ;θ) = lim
ε→0+

max
j

sup
|θj |−ε<t1<t2<|θj |+ε

{
−
ρ′µ(t2)− ρ′µ(t1)

t2 − t1

}
.

Further, define

τ0 = sup{τ(ρµ;θ) : θ ∈ Rs, ‖θ − β0S‖∞ ≤ b0/2}

and

µ0 = Λmin(CSS)− µτ0.

The following result generalizes Theorem 3 and establishes the model selection consistency

and weak oracle property of β̂.

Theorem 4 (Weak oracle property of β̂). Under Conditions (C4)–(C6), if µ0 > 0 and the

first-stage error bounds e1 and e2 satisfy

s(2Le1 + e2) ≤
α

(4− α)ϕ
∧ (µ0/2)2

s
, (13)

then there exist constants c0, c1, c2 > 0 such that, if we choose

µ ≥ C0n
ν

√
log p+ log q

n
∨ e2,

where C0 = c0Lmax(σp+1,Mσmax,M), and the minimum signal satisfies

b0 ≥
7

2
ϕµρ′(0+), (14)

then with probability at least 1−π0− c1(pq)−c2, there exists a regularized estimator β̂ defined

by (4) that satisfies

(a) (Sign consistency) sgn(β̂) = sgn(β0), and

(b) (L∞ loss)

‖β̂S − β0S‖∞ ≤
7

4
ϕµρ′(0+).

Compared with Theorem 3, Theorem 4 justifies the advantages of concave penalties

such as SCAD and MCP in that model selection consistency and weak oracle property are

established under substantially relaxed conditions. To understand the implications of the

assumption (13), note that, for the L1 penalty, Theorem 1 gives e1 = O(r
√

(log p+ log q)/n)

and e2 = O(r(log p + log q)/n), and the term involving µ0 is not needed. Assuming for

simplicity that ϕ is constant, (13) reduces to the dimension restriction (12). Therefore, (13)

plays essentially the same role as the assumption (11), but applies to a generic first-stage

estimator. Moreover, taking e2 as above and ν = 0, we obtain the same rate of convergence

for the L∞ loss as in Theorem 3.
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5 Simulation Studies

In this section, we report on simulation studies to evaluate the performance of the proposed

2SR method with the Lasso, SCAD, and MCP penalties. We compare the proposed method

with the PLS estimators with the same penalties that do not utilize the instruments, as well

as the PLS and 2SR oracle estimators that knew the relevant covariates and instruments

in advance. We are particularly interested in investigating how the PLS and 2SR methods

perform differently in relation to the sample size and how the dimensionality and instrument

strength affect the performance of the 2SR method.

We first consider the case where the dimensions p and q are moderately high and smaller

than the sample size n. Four models were examined, with (n, p, q) = (200, 100, 100) in Model

1 and (400, 200, 200) in Models 2–4. We first generated the coefficient matrix Γ0 by sampling

r = 5 nonzero entries of each column from the uniform distribution U([−b,−a] ∪ [a, b]).

To represent different levels of instrument strength, we took (a, b) = (0.75, 1) for strong

instruments in Models 1 and 2, and (a, b) = (0.5, 0.75) for weak instruments in Model 3.

In Model 4, which reflects a more realistic setting, we sampled r = 50 nonzero entries,

consisting of 5 strong/weak instruments with (a, b) = (0.5, 1) and 45 very weak instruments

with (a, b) = (0.05, 0.1). Similarly, we generated the coefficient vector β0 by sampling s = 5

nonzero components from U([−1,−0.5] ∪ [0.5, 1]). The covariance matrix Σ = (σij) was

specified as follows: We first set σij = (0.2)|i−j| for i, j = 1, . . . , p, and σp+1, p+1 = 1; in

addition to the five σj, p+1’s corresponding to the nonzero components of β0, we sampled

another five entries from the last column of Σ; we then set these ten entries to 0.3 and let

σp+1, j = σj, p+1 for j = 1, . . . , p. Note that the nonzero σj, p+1’s were intended to cause both

effect modifications and spurious associations for the PLS method. Finally, the instrument

matrix Z was generated by sampling each entry independently from Bernoulli(p0), where

p0 = 0.5 in Models 1–3 and p0 ∼ U([0, 0.5]) in Model 4, and the covariate matrix X and the

response vector y were generated accordingly.

Since the PLS method provides no estimates for the coefficient matrix Γ0 and our main

interest is in how the estimation of β0 can be improved by the 2SR method, we focus our

comparisons on the second-stage estimation. Five measures on estimation, prediction, and

model selection qualities were used to assess the performance of each method. The L1

estimation loss ‖β̂−β0‖1 and the prediction loss n−1/2‖X(β̂−β0)‖2 quantify the estimation

and prediction performance, respectively. The model selection performance is characterized

by the number of true positives (TP), the model size, and the Matthews correlation coefficient

(MCC). Here, positives refer to nonzero estimates. The MCC is a measure on the correlation
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between the observed and predicted binary classifications and is defined as

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TN, FP, and FN denote the number of true negatives, false positives, and false neg-

atives, respectively; a larger MCC indicates a better variable selection performance. In all

simulations, we applied ten-fold cross-validation to choose the optimal tuning parameters

and averaged each performance measure over 50 replicates.

The simulation results for Models 1–4 are summarized in Table 1. From the table we see

that the 2SR method improved on the performance of the PLS method substantially in all

cases. The improvement on model selection performance was most remarkable. The PLS

method selected an exceedingly large model with many false positives because of its failure in

distinguishing between the true and confounding effects, whereas the 2SR method resulted

in a much sparser model and controlled the number of false positives at a reasonable level.

As a result, the 2SR method had a much higher MCC than the PLS method, indicating a

superior variable selection performance. The estimation and prediction performance of the

PLS method was also greatly compromised by the confounding effects, and the 2SR method

achieved a dramatic improvement on the L1 estimation loss and a considerable improvement

on the prediction loss. The comparisons between Model 2 and the weaker instrument settings,

Models 3 and 4, suggest that a weaker instrument strength tends to decrease the performance

of the 2SR method, as expected, especially on the estimation and prediction quality. We

observe, however, that the model selection quality was only slightly affected and the overall

performance of the 2SR method was still very satisfactory.

To facilitate performance comparisons among different methods with varying sample size,

Figure 2 depicts the trends in three performance measures with the dimensions p = q = 100

fixed and the sample size n varying from 200 to 1500. It is clear from Figure 2 that the per-

formance of the 2SR method improves consistently as the sample size increases, whereas the

PLS method does not in general see performance gain and may even deteriorate. Moreover,

a closer look at the tails of the curves for the 2SR method with different penalties reveals

certain advantages of SCAD and MCP over the Lasso. There seems to be a nonvanishing

gap between the Lasso and oracle estimators, which agrees with the existing theory in the

context of linear regression that the Lasso does not possess the oracle property (Zou 2006).

We further study the case where the dimensions p and q are ultrahigh and larger than the

sample size n. We considered four models with the same settings as in Models 1–4, except

that (n, p, q) = (300, 600, 600) in Model 5 and (500, 1000, 1000) in Models 6–8. Table 2 sum-

marizes the simulation results for Models 5–8, and Figure 3 shows the performance curves

with p = q = 600 fixed and n varying from 200 to 1500. Trends in performance comparisons
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among different methods are similar to those in Table 1 and Figure 2, demonstrating the ad-

vantages of the 2SR method over the PLS method. We observe that, although the ultrahigh

dimensionality caused the 2SR method to select a larger model and resulted in a slightly

lower MCC than in the previous settings, the performance of the 2SR method still compared

favorably to the PLS method and the difference was pronounced for moderate sample sizes.

These results suggest that the dimensionality has only mild impact on the performance of

the 2SR method compared with the sample size, in agreement with our theoretical results

in Section 4.

6 Analysis of Mouse Obesity Data

To illustrate the application of the proposed method, in this section we present results from

the analysis of a mouse obesity data set described by Wang et al. (2006). The study includes

an F2 intercross of 334 mice derived from the inbred strains C57BL/6J and C3H/HeJ on

an apolipoprotein E (ApoE) null background, which were fed a high-fat Western diet from

8 to 24 weeks of age. The mice were genotyped using 1327 SNPs at an average density

of 1.5 cM across the whole genome, and the gene expressions of the liver tissues of these

mice were profiled on microarrays that include probes for 23,388 genes. Data on several

obesity-related clinical traits were also collected on the animals. The genotype, gene ex-

pression, and clinical data are available for download, respectively, at http://www.genetics.

org/cgi/content/full/genetics.110.116087/DC1, ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/

SeriesMatrix/GSE2814/, and http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/

MouseWeight/. Since the mice came from the same genetic cross, population stratification

is unlikely an issue. Also, a study using a superset of these data demonstrated that most

cis-eQTLs were highly replicable across mouse crosses, tissues, and sexes (van Nas et al.

2010). Therefore, the three assumptions for valid IVs seem to be plausible.

After the individuals, SNPs, and genes with a missing rate greater than 0.1 were removed,

the remaining missing genotype and gene expression data were imputed using the Beagle

approach (Browning and Browning 2007) and nearest neighbor averaging (Troyanskaya et al.

2001), respectively. Merging the genotype, gene expression, and clinical data yielded a

complete data set with q = 1250 SNPs and 23,184 genes on n = 287 (144 female and 143

male) mice. To enhance the interpretability and stability of the results, we focus on the

p = 2825 genes that can be mapped to the Mouse Genome Database (MGD) (Eppig et al.

2012) and have standard deviation of gene expression levels greater than 0.1. The latter

criterion is reasonable because gene expressions of too small variation are typically not of

biological interest and suggest that the genetic perturbations may not be sufficiently strong

for the genetic variants to be used as instruments.
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Our goal is to jointly analyze the genotype, gene expression, and clinical data to identify

important genes related to body weight. In order to utilize data from both sexes, we first

adjusted the body weight for sex by fitting a marginal linear regression model with sex

as the covariate and subtracting the estimated sex effect from the body weight. We then

applied the proposed 2SR method with the Lasso, SCAD, and MCP penalties to the data

set with adjusted body weight as the response. For comparison, we also applied the PLS

method to the same data set, and used ten-fold cross-validation to choose the optimal tuning

parameters for both methods. The models selected by cross-validation include 110 (Lasso),

49 (SCAD), and 16 (MCP) genes for the PLS method, and include 37 (Lasso), 15 (SCAD),

and 9 (MCP) genes for the 2SR method. The selected models resulted in an adjusted R2

of 0.894 (Lasso), 0.833 (SCAD), and 0.820 (MCP) for the PLS method, and 0.594 (Lasso),

0.581 (SCAD), and 0.579 (MCP) for the 2SR method, which is consistent with our remark

following Proposition 1. Since we have no knowledge of the causal component Xβ0 for the

real data, a direct comparison between the PLS and 2SR methods in assessing the model

fit is not possible. Nevertheless, we observe that the 2SR method produced a much sparser

model with reasonably high proportion of variance explained.

To gain insight into the stability of the selection results, we followed the idea of stability

selection (Meinshausen and Bühlmann 2010) to compute the selection probability of each

gene over 100 subsamples of size bn/2c for each fixed value of the regularization parameter µ.

The resulting stability paths for different methods are displayed in Figure 4. It is interesting

to observe that, among the genes with maximum selection probability at least 0.4, only 5

(Lasso), 3 (SCAD), and 0 (MCP) genes are common to both the PLS and 2SR methods. As

can be seen from Figure 4, these few genes, which are reasonably conjectured to be among

the truly relevant ones, stand out more clearly in the stability paths of the 2SR method.

Moreover, the overall stability paths of the 2SR method seem less noisy and hence can be

more useful for distinguishing the most important genes from the irrelevant ones.

Table 3 lists the genes that were chosen by stability selection with maximum selection

probability at least 0.5 using the 2SR method with three different penalties. Among these

17 genes, only three were also selected by the PLS method. This includes insulin-like growth

factor binding protein 2 (Igfbp2), which has been shown to protect against the development

of obesity (Wheatcroft et al. 2007). Among the genes identified only by the 2SR method,

apolipoprotein A-IV (Apoa4) plays an important role in lipoprotein metabolism and has

been implicated in the control of food intake in rodents (Tso, Sun, and Liu 2004); it inhibits

gastric emptying and serves as a satiety factor in response to ingestion of dietary fat. Apoa4

also acts as an enterogastrone, a humoral inhibitor of gastric acid secretion and motility

(Okumura et al. 1994), and is regulated by leptin, a major component of energy homeostasis
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(Doi et al. 2001). These previous findings suggest a potential role of Apoa4 in the regulation

of food intake and, consequently, body weight. Suppressor of cytokine signaling 2 (Socs2) is a

negative regulator in the growth hormone/insulin-like growth factor (IGF)-I signaling path-

way (Metcalf et al. 2000), which is directly related to obesity. Slc22a3 is a downstream gene

of the IGF signaling pathway. Recent studies have showed that the Gpld1 gene is associated

with serum glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) levels, which

predict changes in insulin sensitivity in response to a low-fat diet in obese women (Gray

et al. 2008). The IGF-binding protein also induces laminin gamma 1 (Lamc1) transcription

(Abrass and Hansen 2010). These identified genes clearly point out the importance of the

IGF signaling pathway in the development of obesity in mice.

Table 3 also presents the cis-SNPs, which are defined to be the SNPs within a 10 cM

distance of each gene, that are associated with the selected genes. These cis-SNPs are likely

to play a critical role in the regulation of the target genes and serve as strong instruments

in statistical analysis. Not all selected genes have cis-SNPs identified, partly due to the

nonuniform, relatively sparse distribution of genotyped SNPs. If the criterion is relaxed to

within 25 cM of each gene, we find that 13 of the 17 genes in the table have at least one

cis-SNP identified. Many of these cis-SNPs coincide with QTLs detected for body weight

traits in previous studies; for example, rs3663003 (Chr 1, 46.1 cM), rs4136518 (Chr 3, 54.6

cM), rs3694833 (Chr 10, 47.7 cM), rs4231406 (Chr 17, 12.0 cM), and rs3661189 (Chr 18,

27.5 cM) fall in previously detected QTL regions (Rocha et al. 2004). Moreover, rs4231406

was previously identified as a QTL for atherosclerosis, which is strongly associated with

body weight and adiposity (Wang et al. 2007). These results demonstrate that our method

can provide a more integrative, comprehensive understanding of the genetic architecture of

complex traits than classical QTL analysis and gene expression studies, and would be useful

for prioritizing candidate genes for complex diseases.

7 Discussion

We have proposed a 2SR method for variable selection and estimation in sparse IV models

where the dimensionality of covariates and instruments can both be much larger than the

sample size. We have developed a high-dimensional theory that supports the theoretical

advantages of our method and sheds light on the impact of dimensionality in the resulting

procedure. We have applied our method to genetical genomics studies for jointly analyzing

gene expression data and genetic variants to explore their associations with complex traits.

The proposed method provides a powerful approach to effectively integrating and utilizing

genotype, gene expression, and clinical data, which is of great importance for large-scale

genomic inference. We have demonstrated on simulated and real data that our method
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is less affected by confounding and can lead to more reliable and biologically more inter-

pretable results. Although we are primarily motivated by genetical genomics applications,

the methodology is in fact very general and likely to find a wide range of applications in

epidemiology, econometrics, and many other fields.

In our analysis of genetical genomics data, only genetic variants are used as instruments,

and gene expressions that fail to be associated with any genetic variants in the first stage of

the 2SR method have to be excluded at the second stage, which may comprise the inferences

for genes with weak genetic effects. Epigenetic processes, such as DNA methylation, histone

modification, and various RNA-mediated processes, are also known to play an essential role

in the regulation of gene expression, and their influences on the gene expression levels may

be profound (Jaenisch and Bird 2003). Thus, when epigenetic data are also collected on the

same subjects, they can be similarly treated as potential instruments in the sparse IV model.

The joint consideration of genetic and epigenetic variants as instruments is likely to yield

stronger instruments than using the genetic variants alone, which may lead to more reliable

genomic inference.

Several extensions and improvements of the methodology are worthwhile to pursue. We

have applied regularization methods to exploit the sparsity of individual coefficients, allow-

ing the first stage to be decomposed into p regression problems. While our general theory

in Section 4.2 applies to a generic first-stage estimator, the first-stage estimation and pre-

diction could be improved by taking into account the correlations among the covariates and

borrowing information across the p subproblems. Two possibilities would be to exploit the

structural sparsity of the coefficient matrix through certain matrix decompositions (e.g.,

Chen, Chan, and Stenseth 2012; Chen and Huang 2012), and to jointly estimate the coeffi-

cient matrix and the covariance structure (e.g., Rothman, Levina, and Zhu 2010; Cai et al.

2013). Moreover, since the 2SR method is a high-dimensional extension of the classical 2SLS

method, it would be natural to ask whether other IV estimators such as the LIML and GMM

estimators can also be extended to our high-dimensional setting. Although asymptotic ef-

ficiency would not be a primary concern in high dimensions, certain advantages of these

estimators in low dimensions may carry over and lead to performance improvement.

Appendix: Proofs

A.1 Proof of Proposition 1

We prove the result by contradiction. From (2) we have XTη0 = XTX(β∗ − β0). If ‖β∗ −
β0‖1 = oP (1), then∥∥∥∥ 1

n
XTη0

∥∥∥∥
∞
≤ max

1≤i,j≤p

1

n
xTi xj‖β∗ − β0‖1 ≤ max

1≤i,j≤p

1

n
‖xi‖2‖xj‖2‖β∗ − β0‖1 = oP (1).
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This yields a contradiction and completes the proof.

A.2 Proof of Theorem 1

Since the optimization problem (3) can be decomposed into p penalized least squares prob-

lems, the result is a straightforward extension of Theorem 7.2 of Bickel, Ritov, and Tsybakov

(2009) to the multivariate regression case. From Condition (C1) and the aforementioned re-

sult it follows that, with probability at least 1−q exp(−nλ2j/(8σ2
j )), the regularized estimator

γ̂j defined by (5) with the L1 penalty satisfies

‖γ̂j − γ0j‖1 ≤ 16rλj/κ
2
1 (A.1)

and

‖Z(γ̂j − γ0j)‖22 ≤ 16nrλ2j/κ
2
1. (A.2)

Using the union bound, we have, with probability at least 1−
∑p

j=1 q exp(−nλ2j/(8σ2
j )), the

regularized estimator Γ̂ = (γ̂1, . . . , γ̂p) satisfies ‖Γ̂−Γ0‖1 ≤ 16rλmax/κ
2
1 and ‖Z(Γ̂−Γ0)‖2F ≤

16nprλ2max/κ
2
1. Now, if we choose λj = Cσj

√
(log p+ log q)/n with a constant C ≥ 2

√
2,

then with probability at least 1− (pq)1−C
2/8, the desired inequalities hold.

A.3 Proof of Theorem 2

The proof of Theorem 2 relies on two key lemmas. Lemma A.1 shows that Condition (C2),

which is imposed on the matrix ZΓ0, also holds with high probability for the matrix X̂ = ZΓ̂.

Lemma A.2 establishes a fundamental inequality that is essential to the proof. To avoid

repeatedly stating the probability bounds for certain inequalities to hold, we will occasionally

condition on the events that these inequalities hold, and incorporate the probability bounds

into the result by the union bound.

Lemma A.1. Under Conditions (C1) and (C2), if the regularization parameters λj are

chosen to satisfy

λmax(2L+ λmax) ≤
κ21κ

2
2

322rs
, (A.3)

then with probability at least 1 −
∑p

j=1 q exp(−nλ2j/(8σ2
j )), the matrix X̂ = ZΓ̂, where Γ̂ is

defined by (3) with the L1 penalty, satisfies

κ(X̂, s) ≥ κ2
2
.

Proof. For any subset J ⊂ {1, . . . , p} with |J | ≤ s and any δ ∈ Rp with δ 6= 0 and

‖δJc‖1 ≤ 3‖δJ‖1, we have

δT (X̂T X̂− (ZΓ0)
TZΓ0)δ

n‖δJ‖22
≤
‖δ‖21 max1≤i,j≤p |x̂Ti x̂j − (Zγ0i)

TZγ0j|
n‖δJ‖22

.
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Since ‖δJc‖1 ≤ 3‖δJ‖1, we have ‖δ‖21 = (‖δJ‖1 +‖δJc‖1)2 ≤ 16‖δJ‖21 ≤ 16s‖δJ‖22. To bound

the entrywise maximum, we write

x̂Ti x̂j − (Zγ0i)
TZγ0j

= (x̂i − Zγ0i)
T (x̂j − Zγ0j) + (x̂i − Zγ0i)

TZγ0j + (Zγ0i)
T (x̂j − Zγ0j)

= (γ̂i − γ0i)
TZTZ(γ̂j − γ0j) + (γ̂i − γ0i)

TZTZγ0j + (Zγ0i)
TZ(γ̂j − γ0j)

≡ T1 + T2 + T3.

We now condition on the event that (A.1) and (A.2) in the proof of Theorem 1 hold for

j = 1, . . . , p, which occurs with probability at least 1 −
∑p

j=1 q exp(−nλ2j/(8σ2
j )). Then, by

the Cauchy–Schwarz inequality,

|T1| ≤ ‖Z(γ̂i − γ0i)‖2‖Z(γ̂j − γ0j)‖2 ≤ 16nrλ2max/κ
2
1.

Also, noting that ‖zj‖2 =
√
n by standardization and ‖Γ0‖1 ≤ L, we have

|T2| ≤ ‖γ̂i − γ0i‖1 max
1≤k,l≤q

|zTk zl|‖γ0j‖1

≤ ‖γ̂i − γ0i‖1 max
1≤k,l≤q

‖zk‖2‖zl‖2‖γ0j‖1 ≤ 16Lnrλmax/κ
2
1.

Similarly, |T3| ≤ 16Lnrλmax/κ
2
1. Combining these bounds and using the assumption (A.3),

we obtain

δT (X̂T X̂− (ZΓ0)
TZΓ0)δ

n‖δJ‖22
≤ 162rs

κ21
λmax(2L+ λmax) ≤

162rs

κ21
· κ

2
1κ

2
2

322rs
=
(κ2

2

)2
.

This, together with Condition (C2), proves the lemma.

Lemma A.2. Under Conditions (C1) and (C2), if κ−21 r(log p + log q) = O(n) and the

regularization parameters λj are chosen as in (8), then there exist constants c0, c1, c2 > 0

such that, if we choose

µ =
C0

κ1

√
r(log p+ log q)

n
,

where C0 = c0Lmax(σp+1,Mσmax), then with probability at least 1−c1(pq)−c2, the regularized

estimator β̂ defined by (4) with the L1 penalty satisfies

1

2n
‖X̂(β̂ − β0)‖22 +

µ

2
‖β̂ − β0‖1 ≤ 2µ‖β̂S − β0S‖.

Proof. By the optimality of β̂, we have

1

2n
‖y − X̂β̂‖22 + µ‖β̂‖1 ≤

1

2n
‖y − X̂β0‖22 + µ‖β0‖1.

Substituting y = Xβ0 + η, we write

‖y − X̂β̂‖22 = ‖η − (X̂β̂ −Xβ0)‖22
= ‖η‖22 + ‖X̂β̂ −Xβ0‖22 − 2ηT (X̂β̂ −Xβ0)
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= ‖η‖22 + ‖X̂(β̂ − β0) + (X̂−X)β0‖22 − 2ηT (X̂β̂ −Xβ0)

= ‖η‖22 + ‖X̂(β̂ − β0)‖22 + ‖(X̂−X)β0‖22 − 2ηT (X̂β̂ −Xβ0)

+ 2βT0 (X̂−X)T X̂(β̂ − β0)

and

‖y − X̂β0‖22 = ‖η − (X̂−X)β0‖22 = ‖η‖22 + ‖(X̂−X)β0‖22 − 2ηT (X̂−X)β0.

Combining the last three displays yields

1

2n
‖X̂(β̂ − β0)‖22 ≤ µ‖β0‖1 − µ‖β̂‖1 +

1

n
ηT X̂(β̂ − β0)−

1

n
βT0 (X̂−X)T X̂(β̂ − β0)

≤ µ‖β0‖1 − µ‖β̂‖1 +

∥∥∥∥ 1

n
X̂Tη − 1

n
X̂T (X̂−X)β0

∥∥∥∥
∞
‖β̂ − β0‖1.

(A.4)

Next, we condition on the event that (A.1) and (A.2) in the proof of Theorem 1 hold for

j = 1, . . . , p, which occurs with probability at least 1 − (pq)1−C
2/8, and find a probability

bound for the event that ∥∥∥∥ 1

n
X̂Tη − 1

n
X̂T (X̂−X)β0

∥∥∥∥
∞
≤ µ

2
. (A.5)

Substituting X̂ = ZΓ̂ and X = ZΓ0 + E, we write

1

n
X̂Tη − 1

n
X̂T (X̂−X)β0

=
1

n
Γ̂TZTη − 1

n
Γ̂TZT (ZΓ̂− ZΓ0 − E)β0

=
1

n
(Γ̂− Γ0)

TZTη +
1

n
ΓT

0 ZTη +
1

n
(Γ̂− Γ0)

TZTEβ0 +
1

n
ΓT

0 ZTEβ0

− 1

n
(Γ̂− Γ0)

TZTZ(Γ̂− Γ0)β0 −
1

n
ΓT

0 ZTZ(Γ̂− Γ0)β0

≡ T1 + T2 + T3 + T4 + T5 + T6.

To bound term T1, it follows from (A.1), the union bound, and the classical Gaussian tail

bound that

P
(
‖T1‖∞ ≥

µ

12

)
≤ P

(∥∥∥∥ 1

n
ZTη

∥∥∥∥
∞
≥ κ21

16rλmax

· µ
12

)
≤ q exp

{
− n

2σ2
p+1

(
κ21

16rλmax

· µ
12

)2
}
.

Noting that ‖Γ0‖1 ≤ L, we have

P
(
‖T2‖∞ ≥

µ

12

)
≤ P

(∥∥∥∥ 1

n
ZTη

∥∥∥∥
∞
≥ µ

12L

)
≤ q exp

{
− n

2σ2
p+1

( µ

12L

)2}
.

To bound term T3, using (A.1) and ‖β0‖1 ≤M , we obtain

P
(
‖T3‖∞ ≥

µ

12

)
≤ P

(
max

1≤i≤q, 1≤j≤p

∣∣∣∣ 1nzTi εj

∣∣∣∣ ≥ κ21
16rλmax

· µ

12M

)
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≤ pq exp

{
− n

2σ2
max

(
κ21

16rλmax

· µ

12M

)2
}
,

where εj is the jth column of the matrix E. Similarly,

P
(
‖T4‖∞ ≥

µ

12

)
≤ P

{
max

1≤i≤q, 1≤j≤p

∣∣∣∣ 1nzTi εj

∣∣∣∣ ≥ µ

12LM

}
≤ pq exp

{
− n

2σ2
max

( µ

12LM

)2}
.

To bound term T5, it follows from (A.2), ‖β0‖1 ≤ M , and the Cauchy–Schwarz inequality

that

‖T5‖∞ ≤M max
1≤i,j≤p

∣∣∣∣ 1n(γ̂i − γ0i)
TZTZ(γ̂j − γ0j)

∣∣∣∣
≤M max

1≤i,j≤p

1

n
‖Z(γ̂i − γ0i)‖2‖Z(γ̂j − γ0j)‖2 ≤M

16rλ2max

κ21
.

Noting that ‖zj‖2 =
√
n by standardization, we have

‖T6‖∞ ≤ LM max
1≤i≤q, 1≤j≤p

∣∣∣∣ 1nzTi Z(γ̂j − γ0j)

∣∣∣∣
≤ LM max

1≤j≤p

1√
n
‖Z(γ̂j − γ0j)‖2 ≤ LM

4
√
rλmax

κ1
.

Combining these bounds and in view of the assumption κ−21 r(log p + log q) = O(n), there

exist constants c0, c1, c2 > 0 such that, if we choose

µ =
C0

κ1

√
r(log p+ log q)

n
,

where C0 = c0Lmax(σp+1,Mσmax), then (A.5) holds with probability at least 1− c1(pq)−c2 .
This, together with (A.4), implies

1

2n
‖X̂(β̂ − β0)‖22 ≤ µ‖β0‖1 − µ‖β̂‖1 +

µ

2
‖β̂ − β0‖1.

Adding µ‖β̂ − β0‖1/2 to both sides yields

1

2n
‖X̂(β̂ − β0)‖22 +

µ

2
‖β̂ − β0‖1 ≤ µ(‖β0‖1 − ‖β̂‖1 + ‖β̂ − β0‖1)

= µ(‖β0S‖1 − ‖β̂S‖1 + ‖β̂S − β0S‖1) ≤ 2µ‖β̂S − β0S‖1.

This completes the proof of the lemma.

Proof of Theorem 2. We first note that (8) and (9) imply that the condition κ−21 r(log p +

log q) = O(n) is satisfied. Then it follows from Lemma A.2 that, with probability at least

1− c1(pq)−c2 , we have

1

2n
‖X̂(β̂ − β0)‖22 ≤ 2µ‖β̂S − β0S‖1 ≤ 2µ

√
s‖β̂S − β0S‖2 (A.6)
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and
µ

2
‖β̂ − β0‖1 ≤ 2µ‖β̂S − β0S‖1, or ‖β̂Sc − β0

Sc‖1 ≤ 3‖β̂S − β0S‖1.

The last inequality, the definition of κ(X̂, s), and Lemma 1 together imply

‖β̂S − β0S‖2 ≤
‖X̂(β̂ − β0)‖2√

nκ(X̂, s)
≤ 2‖X̂(β̂ − β0)‖2√

nκ2
. (A.7)

Combining (A.6) and (A.7), we obtain

‖X̂(β̂ − β0)‖22 ≤
64

κ22
nsµ2

and

‖β̂ − β0‖1 ≤ 4‖β̂S − β0S‖1 ≤ 4
√
s‖β̂S − β0S‖2 ≤

64

κ22
sµ.

Substituting (10) for µ concludes the proof.

A.4 Proof of Theorem 3

Central to the proof of Theorem 3 is the following lemma, which shows that Condition (C3)

also holds with high probability for the matrix X̂ = ZΓ̂ and gives a useful bound for the

inverse matrix norm ‖(ĈSS)−1‖∞.

Lemma A.3. Under Condition (C3), if the regularization parameters λj are chosen to satisfy

16ϕ

κ21
rsλmax(2L+ λmax) ≤

α

4− α
, (A.8)

then with probability at least 1 −
∑p

j=1 q exp(−nλ2j/(8σ2
j )), the matrix Ĉ = n−1X̂T X̂ =

n−1(ZΓ̂)TZΓ̂, where Γ̂ is defined by (3) with the L1 penalty, satisfies

‖(ĈSS)−1‖∞ ≤
4− α

2(2− α)
ϕ (A.9)

and

‖ĈScS(ĈSS)−1‖∞ ≤ 1− α

2
. (A.10)

Proof. We condition on the event that (A.1) and (A.2) in the proof of Theorem 1 hold for

j = 1, . . . , p, which occurs with probability at least 1−
∑p

j=1 q exp(−nλ2j/(8σ2
j )). From the

proof of Lemma A.1, we have

max
1≤i,j≤p

1

n
|x̂Ti x̂j − (Zγ0i)

TZγ0j| ≤
16

κ21
rλmax(2L+ λmax).

This, along with the assumption (A.8), gives

ϕ‖ĈSS −CSS‖∞ ≤
16ϕ

κ21
rsλmax(2L+ λmax) ≤

α

4− α
, (A.11)
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and similarly,

ϕ‖ĈScS −CScS‖∞ ≤
α

4− α
. (A.12)

Then, by an error bound for matrix inversion (Horn and Johnson 1985, p. 336), we have

‖(ĈSS)−1 − (CSS)−1‖∞ ≤
ϕ‖ĈSS −CSS‖∞

1− ϕ‖ĈSS −CSS‖∞
ϕ ≤ α

2(2− α)
ϕ.

The triangle inequality implies

‖(ĈSS)−1‖∞ ≤ ‖(CSS)−1‖∞ + ‖(ĈSS)−1 − (CSS)−1‖∞ ≤ ϕ+
α

2(2− α)
ϕ =

4− α
2(2− α)

ϕ,

which proves (A.9).

To show inequality (A.10), we write

ĈScS(ĈSS)−1−CScS(CSS)−1 = (ĈScS −CScS)(ĈSS)−1−CScS(CSS)−1(ĈSS −CSS)(ĈSS)−1.

Then it follows from (A.9), (A.11), (A.12), and Condition (C3) that

‖ĈScS(ĈSS)−1 −CScS(CSS)−1‖∞
≤ ‖ĈScS −CScS‖∞‖(ĈSS)−1‖∞ + ‖CScS(CSS)−1‖∞‖ĈSS −CSS‖∞‖(ĈSS)−1‖∞

≤ α

(4− α)ϕ

4− α
2(2− α)

ϕ+ (1− α)
α

(4− α)ϕ

4− α
2(2− α)

ϕ =
α

2
,

which, along with Condition (C3), proves (A.10). This completes the proof of the lemma.

Proof of Theorem 3. For an index set J , let XJ and X̂J denote the submatrices formed by

the jth columns of X and X̂ with j ∈ J , respectively. The optimality conditions for β̂ ∈ Rp

to be a solution to problem (4) with the L1 penalty can be written as

1

n
X̂T
Ŝ

(y − X̂β̂) = µ sgn(β̂Ŝ) (A.13)

and ∥∥∥∥ 1

n
X̂T
Ŝc(y − X̂β̂)

∥∥∥∥
∞
≤ µ. (A.14)

It suffices to find a β̂ ∈ Rp with the desired properties such that (A.13) and (A.14) hold.

Let β̂Sc = 0. The idea of the proof is to first determine β̂S from (A.13), and then show that

thus obtained β̂ also satisfies (A.14).

Using similar arguments to those in the proof of Lemma A.2, we can show that, there

exist constants c0, c1, c2 > 0 such that, if we can choose µ as before, then with probability

at least 1− c1(pq)−c2 , it holds that∥∥∥∥ 1

n
X̂Tη − 1

n
X̂T (X̂−X)β0

∥∥∥∥
∞
≤ α

4− α
µ. (A.15)

From now on, we condition on the event that (A.15) holds and analyze conditions (A.13)
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and (A.14).

We first determine β̂S from (A.13). By substituting

y − X̂β̂ = XSβ0S + η − X̂Sβ̂S = η − (X̂S −XS)β0S − X̂S(β̂S − β0S), (A.16)

we write (A.13) with Ŝ replaced by S in the form

1

n
X̂T
Sη −

1

n
X̂T
S (X̂S −XS)β0S − ĈSS(β̂S − β0S) = µ sgn(β̂S),

or

β̂S − β0S = (ĈSS)−1
{

1

n
X̂T
Sη −

1

n
X̂T
S (X̂S −XS)β0S − µ sgn(β̂S)

}
. (A.17)

This, along with (A.9) and (A.15), leads to

‖β̂S − β0S‖∞ ≤ ‖(ĈSS)−1‖∞
{∥∥∥∥ 1

n
X̂T
Sη −

1

n
X̂T
S (X̂S −XS)β0S

∥∥∥∥
∞

+ µ

}
≤ 4− α

2(2− α)
ϕ

(
α

4− α
µ+ µ

)
=

2

2− α
ϕµ < b0

by assumption, which entails that sgn(β̂S) = sgn(β0S). Since β̂Sc = β0
Sc = 0 by definition,

we have Ŝ = S. Let β̂S be defined by (A.17) with sgn(β̂S) replaced by sgn(β0S). Clearly,

thus defined β̂ satisfies the desired properties and (A.13).

It remains to show that β̂ also satisfies (A.14). By substituting (A.16) and (A.17), we

write

1

n
X̂T
Sc(y − X̂β̂) =

1

n
X̂T
Scη −

1

n
X̂T
Sc(X̂S −XS)β0S

− ĈScS(ĈSS)−1
{

1

n
X̂T
Sη −

1

n
X̂T
S (X̂S −XS)β0S − µ sgn(β̂S)

}
.

Then it follows from (A.10) and (A.15) that∥∥∥∥ 1

n
X̂T
Sc(y − X̂β̂)

∥∥∥∥
∞
≤
∥∥∥∥ 1

n
X̂T
Scη −

1

n
X̂T
Sc(X̂S −XS)β0S

∥∥∥∥
∞

+ ‖ĈScS(ĈSS)−1‖∞
{∥∥∥∥ 1

n
X̂T
Sη −

1

n
X̂T
S (X̂S −XS)β0S

∥∥∥∥
∞

+ µ

}
≤ α

4− α
µ+

(
1− α

2

)( α

4− α
µ+ µ

)
= µ.

Since Ŝ = S, we see that β̂ also satisfies (A.14), which concludes the proof.

Supplementary Materials

The supplementary material contains the proof of Theorem 4.
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Figure 2: Performance curves for different methods with the dimensions p = q = 100 fixed
and the sample size n varying from 200 to 1500.

35



T
ab

le
2:

S
im

u
la

ti
on

re
su

lt
s

fo
r

M
o
d
el

s
5–

8.
E

ac
h

p
er

fo
rm

an
ce

m
ea

su
re

w
as

av
er

ag
ed

ov
er

50
re

p
li
ca

te
s

w
it

h
st

an
d
ar

d
d
ev

ia
ti

on
sh

ow
n

in
p
ar

en
th

es
es

P
L

S
2S

R

M
et

h
o
d
L
1

es
t.

lo
ss

P
re

d
.

lo
ss

T
P

M
o
d
el

si
ze

M
C

C
L
1

es
t.

lo
ss

P
re

d
.

lo
ss

T
P

M
o
d
el

si
ze

M
C

C

M
o
d
el

5:
(n
,p
,q

)
=

(3
00
,6

00
,6

00
),

(a
,b

)
=

(0
.7

5,
1)

L
as

so
2.

22
(0

.4
4)

0.
79

(0
.1

5)
5.

0
(0

.0
)

69
.1

(2
0.

0)
0.

26
(0

.0
4)

1.
67

(0
.8

1)
0.

78
(0

.2
9)

5.
0

(0
.0

)
25

.5
(1

0.
5)

0.
46

(0
.1

0)
S
C

A
D

2.
03

(0
.3

8)
0.

81
(0

.1
7)

5.
0

(0
.0

)
48

.6
(1

4.
1)

0.
32

(0
.0

5)
1.

52
(0

.7
4)

0.
70

(0
.2

5)
5.

0
(0

.0
)

26
.3

(1
2.

2)
0.

47
(0

.1
2)

M
C

P
1.

81
(0

.3
4)

0.
79

(0
.1

7)
5.

0
(0

.0
)

28
.7

(9
.3

)
0.

43
(0

.0
7)

1.
26

(0
.6

8)
0.

74
(0

.3
0)

5.
0

(0
.1

)
14

.7
(7

.1
)

0.
62

(0
.1

4)
O

ra
cl

e
0.

78
(0

.0
8)

0.
57

(0
.1

0)
5

(0
)

5
(0

)
1

(0
)

0.
42

(0
.1

5)
0.

38
(0

.1
5)

5
(0

)
5

(0
)

1
(0

)

M
o
d
el

6:
(n
,p
,q

)
=

(5
00
,1

00
0,

10
00

),
(a
,b

)
=

(0
.7

5,
1)

L
as

so
2.

21
(0

.4
6)

0.
80

(0
.1

9)
5.

0
(0

.0
)

87
.1

(2
9.

3)
0.

24
(0

.0
4)

1.
28

(0
.7

8)
0.

56
(0

.2
3)

5.
0

(0
.0

)
26

.8
(1

3.
3)

0.
46

(0
.1

1)
S
C

A
D

2.
05

(0
.3

6)
0.

83
(0

.2
0)

5.
0

(0
.0

)
61

.2
(2

1.
0)

0.
29

(0
.0

6)
0.

93
(0

.5
6)

0.
48

(0
.2

3)
5.

0
(0

.0
)

21
.9

(1
2.

3)
0.

54
(0

.1
6)

M
C

P
1.

82
(0

.3
6)

0.
80

(0
.2

0)
5.

0
(0

.0
)

33
.7

(1
5.

0)
0.

41
(0

.0
9)

0.
84

(0
.6

3)
0.

49
(0

.2
7)

5.
0

(0
.0

)
14

.1
(8

.9
)

0.
66

(0
.1

6)
O

ra
cl

e
0.

76
(0

.0
7)

0.
55

(0
.1

0)
5

(0
)

5
(0

)
1

(0
)

0.
29

(0
.1

1)
0.

26
(0

.1
1)

5
(0

)
5

(0
)

1
(0

)

M
o
d
el

7:
(n
,p
,q

)
=

(5
00
,1

00
0,

10
00

),
(a
,b

)
=

(0
.5
,0
.7

5)
L

as
so

2.
65

(0
.4

2)
0.

86
(0

.1
6)

5.
0

(0
.0

)
86

.3
(2

7.
1)

0.
24

(0
.0

4)
2.

06
(1

.3
2)

0.
77

(0
.2

9)
5.

0
(0

.0
)

27
.6

(1
5.

1)
0.

47
(0

.1
4)

S
C

A
D

2.
39

(0
.2

6)
0.

90
(0

.1
7)

5.
0

(0
.0

)
47

.2
(1

9.
0)

0.
34

(0
.0

7)
1.

79
(0

.8
0)

0.
70

(0
.2

3)
5.

0
(0

.0
)

28
.9

(1
3.

7)
0.

46
(0

.1
5)

M
C

P
2.

26
(0

.2
7)

0.
89

(0
.1

7)
5.

0
(0

.0
)

28
.3

(1
3.

1)
0.

45
(0

.1
1)

1.
52

(1
.0

2)
0.

68
(0

.3
1)

5.
0

(0
.2

)
16

.5
(1

0.
5)

0.
61

(0
.1

6)
O

ra
cl

e
1.

00
(0

.0
7)

0.
61

(0
.0

9)
5

(0
)

5
(0

)
1

(0
)

0.
40

(0
.1

5)
0.

30
(0

.1
2)

5
(0

)
5

(0
)

1
(0

)

M
o
d
el

8:
(n
,p
,q

)
=

(5
00
,1

00
0,

10
00

),
(a
,b

)
=

(0
.5
,1

)
or

(0
.0

5,
0.

1)
L

as
so

2.
68

(0
.5

8)
0.

78
(0

.0
9)

5.
0

(0
.0

)
95

.4
(3

7.
8)

0.
23

(0
.0

5)
2.

01
(0

.8
0)

0.
73

(0
.2

1)
5.

0
(0

.0
)

29
.5

(1
3.

0)
0.

44
(0

.0
9)

S
C

A
D

2.
38

(0
.3

1)
0.

81
(0

.0
8)

5.
0

(0
.0

)
56

.8
(2

0.
2)

0.
30

(0
.0

6)
1.

58
(0

.6
3)

0.
65

(0
.2

3)
5.

0
(0

.1
)

25
.7

(1
0.

6)
0.

46
(0

.1
0)

M
C

P
2.

16
(0

.3
1)

0.
80

(0
.0

8)
5.

0
(0

.0
)

30
.3

(1
2.

9)
0.

43
(0

.1
0)

1.
45

(0
.8

3)
0.

66
(0

.2
4)

5.
0

(0
.2

)
16

.7
(9

.1
)

0.
59

(0
.1

5)
O

ra
cl

e
0.

95
(0

.0
7)

0.
58

(0
.0

6)
5

(0
)

5
(0

)
1

(0
)

0.
41

(0
.1

4)
0.

29
(0

.1
1)

5
(0

)
5

(0
)

1
(0

)

36



200 400 600 800 1000 1200 1400

0
1

2
3

4
PLS

Sample size

L
1 

es
tim

at
io

n 
lo

ss

Lasso
SCAD
MCP
Oracle

200 400 600 800 1000 1200 1400

0
1

2
3

4

2SR

Sample size

L
1 

es
tim

at
io

n 
lo

ss

Lasso
SCAD
MCP
Oracle

200 400 600 800 1000 1200 1400

0.
0

0.
5

1.
0

1.
5

PLS

Sample size

P
re

di
ct

io
n 

lo
ss

Lasso
SCAD
MCP
Oracle

200 400 600 800 1000 1200 1400

0.
0

0.
5

1.
0

1.
5

2SR

Sample size

P
re

di
ct

io
n 

lo
ss

Lasso
SCAD
MCP
Oracle

200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PLS

Sample size

M
C

C

Lasso
SCAD
MCP

200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2SR

Sample size

M
C

C

Lasso
SCAD
MCP

Figure 3: Performance curves for different methods with the dimensions p = q = 600 fixed
and the sample size n varying from 200 to 1500.
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Figure 4: Stability paths for different methods applied to the mouse obesity data based on
100 subsamples. Genes with maximum selection probability at least 0.4 are displayed in
solid lines, among which genes common to both the PLS and 2SR methods are shown in red
and the distinct ones in blue, and the remaining genes are displayed in dashed lines.
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Table 3: Genes chosen by stability selection with maximum selection probability (values
shown) at least 0.5 and cis-SNPs (SNPs within 10 cM of each gene) identified by applying
the 2SR method with different penalties to the mouse obesity data. Asterisks indicate genes
that overlap those selected by the PLS method.

Gene Lasso SCAD MCP cis-SNPs

Igfbp2∗ 0.56 0.69 rs3663003
Lamc1 0.70
Sirpa 0.51 0.55
Gstm2∗ 0.88 0.91 0.89 rs4136518
Ccnl2 0.50 rs3720634
Glcci1 0.56
Vwf∗ 0.72 0.79 0.50
Irx3 0.62
Apoa4 0.65
Socs2 0.68 rs3694833
Avpr1a 0.78
Abca8a 0.50
Gpld1 0.50
Fam105a 0.60
Dscam 0.60
Slc22a3 0.90 rs4137196, rs3722983, rs4231406
2010002N04Rik 0.73 0.65 rs3661189, rs3655324

39


